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Periods of Limit Mixed Hodge Structures

Richard Hain

To Wilfred Schmid on the occasion of this 60th birthday

1. Introduction

The first goal of this paper is to explain some important results of Wilfred
Schmid from his fundamental paper [30] in which he proves very general results
which govern the behaviour of the periods of a of smooth projective variety Xt as
it degenerates to a singular variety. As has been known since classical times, the
periods of a smooth projective variety sometimes contain significant information
about the geometry of the variety, such as in the case of curves where the peri-
ods determine the curve. Likewise, information about the asymptotic behaviour
of the periods of a variety as it degenerates sometimes contain significant infor-
mation about the degeneration and the singular fiber. For example, the Hodge
norm estimates, which are established in [30] and [3], describe the asymptotics of
the Hodge norm of a cohomology class as the variety degenerates in terms of its
monodromy. They are an essential ingredient in the study of the L2 cohomology of
smooth varieties with coefficients in a variation of Hodge structure [37, 4].

A second goal is to give some idea of how geometric and arithmetic information
can be extracted from the limit periods, both in the geometric case and in the case
of the limits of the mixed Hodge structures on fundamental groups of curves.

To get oriented, recall that if X is a compact Riemann surface of genus g, then
for each choice of a symplectic (w.r.t. the intersection form) basis a1, . . . , ag, b1, . . . , bg

of H1(X, Z), there is a basis w1, . . . , wg of the holomorphic differentials H0(X, Ω1)
such that ∫

aj

wk = δjk.

The g × g matrix

Ω :=
(∫

bj

wk

)
is called the period matrix of X . The classical Riemann bilinear relations assert that
Ω is symmetric and that it has positive definite imaginary part. By the classical
Torelli Theorem [17], the period matrix determines the Riemann surface up to
isomorphism.

c©2002 International Press

113
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A more conceptual way to view the period matrix is to note that the augmented
period matrix (I|Ω) is the set of coordinates of the g-plane H0(X, Ω1) in the grass-
mannian of g planes in the 2g-dimensional vector space H1(X, C) with respect to
the integral basis a1, . . . , bg of H1(X, Z). The g-plane H0(C, Ω1) lies in the closed
submanifold of the grassmannian consisting of g-planes isotropic with respect to
the cup product.

2. Quick Review of Hodge Theory

2.1. The Hodge Theorem. For any complex manifold, we can define

Hp,q(X) :=
closed (p, q)-forms

(p, q)-forms that are exact
.

This is simply the subspace of Hp+q(X, C) consisting of classes that can be repre-
sented by a closed (p, q)-form.

For a general complex manifold, these do not give a decomposition of the coho-
mology of X . However, if X is compact Kähler (for example, a smooth projective
variety), then the natural mapping⊕

p+q=k

Hp,q(X) → Hk(X, C)

is an isomorphism. Denote the class in H1,1(X) of the Kähler form by w. The
Hard Lefschetz Theorem states that if dimX = n and k ≥ 0, then

∧ wk : Hn−k(X, C) → Hn+k(X, C)

is an isomorphism. One can then define the primitive cohomology in degree k by

PHk(X, C) = ker
{ ∧ wk+1 : Hn−k(X, C) → Hn+k+2(X, C)

}
.

The Hodge decomposition of Hk(X) restrictions to give one of the primitive coho-
mology:

PHk(X, C) ∼=
⊕

p+q=k

PHp,q(X)

where PHp,q(X) = Hp,q(X) ∩ PHp+q(X, C).
Define a form Q : Hn−k(X) ⊗ Hn−k(X) → C by

Q(ξ, η) =
∫

X

ξ ∧ η ∧ wk.

This form is always defined over R as w is a real cohomology class, and over Z when
X is smooth projective and w is the class of a hyperplane section.

The Riemann-Hodge bilinear relations generalize the classical Riemann bilinear
relations for a compact Riemann surface. They state that

(i) Q vanishes on PHp,q(X) ⊗ PHr,s(X) unless p = s and q = r;
(ii) if ξ ∈ PHp,q(X) is non-zero, then

ip−q(−1)k(k−1)/2Q(ξ, ξ) > 0,

where k = p + q.
In degree 2, the Riemann-Hodge bilinear relations imply the Hodge Index Theorem.

The primitive cohomology P kHp,q(X) together with the form S := (−1)k(k−1)/2Q
is the prototypical example of a polarized Hodge structure of weight k.

Definition 1. A Hodge structure V of weight k consists of
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(i) a finitely generated abelian group VZ and
(ii) a bigrading

VC =
⊕

p+q=k

V p,q

of its complexification, which satisfies V p,q = V q,p.
A polarized Hodge structure of weight k ∈ Z is a Hodge structure V of weight k
together with a (−1)k symmetric bilinear form

S : VZ ⊗ VZ → Z

that satisfies:
(i) S(V p,q, V r,s) = 0 unless p = s and q = r,
(ii) if v ∈ V p,q is non-zero, then ip−qS(v, v) > 0.

The Hodge norm of v ∈ V is defined by

‖v‖2 = S(Cv, v)

where C is the linear operator whose restriction to V p,q is ip−q.

3. Periods

The Hodge filtration of a Hodge structure V of weight k is the decreasing
filtration

· · · ⊇ F pV ⊇ F p+1V ⊇ F p+2V ⊇ · · ·
defined by

F pV :=
⊕
s≥p

V s,k−s.

One can recover the bigrading from the Hodge filtration and the real structure by

V p,k−p = F pV ∩ F
k−p

,

where F
•

is the complex conjugate of the Hodge filtration.
The reason for working with the Hodge filtration rather than the bigrading is

the observation of Griffiths [16] that the Hodge filtration varies holomorphically1

in families, whereas the (p, q) pieces generally do not. Indeed, if Hp,q varies holo-
morphically, then Hq,p varies anti-holomorphically. So if both Hp,q and Hq,p vary
holomorphically, then both are locally constant.

To be more precise, suppose that f : X → B is a family of compact Kähler
manifolds. This means that f is a proper holomorphic mapping, that X is Kähler
and that each fiber Xb is smooth and has the induced Kähler structure. One has
the local system (i.e., locally constant sheaf)

Hk := Rkf∗Z = {Hk(Xb, Z)}b∈B

on B. We can complexify this to obtain a flat holomorphic vector bundle

Hk := Hk ⊗Z OB

over B. Denote the natural flat connection on Hk by ∇. Let

Fp :=
{
F pHk(Xb)

}
b∈B

⊆ Hk.

