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1. Introduction

The several measurements used by ecologists to measure diversity in plant and
animal populations have been summarized by Pielou [6]. This present paper is
concerned with an extension of the idea of diversity in plant populations and in
particular with the description of data produced by a densitometer. Further
papers applying the present ideas to actual forests counts where there is more than
one observation to a cell will appear elsewhere.

2. The problem

A film is taken by an airplane flying over a natural forest. The film is put
through a densitometer which prints out at equal intervals a letter corresponding
to its optical density. In the particular experiment which was presented to us
there were 120 letters printed out for the scan across the film, the letters being A
through 0 inclusive. The number of letters for the scan down the film is dependent
only on the length of the film. The optical density of the film and therefore the
letter corresponding to it is supposedly representative of the type of tree. A
measure of the clustering of the trees is required.

Essentially the same problem arises if the forest is gridded, the fuel bed com-
puted for each square, and the results of the computations assigned to one or
other of ten classes.

It will be recognized that if there are m letters one way and n letters the other
the problem reduces to that of a board with m x n cells on which m x n letters
are arranged, one letter to a cell, the arrangement under the null hypothesis
being that of randomness.

3. Notation

Let there be s kinds of letters, with k, of the tth kind. Denote
S

(3.1) E k(r) = K,
t= 1

and
s

(3.2) K1 = mn = E k,.
t= 1
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Consider the lattice of (m - 1) (n - 1) lines formed by the boundaries of the
cells, excluding the border framework. Define a random variable ti,j, i =
1, * * *, m - 1; j = 1, * * *, n - 1, associated with the i,jth node of the lattice.

Let ocij score 6 if all four letters surrounding the node are the same,
score 3 if three letters are the same and one different,
score 2 if two are the same and two are the same,

score 1 if two are the same and two different,
score 0 if all four are different.

(Other methods of scoring are possible and will be discussed later.)
We propose m-1 n-i

(3.3) S = E E ai,
i=i j=i

as a measure of clustering and of diversity.

4. Properties of S

The basic hypothesis is that the m x n letters are randomly placed in the
m x n squares. The alternate hypothesis, as far as forestry problems of position,
of disease, and so on, are concerned is that letters of like kind tend to cluster
together. Consequently, a large value of S will indicate possibly that there is
clustering, a small value will indicate that like letters are more widely dispersed
from each other than might be anticipated. From the point ofview of the forestry
problems the acceptance or rejection of an hypothesis of randomness is not
important. The field ecologist is eoncerned chiefly in the calculation of an index
of diversity, range zero to unity, which will be large when the numbers of species
are equal and the species are clumped together, and small when the converse is
true. The maximum and minimum values of S are reasonably easy to compute
so that one possible index is

(4.1) = S-min S
max S - min S

From a statistical point of view this is not very satisfactory since the distribution
of S may have very long tails in which case I, could give a very misleading result.
We have tended up to the present to use

S - E(S)
(4.2) I2 =

US
which, although familiar to the statistician, is not liked by the biologist because
it has not got a zero-one range. Undoubtedly in the present writer's opinion
the best index would be to compute

(4.3) I3 = P{S < So}
where S. is the observed value. But to compute I3 the distribution of S must be
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known and this for the present we do not have. The algebraic derivation of the
mean and variance of S is given in succeeding sections.

5. Algebraic attack

For the mean and variance of S under any system of scoring we rely heavily
on the tables of Augmented Symmetric Functions constructed by David and
Kendall [3]. The algebra is elementary and simple in principle. For example, it
is clear that we may write

(5.1) K14) = S k(4) + 4 E k(3) kn + 3 i k(2) k(2) + 6 k(2)khkk
e=1 e*h e*h e*h*t

+ E ktkhktk,,
I*h*t*r

formally corresponding to the expansion of power sums in terms of the Aug-
mented Monomial Symmetric Functions (David and Kendall [3]), namely,