1With respect to the locally constant structure coming from the lattice of integral cohomology.
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Fundamental results of Griffiths [16] assert that the Fp are holomorphic sub-
bundles of Hk and that if one differentiates a section of Fp along a holomorphic
vector field, then the result lies in Fp−1:

(1) ∇ : Fp → Fp−1 ⊗ Ω1
B.

This is the prototypical example of a variation of Hodge structure. Replacing Hk

by the bundle of primitive cohomology

PHk := {PHk(Xb)}b∈B

yields the prototypical example of a polarized variation of Hodge structure — a
variation of Hodge structure with an inner product S which is parallel with respect
to the connection and which polarizes each fiber.

Definition 2. A variation of Hodge structure of weight k over a complex
manifold B is a Z-local system V together with a flag

· · · ⊇ Fp ⊇ Fp+1 ⊇ · · ·
of holomorphic sub-bundles of the flat bundle V := V ⊗Z OB which satisfy:

(i) ∇ : Fp → Fp−1 ⊗ Ω1
B,

(ii) Each fiber, endowed with the induced Hodge filtration, is a Hodge struc-
ture of weight k.

The variation is polarized if it has a (−1)k-symmetric inner product which is parallel
with respect to the flat structure and polarizes the Hodge structure on each fiber.

Given a polarized variation of Hodge structure V of weight k over a base B,
one has a period mapping

B̃ → {
set of flags {F p} that satisfy S(F p, F k−p+1) = 0

}
defined on the universal covering of the base. The flags should be considered to live
in some fixed fiber of V → B; other fibers being compared with this one using the
flat structure. The flags should have the “same shape” as the Hodge filtration on
this reference fiber.

Griffiths’ results assert that this mapping is holomorphic and lies in the open
subset D of flags that satisfy

ip−qS(v, v) > 0

whenever v is a non-zero element of F p ∩ F
k−p

and p + q = k.
When the variation is PHk this mapping really is a period mapping in the sense

that the coordinates in the flag manifold of the image of b ∈ B̃ will be given by
periods over integral cycles of a basis of PHk(Xb) adapted to the Hodge filtration.

At this point it is useful to revisit the period mapping for curves.

Example 3. Fix a genus g ≥ 1. To know the Hodge filtration on a compact
Riemann surface of genus g, one simply has to know the location of the holomorphic
differentials F := H1,0(Xb) in H1(X, C) with respect to an integral symplectic basis.
The polarization S on H1(Xb) is the one given by cup product. The first Riemann
bilinear relation says that S(F, F ) = 0.

Choose a base point bo ∈ B. Let H = H1(Xbo). The image of the period
mapping is contained in the closed submanifold Y of the grassmannian of g planes
in HC consisting of those g-planes F that satisfy S(F, F ) = 0. It is a complex
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manifold of dimension g(g+1)/2. The period mapping B̃ → Y is holomorphic, and
has image contained in the open subset

U = {F ∈ Y : iS(v, v) > 0 if v �= 0, v ∈ F}
of Y ; it is a complex manifold. One can check that

U = the symmetric space of Spg(R)

= Spg(R)/U(g)
= Siegel’s upper half plane hg of rank g

= {g × g symmetric complex matrices Ω with Im Ω > 0}.
The period map takes Xb to its period matrix Ω(b), described in the Introduction.
That it is holomorphic is equivalent to the statement that Ω(b) depends holomor-
phically on b ∈ B.

The monodromy representation of the variation is a homomorphism

π1(B, bo) → Spg(Z).

The period mapping descends to the mapping

B → Spg(Z)\hg = Ag

to the moduli space of principally polarized abelian varieties that takes b ∈ B to
the jacobian of Xb.

4. The Limit Hodge Filtration

Schmid’s work concerns the behaviour of the period mapping of a polarized
variation of Hodge structure as the the Hodge structures degenerate. In the geo-
metric case, this happens when the varieties Xb degenerate to a singular variety. To
keep things simple I’ll only discuss the local case in one variable, which he considers
in [30]. The several variable case is more subtle and is worked out in [30] and in
[3].

Suppose that V → ∆∗ is a polarized variation of Hodge structure of weight k
over the punctured disk. The geometrically inclined may prefer to think of this as
the local system of primitive cohomology of degree k associated to a proper family
X → ∆ over the disk, where X is smooth and Kähler and where each fiber Xt is
smooth when t �= 0.

Let
T : Vto → Vto

be the monodromy operator associated to the positive generator of π1(∆∗, to).
Landman in the geometric case, and Borel in general, (reproved by Schmid [30,
p. 245]) proved that the eigenvalues of T are roots of unity, so that T is quasi
unipotent; that is, there exist integers e and m such that

(T e − I)m = 0.

By pulling V back along the e-fold covering t 
→ te of ∆∗ → ∆∗ we may assume
that T is unipotent. The logarithm of T is then defined by the usual power series.
Set

N = log T/2πi.

This is nilpotent and preserves the polarization in the sense that

(2) S(Nx, y) + S(x, Ny) = 0.
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We shall view it as a flat section of the bundle End V, so that it acts on all fibers,
not just the one over to.

Denote the flat holomorphic vector bundle V ⊗Z O∆∗ by V and its connection
by ∇.

Note that, unless T has finite order, neither T nor N is a morphism of Hodge
structures Vto → Vto . One of Schmid’s results, which is explained below, is that
N is compatible with the limit Hodge filtration and acts as an endomorphism of
the “limit mixed Hodge structure”, which allows one to relate Hodge theory and
monodromy.

4.1. Deligne’s Canonical Extension. In order to discuss the limit of the
Hodge structure Vt as t → 0, we need to extend the flat bundle V → ∆∗ to a
holomorphic vector bundle Ṽ → ∆ over the entire disk. The way to do this is to
use Deligne’s canonical extension [6].

First note that any trivialization of V over ∆∗ gives an extension of V to ∆;
the holomorphic sections of the extended bundle are those whose restriction to ∆∗

are of the form ∑
j

fjφj

where each fj is holomorphic on ∆, and φ1, . . . , φm is a holomorphic frame that
gives the trivialization over ∆∗. Two framings of V over ∆∗ give the same extension
if and only if they differ by a holomorphic mapping g : ∆ → GLm(C). It follows
that the set of extensions of V to ∆ can be identified with the homogeneous space

GLm(O(∆∗))/GLm(O(∆)),

which is large.
To construct Deligne’s extension, we choose multivalued flat sections φ1(t), . . . , φm(t)

defined on ∆∗. The extension is constructed by regularizing these. Specifically, set

ej(t) = φj(t)t−N ,

where for a square matrix A, tA is defined to be exp(A log t). The ej(t) comprise a
single valued framing of V over ∆∗ as each φj(t) changes to

φj(t) · T
when analytically continued around the circle, whereas t−N changes to

exp
(
(− log t − 2πi)N

)
= e−2πiN t−N = T−1t−N

when continued around the origin. The framing ej determines Deligne’s extension
Ṽ of V to all of ∆. With respect to Deligne’s framing ej(t), the connection is

∇ = d − N
dt

t
.

In other words, the connection on Ṽ is meromorphic with a simple pole at the
origin and the residue of the connection at t = 0 is −N . In particular, the extended
connection has a regular singular point at the origin with nilpotent residue. This
property characterizes Deligne’s extension up to isomorphism. This fact, proved
by Deligne in more generality in [6], is a consequence of the classical result about
differential equations stated below, a proof of which can be found in [35, Chapt. II].
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Lemma 4. Suppose that A : ∆ → EndV is holomorphic. If no two eigenvalues
of A0 := A(0) differ by a non-zero integer (e.g., if A0 is nilpotent), then there is
a unique holomorphic function P : ∆ → AutV with P (0) = idV such that each
(local) solution v : ∆∗ → V of the differential equation

tv′(t) = v(t)A(t)

is of the form

v(t) = v0 tA0P (t).

Note that the monodromy operator T is:

v(t) = v0 tA0P (t) 
→ v0 tA0e2πiA0P (t) = v(t) exp
(
2πiP (t)−1A0 P (t)

)
.

The operator log T/2πi on the fiber over t is thus right multiplication by

N(t) = P (t)−1A0 P (t) ∈ Aut V.

The Deligne trivializing sections are therefore of the form

v(t)t−N(t) = v(t)P (t)−1t−A0P (t) = v0 P (t),

which converges to v0 as t → 0. This also implies that the function P (t) is the
difference between the Deligne framing and the given trivialization.

Corollary 5. If A0 is nilpotent, then

lim
t→0

v(t)t−A0 = lim
t→0

v(t)t−N(t) = v0

where the limit is taken along any angular ray.

Proof. The second equality was proved above. As for the first, we have

v(t)t−A0 = v0 tA0P (t)t−A0 .

If Ak+1
0 = 0, then there is a constant C such that

‖tA0‖ and ‖t−A0‖ ≤ C
(
log 1/|t|)k

when 0 < |t| ≤ R, for some R > 0. Writing P (t) = I +
∑

n≥1 Pntn, we have

‖tA0P (t)t−A0 − I‖ ≤ 2C|t|( log 1/|t|)k
∞∑

n=1

‖Pn‖|t|n−1

which goes to zero along each angular ray. �

This formula will prove useful in Section 6.2 when computing the period of the
path [0, 1] in the limit MHS on the unipotent completion in the set of paths in
P1 − {0, 1,∞} from 0 to 1.

Remark 6. Note that v(t)t−A0 is not, in general, single-valued on the punc-
tured disk even though its limit as t → 0 along each radial ray exists.
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4.2. The Nilpotent Orbit Theorem. Schmid’s first main result is the Nilpo-
tent Orbit Theorem. We shall state it as two separate results.

Theorem 7 (Schmid). The Hodge sub-bundles Fp of V extend to holomorphic
sub-bundles F̃pof Deligne’s canonical extension Ṽ → ∆. That is, both F̃p and Ṽ/F̃p

are vector bundles.

This shows that, when taken appropriately, the limit of the Hodge filtration
exists. The limit Hodge filtration F̃•

0 is a filtration of the fiber V0 of the canonical
extension Ṽ over 0.

In the geometric case, the extended Hodge bundles can be constructed explic-
itly. This was done by Steenbrink in [31].

So far we have constructed a complex vector space V0 and a Hodge filtration
F •V0 := F̃p

0 on it. The polarization also extends to the central fiber as at tN

preserves the inner product since N preserves it infinitesimally by (2).
We can also construct an integral form VZ of V0. If the φj are integral, the

integral lattice VZ is simply the Z-linear span of the ej(0). It is important to
note, however, that except when the monodromy is trivial, (VZ, F •

0 ) is not a Hodge
structure even though it is a limit of Hodge structures.

In general, the integral structure depends on the holomorphic parameter t cho-
sen for the disk. This dependence is quite transparent, and is a straightforward
consequence of Corollary 5.

Lemma 8. The lattice VZ in V0 depends only on the parameter t to first order,
and hence only on the tangent vector ∂/∂t. The lattice corresponding to the tangent
vector λ∂/∂t, where λ is a sufficiently small non-zero complex number, is λN ·
VZ. �

This extends to a “nilpotent orbit” over C∗. Its fiber over t ∈ C∗ consists of:
(i) the complex vector space V0,
(ii) the limit Hodge filtration F •

0 on V0,
(iii) the lattice tNVZ in V0.

It has a flat connection given by the limit connection

∇0 = d − N
dt

t
.

with respect to the constant trivialization given by V0. It satisfies the Griffiths
infinitesimal period relation (1).

The Deligne frame gives a connection preserving isomorphism

V0 × ∆ −−−−→ Ṽ⏐⏐
 ⏐⏐

∆ ∆

between Ṽ and the restriction of the nilpotent orbit to a neighbourhood of the origin
which is the identity on the fiber over the origin. The second part of Schmid’s
Nilpotent Orbit Theorem can be stated as follows.

Theorem 9 (Schmid). The nilpotent orbit satisfies Griffiths infinitesimal pe-
riod relation (1). There is an ε > 0 such that if 0 < |t| < ε, then the fiber
of the nilpotent orbit over t is a Hodge structure with the same Hodge numbers
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as those of the original variation. Moreover, there is a holomorphic mapping
g : ∆ → Aut(V0, S) such that g(0) is the identity and g carries the Hodge bun-
dle of the nilpotent orbit onto the Hodge bundle of Ṽ.

So this gives us our first precise information about the asymptotics of periods
of polarized variations of Hodge structure. Basically, the crudest model of a degen-
eration of Hodge structure is a nilpotent orbit. General degenerations are obtained
from these by perturbing the Hodge filtration.

It is useful to think of the nilpotent orbit as being defined on the punctured
tangent space T0∆−{0} of ∆ at t = 0. Then in a sufficiently small neighbourhood
of the origin, the nilpotent orbit is a variation of Hodge structure that approximates
the original variation. The nilpotent orbit can be thought of as the restriction of
the canonical extension of the variation V to Spec C[t]/(t2).