(5.2) (1)= k + 4 E kkh + 3 Y kfkh + 6 Y k2khk,
1= 1 .1 h I*h e*h*t

+ E kekhk,k, = [4] + 4[31] + 3[22] + 6[212] + [14].
e*h*t*r

This raises the possibility of expressing what may be called the Augmented
Factorial Monomial Symmetric Functions (AFMSF for short) in terms of
powers and products of the K and vice versa, with numerical coefficients which
are the same as those in the power sum AMSF relationship. The product of the
K-functions is easy to compute algebraically but is difficult to express in any
succinct fashion. Thus if we write

(5.3) E k(a)kb)k(c) = [kkbk]
e*h*t

the first relationship given above is, symbolically,

(5.4) K,4) = [k4] + 4[k3k1] + 3[k2] + 6[k2k2] + [kl4],
but few of the others show such simplicity. Table I gives the formal corres-
pondence between some of the power sums and the K-functions, w being the

TABLE I

K-FUNCTIONS CORRESPONDING TO GIVEN POWER SUMS

Power Sum K-Functions

(n)(l)w- K.(K1 -n)('-"
(n) (2) K.(K2 - n(2))-2nK- ,

(n)(2)2 K.(K2 - n(2))(K2 - n(2) -2) - 4nK.+1(K2- n(2) - 2)
- 4K.(K3 -n(3)) + 4n(n + 3)K.+2 + 16n2'K.,,

(2)2(1)w-4 (K2(K2 - 2) - 4K3)(KI - 4)(W-4)
(3)2(1)W-6 (K3(K3 - 6) - 9Ks - 18K4)(K, -6)("-
(4)2(1)-8 (K4K4- 24) - 16K7 - 72K6 - 96K5)(K1 -8)1-
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weight. Generally we will have, corresponding to (m) (n), the K-function

(5.5) Kn(Km - n(m)) - CnClK -+m_l 2!nCcXC2Kn+m-2
- ... mCmi_Cmin_(m 1)!Kn+l

These enable Tables Al of the appendix to be written down immediately from
the tables already in existence. Further relationships between the K-products
and the AFMSF were worked out and tables of higher weights were constructed.
These however-and the complete tables-proved to be unnecessary for our
particular problem and so we do not reproduce them here.

6. Mean of S (one, two, and three dimensions)

It is clear that the two dimensional problem described earlier is just a special
case of scoring over a lattice in any number of dimensions. The method used,
involving the use of the AFMSF is applicable for any number of dimensions
and any method of scoring.

6.1. One dimension. For one dimension the problem is that of the multi-
colored run which has been completely solved (Barton and David [1]). Define

(6.1) {1 if same color either side of ith gap
6

O otherwise.

Then
K1 -1

(6.2) S= E ai
i= 1

We have
s

(6.3) K(2) = E k2+ E

(6.4) E(cLi) = X()[1 L'2 + O 1gv =K2

and K2 ~j=K
(6.5) ES= 2.K

we have
mn-1 n-i

(6.6)~~~E S = )E E ai ke

i=1 j=i

Starting from the relationship

(6.7) ES= E k + 4 E k(kV + 3 E k2k( + 6 E k(2kVkh
S {*v * *

+ EZkgkvkhkr,
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each permutation of a of one color, b of another, and so on (a + b + * = 4)
will give rise to the same score. So we may write

(6.8) E(ai i) = 18(454 , k(4) + 483 E k(3)kV + 382 E k(2)k(6.8) E(oeK,j) L .- *1), 32Y

+ 6s1Z k(2)k,kn + so E ktkknk1k.

For the scoring system given previously (Section 3)

(6.9) 84 = 6, 83 = 3, 82 = 2, s1 = 1, so = 0,

and

(6.10) ~E(a i = K (4) E
14?)kv

E k(2)k (2) (2)k k
1~~ ~~~ ev y

It is possible to write each of the AFMSF in terms of sums of products of the
K-functions, using the upper half of Table Al in the appendix, but it is easier to
note that the expression in the brackets is the expansion of K2(K1 - 2)(2).
Accordingly

(6.11) E(cx, j) = 6K2

An alternative method of scoring is not to count diagonal elements. Thus we
score

AA AA AB AB AB
A-A 4' ARB ARB 'B A 'A C

A C 0 AC 0
B-A °' BRD

This will mean that not all permutations, for given a, b, c, * * ,and so on, will
have the same weight and we will have

(6-12) E(ati, j) =K4) 4E k(4) + 8 E k(3)kv + 4Eki(2)k(2) + 4 kvE (2)kvk

4K2
K1)

These two methods of scoring are the only ones that have been worked out in
some detail but clearly any other method of scoring is easily applied.

6.3. Three dimensions. Corresponding to the (i, j t) node of an m x n x
t(= K1) rectangular parallelepiped built up from unit cubes we have

m-1 n-I t-1

(6.13) S = E E Y. j-
i=1 j=1 ?=1
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The fundamental relationship is

(6.14) K'8' = E k 8) + 8 E k 7%kb + 28 E k(6)k(2) + *
a a *

+ E kakbkckdkekfkgkh.

Ifdiagonal joins between like letters are allowed then the score for each partition,
and therefore for each permutation, is written down immediately and we have

(6.15) E(cij) 28K2

If diagonal joins between like letters are not allowed then the score has to be
found for each permutation within a given partition and

(6.16) E(ai, j. t) =1K2

It proved more convenient in subsequent manipulations to denote by Z the
quantity K2(K1 - 2)(2). We have then for mean S

one dimension Z(K1-1 )/KI4 ;

two dimensions 6Z(m - 1) (n -1 )/K(4), diagonal joins allowed;
4Z(m - 1) (n - 1)/(14), diagonal joins not allowed;

three dimensions 28Z(m - 1) (n - 1) (t - 1)/K(14), diagonal joins allowed;
12Z(m - 1)(n - 1)(t - 1)/K(14), diagonal joins not allowed.

7. Free sampling

The algebraic approach for obtaining the expected value ofS is conditional on
the {kt}, e = 1, * * *, s. Some simplification in the formulae results if it is sup-
posed that the k are obtained as the result of some sampling procedure either,
say, free multinomial sampling or a P6lya multiple urn process. Suppose K1
letters are drawn from an urn in which the proportion of the Ath kind is kept
constant and eoual to pt, and

s

(7.1) Z pt = 1.
e= 1

These K1 letters are put down randomly as before. We have then, if we write
s

(7.2) Ez4 = P,,
t= 1

that

(7.3) one dimension E(S) = (K1 - 1)P2;
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two dimensions

(7.4) E(S) X
= 6(m - 1) (n-1 )P2, diagonal joins allowed,

( = 4(m - 1) (n -1 )P2, diagonal joins not allowed;

three dimensions

7= 28(m - 1)(n - 1)(t -)P2, diagonal joins allowed,
(7.5) E(S))= 12(m - 1)(n - 1)(t = 1)P2, diagonal joins not allowed.

If we use a P6lya model where for each letter the proportion of letters returned
to the urn after drawing is the same and is equal to 6, then, writing

(7.6) 2= p(p + 6)
t1 (1 +6)

the expectations are formally the same as above.

8. Second moment of S

The second moment of S represents no intrinsic difficulty although the
enumeration of the scores for the different permutations within a given partition
allows scope for error.