5. The SL2-orbit Theorem

Schmid’s second main theorem, and the deeper of the two, is the SL2-orbit
Theorem. It gives more precise information about how nilpotent orbits approximate
degenerations of polarized variations of Hodge structure and is analogous to the
Hard Lefschetz Theorem for the cohomology of a smooth projective variety. In
fact, the SL2-orbit Theorem corresponds to the Hard Lefschetz Theorem for Calabi-
Yau manifolds under mirror symmetry.2 It also leads naturally to mixed Hodge
structures, which, like Hodge structures, have a lattice and Hodge filtration, but
also have a weight filtration. In the case of a limit of Hodge structures, the weight
filtration is constructed from the monodromy logarithm.

5.1. The Monodromy Weight Filtration. Suppose that V is a finite di-
mensional vector space over a field of characteristic zero, and suppose that N is a
nilpotent endomorphism of V . Then there is a unique filtration W (N)•

· · · ⊆ Wn(N) ⊆ Wn+1(N) ⊆ · · ·
of V such that

(i) N(Wn(N)) ⊆ Wn−2(N) and
(ii) Nk : Wk/Wk−1 → W−k/W−k−1 is an isomorphism.

This is an easy exercise using the Jordan canonical form of N . It suffices to
prove the result for a single Jordan block, where the result is evident.

In our case, the monodromy logarithm acts on V0. We therefore have the
monodromy weight filtration W•(N) of V0. In the present situation, we shift the
filtration by the weight k of the variation — define:

WnV0 = Wk−n(N).

2As Eduardo Cattani pointed out to me (cf. [2]), a precursor of this already appears in
the papers [3, 4] of Cattani-Kaplan-Schmid. They prove a general result, a special case of which
constructs out of (H•(X), F •), the cohomology and Hodge filtration of a compact Kähler manifold
X, a polarized variation of Hodge structure over the complexified Kähler cone of X. This can be
restricted to the the (p, p) part of H•(X), and this is what should correspond to the polarized
variation of Hodge structure of the degeneration of the mirror, as was pointed out to David
Morrison by Cattani in 1994. Deligne [10] has also studied certain nilpotent orbits arising in
mirror symmetry.
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Our central fiber now has the Hodge filtration F •V0, the nilpotent orbit tNVZ

of integral structures, and the monodromy weight filtration W•. One of the main
consequences of the SL2-Orbit Theorem is:

Theorem 10 (Schmid). For each t ∈ C∗, the collection

(tNVZ, F •
0 , W•)

is a mixed Hodge structure. Moreover, N : V0 → V0 is defined over Q and is is a
morphism of Q-mixed Hodge structure of type (−1,−1).

So, even if one is interested only in compact Kähler manifolds, one is inexorably
lead to mixed Hodge structures when one studies their degeneration.

Definition 11 (Deligne). A mixed Hodge structure V consists of a finitely
generated abelian group VZ, an increasing filtration

· · · ⊆ Wm−1VQ ⊆ WmVQ ⊆ Wm+1VQ ⊆ · · ·
(called the weight filtration) of VQ := VZ ⊗Z Q, and a decreasing filtration

· · · ⊇ F p−1VC ⊇ F pVC ⊇ F p+1VC ⊇ · · ·
(called the Hodge filtration) of VC := VZ ⊗Z C. These are required to satisfy the
condition that, for each m,

GrW
m V := WmV/Wm−1V

with the induced Hodge filtration

F p GrW
m V := im{F pV ∩ WmV → GrW

m V }
is a Hodge structure of weight m.

Deligne [7, 8] proved that the cohomology groups of every complex algebraic
variety (not necessarily smooth or compact) have a mixed Hodge structure (MHS)
that is natural with respect to morphisms.

This definition takes a while to digest, and it may be helpful to note that, up
to some subtle issues of torsion in VZ, mixed Hodge structures can be constructed
as follows.

Let (Hm)m∈Z be a collection of Hodge structures where Hm has weight m and
all but a finite number of the Hm are zero. Then their direct sum

H =
⊕
m

Hm

is a mixed Hodge structure with the direct sum Hodge and weight filtrations:

F pH :=
⊕

k

F pHm, WmH =
⊕
k≤m

Hk.

Such a MHS is said to be split as it is the direct sum of Hodge structures. Very
few of the MHSs encountered in life are split. Up to the torsion issues alluded to
above, all MHSs V with GrW

m V ∼= Hm can be constructed as follows.
Let

G = {φ ∈ AutHC that preserve W• and act trivially on all GrW
m H}.

This is a unipotent group. For each element of g of G, we can define V (g) to be the
MHS with VC = HC, the same Hodge and weight filtrations (over C), and lattice
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g · HZ ↪→ HC. The MHS obtained in this way, depends only on the double coset of
g−1 in

GZ\G/F 0G

where
GZ = G ∩ AutVZ and F 0G = {φ ∈ G : φ preserves F •}.

In fact, this double coset space is the moduli space of MHSs V together with an
isomorphism GrW

m V ∼= Hm.

Example 12. Let A and B be Hodge structures of weights a and b, respectively,
where b < a. The set of all mixed Hodge structures with weight graded quotients
isomorphic to A and B, together with these framings is

Hom(AC, BC)/
(
Hom(AZ, BZ) + F 0 Hom(A, B)

)
as the group G in this case is Hom(AC, BC). This gives the computation of
Ext1Hodge(A, B) in the category of MHSs given by Carlson in [1].

5.2. The Hodge Norm Estimates. Another important consequence of the
SL2-orbit Theorem is the Hodge norm estimates, which are important in applica-
tions to L2-cohomology of algebraic varieties with coefficients in a polarized vari-
ation of Hodge structure — cf. [37] in the one-variable case, and [4] and [28] in
general.

First note that the monodromy weight filtration is defined on the cohomology
of each fiber and is preserved by the connection.

Theorem 13 (Schmid). If V is a polarized variation of Hodge structure of
weight k over the punctured disk ∆∗, then a flat section v(t) lies in Wm if and only
if the square of its Hodge norm satisfies

S(Cv(t), v(t)) = O
((

log(1/|t|))m−k)
when t goes to 0 along a radial ray. Here C : Vt → Vt is the operator that is
multiplication by ip−q on V p,q

t .

5.3. Topology and Geometry of the Limit MHS. Suppose that f : X →
∆ is a proper holomorphic mapping from a Kähler manifold to the disk. Suppose
that the fiber Xt over t ∈ ∆ is smooth whenever t �= 0 and that X0 is a reduced
divisor with normal crossings. This implies that the monodromy operator T ∈
AutHm(Xt) is unipotent.