8.1. One dimension. Here
K,-1 KI-2 K1-3 K1-1

(8.1) S2= i2 + 2 E ocioi+1 + 2 E E- 0aia
i=1 i=1 i=1 j=i+2

and if we write Y = K3(K1 - 3), X = K2(K2 - 2) - 4K3, with Z as before,
we have

K2) K(8.2) KE(2=- (4 )

(8.3) E(aici+1) = (3)1E k3) + (2)(0) E k(2kb + (1)(0) E k.kbkCl
k1 a=1 a*b a*b*c

K3 Y
K(3)K = (4)>

1 F

(8.4) E(aioj) I I[ ka4) + (4)(0) E k?3)kb + (3) () E

+ (6)(0)k(2)kbkc + (1)(O)kakbkckd]

K2(K2 - 2)-4K3 _ X
= K(14)K(14)
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Accordingly,

(8.5) E(S2) = K(41 [(K1 - 1)Z + 2(K1 - 2)Y + (K1 - 2)(K1 - 3)X].

It may be noted for purposes of symmetry with the larger dimensions that

(8.6) (K1 - 2)(K1 - 3) = (K1 - 1)2 - (3K1 - 5).

8.2. Two dimensions. Following previous notation

(8.7) S2 = : ;ni j)2
i=l j=l

The expansion of the square of this double sum may be written out as in Table II.

TABI,E 11

NUMBER OF TERMS IN SUMMATIONS OF (8.7)

i(i + 1) i.h,(|i - h > 2) Totals

j2 (m - 1)(n - 1) 2(m - 2)(n - 1) (r - 2)2(n - 1) (rn- 1)2(n -1)
j(j + 1) 2(m - 1)(n - 2) 4(rn- 2)(n - 2) 2(m - 2)(2)(n - 2) 2(rn- 1)2(n - 2)

(Ij - | 2) (m - 1)(n - 2)(2) 2(m -2) (n- 2)(2) (rn - 2) 2(n - 2)(2) (ni - 1)2 (n 2)(2)

Totals (m - 1)(n - 1)2 2(m - 2)(n - 1)2 (m - 2) 2)(n - 1)2 (m - 1)2(n -1)2

There are four types of terms for which it will be necessary to calculate expect-
ations.

(i) oc2 j, (m - 1) (n- 1) terms. From the expansion for K(4), allowing dia-
gonal joins, we have

(8.8) E(oc2 j) = 4) [36 Y k(4) + 36 ±k()k + 12 k(2)k(2) + 6± k(2)kk]

This may be split up as follows

6K1(Kl -2)(2) = 6[k4] + 12[k3kl] + 6[k2] + 6[k2kf2]
(8.9) 6K2(K2 - 2) - 4K3 = 6[k4] + 6[k2]

24K3(K1 - 3) = 24[k4] + 24[k3kl]
so that

(8.10) E(oc3 j) = K [6X + 24Y + 6Z]

If diagonal joins are not allowed

(8.11) E(,x?) = K [4Z + 8Y + 4Z].
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(ii) cjLi,j,+1, 2(m - 1)(n - 2) terms. The expectation will be the same for
ai,jai+ 1, j although the number of terms will be 2(m - 2) (n - 1). We start from

the expansion of Ki6) in terms of the AFMSF. For each permutation of a given
partition it is necessary to calculate the score having regard to the fact that two
squares or cells are held in common by each of the other two. Table AII of the
appendix gives the total score for each permutation with diagonals allowed and
not allowed. Using this table we have for example

(8.12) E(oc,jac,j+ ) = (6) {36[k6] + 90[k5k,] + 112[k4k2] + 58[k3]
+ 73[k4k2] + 140[k3k2k,] + 22[k3] + 20[k3k3]
+ 25[k2k2] + [k2k4]}.

This may be split up to give Table III, using the formal AMSF correspondence

TABLE III

ILLUSTRATION OF CALCULATION OF THE EXPECTATION OF ai;jaCij+j

[k6] [k5k,] [k4k2] [k4ki2 [k3] [k3k2k,] [k3k 3] [k2] [k2kt2] [k2ki4
Z(K, 4)(2) 1 4 7 6 4 16 4 3 6 1
19X(Kl - 4)(2) 19 38 57 19 38 76 19 19
16Y(K, - 4)(2) 16 48 48 48 16 48 16

36 90 112 73 58 140 20 22 25 1

(Table I-1-6 [4]), so that

(8.13) E(oc, jai, j+l) = KI4) [19X + 16Y + Z] = E(aijJai+ 1 j).