The local system
V := Rm

(
f |∆∗

)
∗Z

underlies a polarized variation of Hodge structure of weight m over ∆∗. By Schmid’s
Theorems, for each choice of a non-zero tangent vector 
v of ∆ at 0, there is a limit
mixed Hodge structure of V, which one can think of as a MHS on the cohomology
group Hm(X�v) of the first order deformation X�v of X0 given by 
v.

Basic results about the compatibility of this MHS with others associated to the
degeneration follow from the geometric constructions of the limit MHS given by
Clemens [5] and Steenbrink [31]. These compatibilities aid in extracting geometric
and topological information from H•(X�v).

To begin to understand the limit MHS, Hm(X�v), it is helpful to think of Xv

as being built out of X0. In order to explain this, we denote the normalization of



124 RICHARD HAIN

X0 by ν : X̃0 → X0. Denote the inverse image under ν : X̃0 → X0 of the singular
locus of X0 by D. It is a normal crossings divisor. Set

X ′
0 = real oriented blowup of X̃0 along D

which is a manifold with corners. One can think of each X�v as being obtained
from X ′

0 by gluing, the data for which is given by the combinatorics of D, its local
defining equation of X0, and by 
v/|
v|. There are therefore mappings

X̃0 − D ↪→ X ′
0 → X�v → X0

which induce homomorphisms

Hm(X0)
β−−−−→ Hm(Xv) α−−−−→ Hm(X̃0 − D).

Theorem 14. The mappings α and β are both morphisms of MHS.

The statement that β is a morphism is proved by both Clemens and Steenbrink.
It is closely related to the Local Invariant Cycle Theorem, which is stated below.
That α is a morphism follows from Steenbrink’s construction of H•(X�v) in [31].

For each t ∈ ∆, there is a restriction mapping

j∗t : Hm(X, Q) → Hm(Xt, Q)

which corresponds, via duality, to intersection with the fiber

Hn(X, X |∂∆, Q) → Hn−2(Xt, Q)

and to the mapping β above after taking into account the fact that the inclusion
X0 ↪→ X is a deformation retraction.

The following result was first established in the �-adic case by Deligne and
then in the complex analytic case by Clemens [5] and Steenbrink [31]. Although
not expressed in terms of limit Hodge theory, it is a non-trivial application of its
existence and construction.

Theorem 15 (Local Invariant Cycle Theorem). If t �= 0, then the image of j∗t
is the space

ker
{
(T − I) : Hm(Xt, Q) → Hm(Xt, Q)

}
of invariant cohomology classes.

5.4. Degenerations of Curves. In this section, we give a relatively simple
example to illustrate how geometric information can be extracted from the limit
mixed Hodge structure. To get the full power from this theory, one needs to combine
Schmid’s results with the complementary results of Clemens [5] and the explicit
constructions of Steenbrink [31] surveyed in the previous paragraph.

Suppose that C → ∆ is a stable degeneration of compact Riemann surfaces
of genus g. The total space C is assumed to be smooth and the fiber Ct over t is
assumed to be smooth when t �= 0. The central fiber is assumed to be reduced and
stable (i.e., its automorphism group is finite.)

Let B be the set of the homology classes of the vanishing cycles. Then, using the
Picard-Lefschetz formula, one sees that the monodromy is unipotent and satisfies
(T−I)2 = 0. This implies that N = T−I and that the monodromy weight filtration
has length 3:

0 ⊆ W0H
1(Ct) ⊆ W1H

1(Ct) ⊆ W2H
1(Ct) = H1(Ct).
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The defining properties of the monodromy weight filtration imply that

W0H
1(Ct) = imN and W1H

1(Ct) = kerN.

The Picard-Lefschetz formula implies that W0H
1(Ct) is spanned by the Poincaré

duals of the vanishing cycles.
Fix a tangent vector 
v of 0 in ∆ and denote the corresponding limit MHS by

H1(C�v).
Denote the normalization of C0 by C̃0. Let D be the inverse image in C̃0 of

the double points of C0. Results of the previous paragraph imply that the natural
morphisms

H1(C0)
β−−−−→ H1(C�v) α−−−−→ H1(C0 − D)

are morphisms of MHS.
The fact that F 0H1(C�v) = H1(C�v, C) and F 2H1(C�v) = 0 imply that

GrW
m H1(C�v)

is of type (0, 0) when m = 0, of type (1, 1) when m = 2, and is a polarized Hodge
structure of with Hodge numbers (1, 0) and (0, 1) when m = 1. Basic topology
implies that β injective, from which it follows that β induces a natural isomorphism

GrW
1 H1(C�v) ∼= H1(C̃0) ∼=

⊕
components

E of C0

H1(E)

of polarized Hodge structures. It also implies that W0H
1(C�v) is subspace of H1(C�v)

generated by the Poincaré duals of the vanishing cycles and that β induces an
isomorphism

(3) W1H
1(C�v) ∼= H1(C0)

The classical Torelli Theorem, the fact that the theta divisor of the jacobian of a
smooth curve is irreducible and the semi-simplicity of polarized Hodge structures of
weight 1 imply that the polarized limit MHS, H1(C�v), determines the normalization
of C0. Using this, and by approximating the period mapping by the nilpotent orbit,
one can give proofs of weak versions (i.e., mod t) of the two results [13, Cor. 3.2,
Cor 3.8] in Fay’s book.

If the normalization of C0 is connected, then one can determine the divisor
classes in Jac C̃0 of the pairs of points that are identified to obtain C0. This infor-
mation is extracted from the extension

0 → W0H
1(C�v) → W1H

1(C�v) → GrW
1 H1(C�v) → 0.

using the work of Carlson [1] and the isomorphism (3). This implies that when C0

is irreducible, the limit MHS H1(C�v) determines C0 up to isomorphism.
On the other hand, if the dual graph of C0 is a tree, then all vanishing cycles

are trivial in homology, and the Picard-Lefschetz formula implies that N = 0. In
this case, the monodromy weight filtration is trivial, and the limit MHS H1(C�v) is
a polarized Hodge structure of weight 1. By the argument above, this determines
the non-rational components of C̃0 up to isomorphism. But since there is no exten-
sion data, it gives no information about how to reassemble C0 from its irreducible
components. In this case, one can use the limit MHS on the truncation of the group
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ring of the fundamental group of the smooth fiber by the 4th power of its augmen-
tation ideal3 to determine C0 up to finite ambiguity using the limit mixed Hodge
structure on the fundamental group which is constructed in [20]. A proof of this
assertion is not published, but most of the technical constructions needed to prove
it are worked out in detail in the doctoral thesis of Rainer Kaenders [24]. More
generally, I believe that for all stable degenerations of curves, the limit mixed Hodge
structure on the truncation of the integral group ring of the fundamental group of
the smooth fiber by the 5th power of its augmentation ideal should determine C0

up to finite ambiguity.