If diagonals are not allowed then

(8.14) E(ot, jai,j+j) = KI4 [9X + 6Y + Z] = E(ocjjx+j,j).
The process is essentially the same for the other two expectations required.

For E(ai,jai+ 1,j+ ) we start from K(7) and calculate the score for each partition
for two sets of four squares which have one square in common. For E(ai jag, h)
we start from K(8) scoring two sets of four squares which do not have a square in
common. The results are

R(ai,jai+,,j+,) [27X + 9Y], I [12X + 4Y],
(8.15) 1 1

E(a%i,j0t,h) =K(-4) [36X], K4) [16X],

the first expression being where diagonals are allowed and the second where
diagonals are not allowed in each case.
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While the expressions for the expectations of products of the x may be written
comparatively simply, no real simplicity appears possible for the second moment
(or the variance) of S. We have

if diagonals are allowed

(8.16) E(S2) = 4) {(m- 1)(n- 1)[6X + 24Y + 6Z]

+ [2(m -2)(n - 1)+ 2(m - 1)(n - 2)][19X + 16Y + Z]
+ 4(m - 2)(n - 2)[27X + 9Y] + [(m - 1)2(n - 1)2

- (3m - 5)(3n -5)] [36X]},
and if diagonals are not allowed

(8.17) E(82) = {(m - 1)(n - 1)[4X + 8Y + 4Z]

+ [2(m - 2)(n- 1) + 2(m - 1)(n - 2)][9X + 6Y + Z]
+ 4(m -2)(n -2)[12X + 4Y] + [(m - 1)2(n - 1)2
- (3m 5)(3n -5)] [16X]}.

The simplicity which resulted, in the one dimensional case, from calculating the
second factorial moment of S does not follow for two or three dimensions.

8.3. Three dimensions. For three dimensions we have

(8.18) E(cx j h)

= K(4) [420X + 336Y + 28Z], (4)
[84X + 48Y + 12Z],

(8.19) E(oci, ;, hOi, j, h + 1 )

= [594X + 184Y + 6Z], K [112X + 28Y + 4Z],

(8.20) E((xi,j,h(xi,j+ l,h+1)

- [687X + 96Y + Z], K [119X + 24Y + Z],

(8221) E(ocj j, hai+1,i+ 1, h+ )

= [735X + 49Y], [135X + 9Y],

(8.22) Eci j, hCa, b, c)
I [784X], [144X].

The expressions to the left are those in which diagonal counts are allowed and
those to the left are those where they are not allowed. The numbers of terms are,
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respectively,

(m -1)(n-l1)(t-)
2(m- 1)(n - 1)(t - 2) + 2(m- 1)(n - 2)(t - 1) + 2(m - 2)(n - 1)(t - 1),
4(m - 1)(n - 2)(t - 2) + 4(m - 2)(n - 1)(t - 2) + 4(m - 2)(n - 2)(t - 1),
8(m - 2)(n - 2)(t - 2),
(m 1)2(n -1)2(t 1) 2- (3m - 5)(3n - 5)(3t -5).

The second moment of S follows by simple multiplication of these expressions
but, since no simplification results, I have not formally written it out.

9. Second moment under free sampling

The quantities intervening in the second moment which have to be taken into
account in passing from conditional to unconditional expectations are X, Y, Z.
The two latter present no difficulty:

(9.1) E(Y) = K 4)P3, E(Z) =K- P2,
while

(9.2) X =K2 - 2K2 - 4K3 = Z k2tk2t + Z k2tk2h -2 k2t -4 k3t
t~~~~

= Z k4t + E k2tk2h
and

(9.3) E(X) = [P4 + p2p^2]K(4) = 2K(4)

Accordingly, the unconditional expectation of the second moment of S will be
obtained by substituting P2, P3, and p2 for Z/K(4), Y/K(4), and X/K(4), respec-
tively. The variance of S (2D, diagonals) may be written as

(9.4) VarS = (m - 1)(n - 1)[1OP2 + 124P3 - 134P2]
- [(inm- 1) + (n -1)][2P2 + 68P3 - 7P2 ] + 36[P3 -P].

For the other cases we have

(9.5) VarS(2D, no diagonals) = (m- 1)(n - 1)[8P2 + 48P3 - 56P2]
- [(mn - 1) + (n - 1)][2P2 + 28P3 - 3P2] + 16[P3 -2

(9.6) Var S (3D, diagonals)
= (m- 1)(n - 1)(t - 1)[76P2 + 2984P3 - 306P2]
-[(m - 1)(n - 1) + (n - l)(t - 1)
+ (t - 1)(m - 1)] [20P2 + 1528P3 - 1548P2]
+ [(m-1) + (n - 1) + (t - 1)][4P2 + 776P3 - 780P2]
- 392[P3 -2
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(9.7) Var S (3D, no diagonals)
= (m - 1)(n - 1)(t - 1)[48P2 + 576P3 - 624P2
- [(m - 1)(n - 1) + (n - 1)(t - 1)
+ (t - 1)(m - 1)] [16P2 + 320P3 - 336P ]

+ [((m - 1) + (n - 1) + (t - 1)][4P2 + 168P3 - 172P2]
- 72[P3 - P2].

10. Special cases

(i) When all the probabilities are the same, that is, when

(10.1) P 1 ,

the last terms of each expression are zero and (s -I)/S2 is a factor. Thus, in
order of writing above we have

s {10(m - 1)(n - 1) - 2[(m - 1) + (n - 1)]},

82 1{8(m - 1)(n - 1) - 2[(m - 1) + (n -

8 2 {76(m - 1)(n - 1)(t - 1) - 20[(m - 1)(n - 1) + (m - 1)(t - 1)

+ (n - 1)(t - 1)] + 4[(m - 1) + (n - 1) + (t - 1),
2 {48(m - 1)(n - 1)(t - 1) - 16[(m - 1)(n - 1) + (m - 1)(t - 1)

+ (n - 1)(t - 1)] + 4[(m - 1) + (n - 1) + (t - 1)]}.

(ii) When there are only two kinds of letters

(10.2) Pi =P, P2 =1-P = q, P3 =Ps=0

and

(10.3) P2 = 1-2pq, P3 = 1 -3pq.

In order of writing the variances now become

pq[(m - 1)(n - 1)(144 - 536pq) - [(m - 1) + (n - 1][72 - 280pq]
+ 36(1 - 4pq)],

pq[(m - 1)(n - 1)(64 - 224pq) - [(m - 1 + (n - 1)][32 - 120pq]
+ 16(1 - 4pq)],

pq[(m - 1)(n - 1)(t - 1)[3136 - 12240pq] - [(m - 1)(n - 1)
+ (n - 1)(t - 1) + (t - 1)(m - 1)] [1568 - 6192pq]
+ [(m - 1) + (n - 1) + (t - 1)][748 - 3120pq] - 392[1 - 4pq],
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pq[(m - 1)(n - 1)(t - 1)[672 - 2469pq] - [(m- )(n - 1)
+ (n - 1)(t - 1) + (t - 1)(m - 1)][352 - 1344pq]
+ [(m- 1) + (n - 1) + (t - 1)] [176 - 688pq] - 72(1 - 4pq)].