6. Periods of π1(P1 − {0, 1,∞}, 
01)

In this section, we sketch a fundamental example of computing the periods of
a limit MHS on the fundamental group of a the thrice punctured line. The periods
turn out to be Euler’s the mixed zeta numbers (cf. [36], [15]).

6.1. Hodge Theory of Homotopy Groups. This is a very brief introduc-
tion to the Hodge theory of homotopy groups of complex algebraic varieties.

First, suppose that π is a discrete group. For a commutative ring R, denote
the group algebra of π over R by Rπ. There is a natural augmentation

ε : Rπ → R

defined by taking
∑

rjgj to
∑

rj , where each rj ∈ R and gj ∈ π. The augmentation
ideal JR is the kernel of the augmentation. The mapping

JR/J2
R → H1(π, R) (g − 1) + J2

R → [g]

is a group isomorphism, which can be thought of as a kind of Hurewicz isomorphism.

Theorem 16 (Morgan [29], Hain [19]). If X is a complex algebraic variety
and x ∈ X, then for each s ≥ 0, there is a natural MHS on the truncated group
ring Zπ1(X, x)/Js+1. These form an inverse system in the category of MHS. The
mixed Hodge structure on J/J2 is dual to Deligne’s MHS on H1(X).

These mixed Hodge structures are constructed using Chen’s iterated integrals.
Suppose that M is a manifold and that w1, . . . , wr are smooth C-valued 1-forms

on M . For each piecewise smooth path γ : [0, 1] → M , we can define∫
γ

w1 . . . wr =
∫

· · ·
∫

0≤t1≤···≤tr≤1

f1(t1) · · · fr(tr) dt1 . . . dtr,

where γ∗wj = fj(t) dt for each j. This is viewed as a C-valued function∫
γ

w1 . . . wr : PM → C

on the the space of piecewise smooth paths in M . When r = 1,
∫

γ w is just the
usual line integral. An iterated integral is any function PM → C which is a linear
combination of a constant function and basic iterated integrals∫

γ

w1 . . . wr.

An exposition of the construction of the MHS in J/Js+1 can be found in [18].

3The mixed Hodge structure on the fundamental groups is discussed in the next section.
Also, to apply it, one needs to choose a section σ : ∆ → C of base points.
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6.2. The MHS on π1(P1 − {0, 1,∞}, t). One can describe the MHS on the
J-adic completion

Qπ1(P1 − {0, 1,∞}, t)̂ := lim
←−
s

Qπ1(P1 − {0, 1,∞}, t)/Js.

of π1(P1 − {0, 1,∞}, t) quite directly.
Consider the non-commutative power series ring

A := C〈〈X0, X1〉〉
freely generated by the indeterminates X0 and X1. Set

w0 =
dz

z
and w1 =

dz

1 − z
.

Now consider the A-valued iterated integral

T = 1 +
∫

w0X0 +
∫

w1X1 + · · · +
∫

wj1 . . . wjrXj1 . . .Xjr + · · ·

It is not difficult to use the definition of iterated integrals to show that the value
T (γ) of this on a path γ depends only on its homotopy class relative to its endpoints.
In addition, one can show that if α and β are composable paths, then4

(4) T (αβ) = T (α)T (β).

For each t ∈ P1 − {0, 1,∞}, we can thus define a homomorphism

π1(P1 − {0, 1,∞}, t) → the group of units of A

by taking the class of the loop γ based at t to T (γ). This induces a homomorphism

Θt : Cπ1(P1 − {0, 1,∞}, t)̂→ A

which can easily be shown to be an isomorphism by using universal mapping prop-
erties of free groups and free algebras.

We can use this to construct a MHS on Qπ1(P1 − {0, 1,∞}, t) .̂ Give each
generator Xj type (−1,−1). Extend this bigrading to all monomials in A in the
standard way — the monomial XI will have Hodge type (−|I|,−|I|) where I =
(i1, . . . , ir) is a multi index and |I| is its length r. Thus XI has weight −2|I|. It is
natural to define

WmA = the closure of the span of XI where −2|I| ≤ m

(which is the �th power of the maximal ideal when m = −2�) and

F pA = the span of the XI where −|I| ≥ p

which is finite dimensional for all p. Pulling back these filtrations along Θt defines
the standard MHS on Qπ1(P1 − {0, 1,∞}, t) .̂

The periods of the MHS on Qπ1(P1 − {0, 1,∞}, t)̂ are the coefficients of the
monomials XI in the power series T (γ), where γ ∈ π1(P1 − {0, 1,∞}, t).

4Note that I use the topologists convention that if α, β : [0, 1] → X are two paths with
α(1) = β(0), then αβ is the path obtained by first traversing α, then β. This is the opposite of
the convention used by many papers in this field.
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Remark 17. In the Hodge theory of complex varieties, the periods are typically
(local) coordinates in an appropriate moduli space of MHS, such as the one

GZ\G/F 0G

discussed near the end of Section 5.1. However, in more arithmetic situations,
where the MHS arises from a variety defined (say) over Q, the de Rham invariant
together with its Hodge and weight filtrations has a natural Q-form. In this case,
one usually takes the periods to be the integrals over rational (betti) cycles of a
basis of the Q-de Rham version of the invariant which is adapted to the Hodge and
weight filtrations.

This is the case above as (P1 − {0, 1,∞}, t) is defined over Q when t is Q-
rational. There is an algebraic de Rham theorem for the unipotent fundamental
group in this case (cf. [21]), which is particularly easy to describe in the case above.
The dual of Cπ1(P1 − {0, 1,∞}, t)/JN+1 is, by Chen’s π1 de Rham Theorem (or
elementary arguments in this case),

V DR
C :=

{ ∑
r≤N

aI

∫
wi1 . . . wir : I ⊂ {0, 1}r, |I| = r, aI ∈ C

}
.

This has the natural Q-form

V DR
Q :=

{ ∑
r≤N

aI

∫
wi1 . . . wir : I ⊂ {0, 1}r, |I| = r, aI ∈ Q

}
.