11. Second moment under a multiple Polya model

Let
s kj-I

K.' nn (Pi + ib)
(11.1) P{ki} = Ks H= H +

s K, -1

n ki! H (1 + h)
i= 1 h=O

(b = 0 gives the multinomial). Taking for example the two dimensional case,
diagonals allowed, we have

(11.2) E(S) = 6(P2 + 6)(-M 1)(n - 1)
1+

and writing

(11.3) D4 = 1(1 + 6)(1 + 26)(1 + 36),

we have for the unconditional variance of S

(11.4)VarS __ 1n _1)2p21D +4) Var S
D 6 [(m-1)2(n- 1)2{144 W(P3 - 2P)

+ 72 62 (P2 + 2P3 - 3p2) + 72 63 [I -P2]}
+ (m - 1)(n - 1){(OP2 + 124P3 - 134P2)
+ 6(10 + 164P2 - 41P3 - 134P2) + 62(174 -1OP2 - 164P3)
+ 63(164 - 164P2)}
+ ((m- 1) + (n - 1)){(2P2 + 68P3 - 70P )
+ 6(2 + 76P2 - 8P3 - 70P2) + 62(72 - 2P2 - 70P3)
+ 63(76 - 76P2)}
+ 36{(P3 -P)- 6(P2 - P3) + 2(1 - P3) + P2(1-)

The results for other methods of scoring and for other dimensions follow
similarly.

12. Higher moments of S

The higher moments of S present no intrinsic difficulty although a certain
amount of counting is required. It may be noted that the third moment will
involve X, Y, Z, and

W = K2(K2 - 2)(K2 - 4) - 12K3(K2 - 2) + 40(K4 + K3),
(12.1) V = K3(K2 - 6) - 6K4, U = K4,
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but no others. The fourth moment will involve the previous six quantities and

(12.2) R = K2(K2 - 2)(K2 - 4)(K2 - 6) - 24K3(K2 - 3)(K2 - 5)
+ 112K3(K2 - 3) + 160K4(K2 - 4) + 48K3(K3 - 3) - 672K5
- 1616K4 - 408K3,

T = K3(K2 - 3)(K2 - 5), Q = K4(K2 - 4), M = K3(K3 - 3), N = K5.

13. Examples

A knowledge of the movements of S will enable an approximation to its
distribution to be made and therefore a calculation of the index of diversity I
suggested earlier. The distribution of S will depend on the size and configuration
ofthe lattice and the letter specification, as will be illustrated below. The difficulty
is to find a functional form sufficiently flexible to take account of all these factors,
but two approaches are possible.
EXAMPLE 1. Consider a letter specification (12,4) on a 4 x 4 tableau, with

the diagonals counting in the scoring. The distribution ofS is shown in Table IV.

TABLE IV

DISTRIBUTION OF S FOR A 4 x 4 TABLEAU
WITH OBJECT SPECIFICATION (12, 4)

S 24 25 26 27 28 29 30 31 32 33
Frequency 28 20 83 96 140 124 132 216 140 108

S 34 35 36 37 38 39 40 41 42 43 Total
Frequency 148 180 40 108 128 40 36 32 17 4 1820

The momental constants are

y' = 32.4, /3 = 13.90735, P1 = 0.03811, a = 0.1952,
P2 = 17.18505, 14 = 687.15027, f2 = 2.32675, a = 4.1455.

(i) Pearson and Hartley [5], p. 206, give the standardized deviates for Pearson
curves for given percentage points. Using the (PIB, P2) of the distribution above,
we get Table V. These figures indicate that the Biometrika table will be good
enough for significance levels if they are ever required.

TABLE V

PERCENTAGE POINTS OF S FROM PEARSON CURVES

Percentage Deviate Actual
Point from Tables Percentages

5 39.546 4.9
2.5 40.583 2.9
1 41.649 1.15
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(ii) Fisher-Cornish [2] give an inverse Edgeworth expansion for the per-
centage points of a distribution with known momental constants. Using their
expansion we have Table VI. The deviates obtained by the Fisher-Cornish ex-
pansion do not differ markedly from those obtained from the Pearson system.