The basis of Cπ1(P1 − {0, 1,∞}, t)/JN+1 dual to basis {∫ wi1 . . . wir} of V DR
Q is

the set of monomials XI := Xi1 . . . Xir . The periods of the MHS on Cπ1(P1 −
{0, 1,∞}, t)/JN+1 are thus the integrals of the

∫
wi1 . . . wir over elements of Qπ1(P1−

{0, 1,∞}, t)/JN+1.

6.3. The MHS on π1(P1−{0, 1,∞}, 
01). In general, the periods of the MHS
on π1(P1 − {0, 1,∞}, t) are difficult to compute as the values of the coefficients of
T on paths based at t do not appear to be readily recognizable numbers when t is
general. However, if we let t approach 0, the periods (or their asymptotics) become
more recognizable as we shall explain.

When t goes to 0, the MHS on Qπ1(P1 −{0, 1,∞}, t)̂ degenerates as all of the
integrals of length ≥ 2 that begin or end with w0, such as

∫
w0w1, will diverge.

(The MHS on the fundamental group can degenerate when the variety becomes
singular, and also when the base point runs off the edge of the space as it is here.)
Just as there is Schmid’s theory of limits of Hodge structures, there is a theory of
limits of MHSs, at least in the geometric case [32]. (There is a fledgling theory
in the abstract case too, being developed by Kaplan and Pearlstein [25].) We will
compute the periods of the limit mixed Hodge structure as t → 0 with respect to
the tangent vector 
01 := ∂/∂t, where t is the standard parameter on P1.

Deligne [9] introduced the idea of the fundamental group of (say) an affine
curve C with base point a non-zero tangent vector 
v at one of the cusps P . It is
simple and elegant. The fundamental group π1(C,
v) is the set of homotopy classes
of loops γ in C ∪ {P} based at P , that leave P with velocity vector 
v and return
to P with velocity vector −
v. It is also required that γ does not return to P when
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0 < t < 1. It is naturally isomorphic to the standard fundamental group.5 This
will carry a limit MHS associated to the tangent vector 
v.

Definition 18. For integers n1, . . . , nr, where nr > 1, define

ζ(n1, . . . , nr) =
∑

0<k1<···<kr

1
kn1
1 kn2

2 . . . knr
r

.

These numbers generalize the classical values of the Riemann zeta function at
integers > 1 and were first considered by Euler. They have recently resurfaced
in the works of Zagier [36] and Goncharov [15]. Their Q-linear span in R is a
subalgebra MZN due to combinatorial identities such as

ζ(n)ζ(m) = ζ(n, m) + ζ(m, n) + ζ(m + n).

Since ζ(2) = π2/6,
MZNC := MZN ⊕ iπMZN

is a Q-subalgebra of C.
Mixed zeta numbers can be expressed as iterated integrals (cf. [36]):

ζ(n1, . . . , nr) =
∫ 1

0

w1

n1−1︷ ︸︸ ︷
w0 . . . w0 w1

n2−1︷ ︸︸ ︷
w0 . . . w0 w1 . . . w1

nr−1︷ ︸︸ ︷
w0 . . . w0 .

Here the path of integration is along the unit interval, and the integral converges
if and only if nr > 1. This identity follows directly from the definition of iterated
integrals using the following slightly more general form:

∫ x

0
w1

n1−1︷ ︸︸ ︷
w0 . . . w0 w1

n2−1︷ ︸︸ ︷
w0 . . . w0 w1 . . . w1

nr−1︷ ︸︸ ︷
w0 . . . w0 =

∑
0<k1<···<kr

xkr

k
n1
1 k

n2
2 . . . knr

r

.

The basic result we wish to explain is the following “folk theorem.” Goncharov
in [15] has recently written down a proof of a considerably more refined statement.

Theorem 19. The space of periods of the limit mixed Hodge structure on
Qπ1(P1 − {0, 1,∞}, 
01)̂ is precisely MZNC.

It is convenient to give a proof of this theorem by appealing to the MHS on
spaces of paths. Denote the space of piecewise smooth paths from a to b in P1 −
{0, 1,∞} by Pa,b(P1 −{0, 1,∞}). Endow it with the compact open topology. Then

H0(Pa,b(P1 − {0, 1,∞}), Q)

is the Q-vector space generated by the homotopy classes of paths in P1 − {0, 1,∞}
that go from a to b. It is a module over Qπ1(P1−{0, 1,∞}, a) and can be completed
in the J-adic topology. Denote this completion by

H0(Pa,b(P1 − {0, 1,∞}), Q) .̂

(It is also a Qπ1(P1 − {0, 1,∞}, b) module. The completion with respect to this
action is identical with the completion above.) As in the case where a = b, we can
define a MHS on it by pulling back the Hodge and weight filtrations of A along the
mapping

Θa,b : H0(Pa,b(P1 − {0, 1,∞}), Q)̂→ A

5 An elegant way to prove this is to note that π1(C,�v) is naturally isomorphic to π1(C̃, [�v])

where C̃ is the real oriented blowup of C at P and [�v] is the point on the exceptional circle ∂C̃
corresponding to the oriented ray determined by �v.
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induced by taking γ to T (γ), which is an isomorphism. The natural mappings

H0(Pa,b(P1 − {0, 1,∞}), Q)̂⊗ H0(Pb,c(P1 − {0, 1,∞}), Q)̂
→ H0(Pa,c(P1 − {0, 1,∞}), Q)̂

are easily seen to be morphisms of MHS because of the formula (4).
By taking limit MHS, we can replace a and b by non-zero tangent vectors at

the cusps. In particular, we have a mixed Hodge structure on

H0(P �01, �10(P
1 − {0, 1,∞}), Q)̂

where 
10 is the tangent vector ∂/∂(1 − t) at t = 1.
The following result is essentially a restatement of a result of Le and Murakami

[26, Thm. A.9]. (See also, [15, Lemma 5.4].)

Lemma 20. The periods of the path [0, 1] ∈ P �01, �10(P
1 − {0, 1,∞}) under the

mapping
Θ �01, �10 : H0(P �01, �10(P

1 − {0, 1,∞})) → A

are mixed zeta numbers. All elements of MZN occur.

Proof. Let Φ ∈ A be the image of [0, 1] under the regularized period mapping
Θ �01, �10 : H0(P �01, �10P1−{0, 1,∞}) → A. I claim that this is Drinfeld’s associator [12].
The result will then follow as Le and Murakami have shown that the coefficients of
the Drinfeld associator are mixed zeta numbers and all mixed zeta numbers occur.

To see that Φ is the Drinfeld associator, we use the prescription given in Corol-
lary 5 for computing the regularized limit periods of a flat section. Applying this
directly, we see that the renormalized value of T ([0, 1]) is

lim
t→0

tX0T ([t, 1 − t])tX1

as the residue at t = 0 of the connection for which T [t, 1 − t] is a flat section is

left multiplication by X0 + right multiplication by X1

The limit is a well-known expression for Drinfeld’s associator. (Cf. [12], [26].) �

Consider the paths illustrated in figure 1

σ0 σ1[0,1]

Figure 1.

where σ0 ∈ P �01, �01P1 − {0, 1,∞} and σ1 ∈ P �10, �10P1 − {0, 1,∞}.
Theorem 19 now follows as one can check, as in the proof of the previous lemma,

that under the renormalized homomorphism

Θ �01 : π1(P1 − {0, 1,∞}, 
01) → A

the image of the loop σ0 is exp(2πiX0) and that the image of σ1 under

Θ �10 : π1(P1 − {0, 1,∞}, 
10) → A
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is exp(−2πiX1). Since π1(P1−{0, 1,∞}, 
01) is generated by σ0 and [0, 1]σ1[0, 1]−1,
and since

T ([0, 1]σ1[0, 1]−1) = Φe2πiX1Φ−1

we see that all periods of Qπ1(P1 − {0, 1,∞}, 
01)̂ lie in MZNC.

7. Mixed Tate Motives

The question arises as to why one should expect the periods of π1(P1−{0, 1,∞}, 
01)
to be so special and to have such a nice description in terms of mixed zeta numbers.
Deligne and Goncharov [11], building on previous work of both authors, especially
[9] and several of Goncharov’s papers in arXiv.org, have developed a satisfying and
deep explanation in terms of the theory of mixed Tate motives.

Thanks to the work of Voevodsky [34], Levine [27], and Deligne-Goncharov
[11], we now know that there is a tannakian category of mixed Tate motives over
Spec of the ring of S-integers in a number field with the expected ext groups. So, in
particular, there is a tannakian category of mixed Tate motives over Spec Z. Such
mixed Tate motives have a Hodge realization, which is a mixed Hodge structure, all
of whose weight graded quotients are of type (p, p). These mixed Hodge structures
will have two Q-structures — one coming from a Q-de Rham structure, and another
from topology (the “Betti realization”). The entries of the matrices relating them
are, by definition, the periods of the motive.

Deligne and Goncharov [11] show that Qπ1(P1 − {0, 1,∞}, 
01) ,̂ equivalently
the Lie algebra of the unipotent fundamental group of (P1−{0, 1,∞}, 
01), is a pro-
object in the category of mixed Tate motives over Spec Z. One reason one should
suspect this is that

P1
Z − {0, 1,∞} := Spec Z[t, t−1, (1 − t)−1]

has everywhere good reduction. However, the pointed variety (P1
Z − {0, 1,∞}, N),

where N ∈ Z−{0, 1}, will not have good reduction at primes dividing N as then the
base point will move to a cusp. In order for (P1 − {0, 1,∞}, t) to have everywhere
good reduction, we are forced to take t to be 
01, or one of its 5 other images under
Aut(P1, {0, 1,∞}).

The fact that Qπ1(P1 − {0, 1,∞}, 
01)̂ is a mixed Tate motive over Spec Z has
a remarkable consequence for the transcendence properties of mixed zeta numbers
[33] and for the Galois action on its Q�-form [22]. In the first case, Zagier con-
jectured (unpublished), and Terasoma [33] has proved, that the dimension of the
Q-linear span of the mixed zeta numbers MZNm of weight6 m is bounded by the
dimension of the mth weight graded quotient of the graded algebra

Q[Z2] ⊗ Q〈Z3, Z5, Z7, . . . 〉
where Zm has weight m and Q〈Z3, Z5, Z7, . . . 〉 denotes the free associative algebra
generated by the Zodd.

One currently unresolved question is whether the periods of all mixed Tate
motives over Spec Z lie in MZNC. Goncharov [14, p. 385] has conjectured that this
is the case. To see why this might be, we need to discuss the motivic Lie algebra of
Spec Z and its connection with the absolute Galois group GQ := Gal Q/Q and its
action on Q�π1(P1 − {0, 1,∞}, 
01) .̂

6The weight of ζ(n1, . . . , nr) is, by definition, n1 + · · · + nr.
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Since the category of mixed Tate motives over Spec Z is tannakian, it is the
category of representations of a pro-algebraic group A over Q. Since the tannakian
fundamental group of the category of pure Tate motives over Spec Z is Gm, this
group is an extension

1 → U → A → Gm → 1
where U is a prounipotent group. That the ext groups in the category of mixed
Tate motives over Z have the desired relationship to K•(Z) implies that the Lie
algebra of U is a free pronilpotent Lie algebra on generators z3, z5, z7, . . . , where
zn has weight −2n, cf. [11] and [23]. The Lie algebra a of A is itself a pro-object
of the category of mixed Tate motives, and formal arguments show that all periods
of mixed Tate motives over Spec Z occur as periods of a. Thus one should try to
prove that all periods of the MHS of a lie in MZNC. One way to approach this is
by studying the action of the absolute Galois group on the algebraic fundamental
group of the thrice punctured line over Q.

Every mixed Tate motive V has an �-adic realization for each rational prime
�. This is a representation ρ� : GQ → AutVQ�

, where VQ�
denotes V ⊗Q Q�. These

actions induce a Zariski dense homomorphism

GQ → A(Q�)

through which A ⊗ Q� → AutV factors. The homomorphism ρ� is the composite
of this with the canonical homomorphism A → Aut V :

GQ → A(Q�) → Aut VQ�
.

The image of A⊗ Q� in Aut VQ�
is thus the Zariski closure of the image of GQ (cf.

[23]).
In the case of the unipotent fundamental group of (P1−{0, 1,∞}, 
01), ρ� is the

natural Galois action

GQ → A(Q�) → Aut Q�π1(P1 − {0, 1,∞}, 
01)̂
induced by the action of GQ on its algebraic fundamental group. The Zariski closure
of the image of this action is the image of the homomorphism

A⊗ Q� → Aut Q�π1(P1 − {0, 1,∞}, 
01) .̂

This homomorphism is injective if and only if its derivative

a → Der Q�π1(P1 − {0, 1,∞}, 
01)̂
is. Since the periods of Der Q�π1(P1 −{0, 1,∞}, 
01)̂ lie in MZNC, the periods of a
will too if the derivative is injective. At present it is not known whether or not this
is the case, although there are computer results that show that in “small weights”
the derivative is injective.
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