TABLE VI

PERCENTAGE POINTS OF S FROM THE EDGEWORTH SERIES

Percentage Actual
Point Deviate Percentage

5 39.502 4.9
2.5 40.694 2.9
1 41.927 1.15

50 32.2651 46.2

EXAMPLE 2. Table AIII of the Appendix gives the distribution of S for eight
letters (different specifications) on a 4 x 2 board. All these distributions will be,
to a certain extent, atypical in that the edge effects will play an undue part. The
difference between the Pearson system and the Fisher-Cornish expansion is a
little more marked than for Example 1. If we take, for instance, the distribution
with object specification (4212) the (f,1, fl2) point is (0.755, 3.321) and the 5
percent points are 7.306 and 7.198 for Pearson and Fisher-Cornish, respectively.
The actual percentage in each case is 4.29.

It is clear that if we obtain formulae for the third and fourth moments of S,
we may approximate to its distribution reasonably well as far as the biological
problem is concerned. Further, sampling experiments seem to indicate that with
a large lattice the distribution of S can be approximated by a constant times x2.
The question ofthe configuration ofthe lattice is one which is of small importance
for a large lattice, but may be of importance when the numbers are small. Table
AIV and Figure 1 of the Appendix illustrates this point.

14. Conclusion

It is clear from Section 13 that with a knowledge of the third and fourth
moments an approximation to the distribution ofS is possible although it would
be idle to suggest that either of the methods suggested will be that ultimately
chosen. The algebraic derivation of the third and fourth moments, as indicated
earlier, is simple in principle but tedious in procedure. Some headway has been
made with the third moment. If, as appears likely, it is close to the third moment
of a constant times x2, then little would be gained from the derivation of the
fourth moment.
The practical applications of the foregoing theory and the extension of this

theory to the case where there is more than one letter per square, are numerous
in the ecological field. It is proposed to publish these elsewhere.
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The problem (and others allied to it) set out at the beginning of this paper
arose from consultations at the Pacific Southwest Forest and Range Experiment
Station, Forest Service. U.S. Department of Agriculture.

APPENDIX

TABLE Ala

AuGMENTED FACTORIAL MONOMIAL SYMMETRIC Ft'NCTIONS
WEIGHT 2

(' = 2) [k2] [kf]

K2 1 -1
K(2) 1 1

TABLE AIb

AUGMENTED FACTORIAL MONOMIAI, SYMMETRIC FUtNCTIONS
WEIGHT 3

(w = 3) [k3] [k2k,] [kl]

K3 1 -1 2
K2(KI - 2) 1 1 -3
K(3) 1 3 1

TABLE Ale

AUGMENTED FACTORIAL MONOMIAL SYMMETRIC FtUNCTIONS

WEIGHT 4

(u = 4) [k4] [k3kj] [k2] [k2k 2] [k4f

K4 1 -1 -1 2 -6
K3(KI -3) 1 1 -2 8
K2(K2 -2) -4K3 1 1 -I 3
K2(KI - 2)(2) 1 2 1 1 -6
Kl4) 1 4 3 6 1

TABLE Ald

AUG.MENTED FACTORIAL MONOMIAL SYMMETRIC FUNCTIONS
WEIGHT 5

(W = 5) [k5] [k4kj] [k3k2] [k3k 2] [k2kj] [k2kl3] [kl]

K5 1 -1 -1 2 2 -6 24
K4(KI -4) 1 1 -2 -1 6 -30
K3(K2 -6) - 6K4 1 1 -1 -2 5 -20
K3(KI 3)(2) 1 2 1 1 -3 20
[K2(K2 -2) - 4K3][K1 - 4] 1 1 2 1 -3 15
K2(K, -2)(3) 1 3 4 3 3 1 -10
K,5) 1 5 10 10 15 10 1

To express factorial power sums in terms of the augmented factorial sym-
metric functions read from left to right up to and including the heavy type
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diagonal. To express the augmented factorial symmetric functions in terms of
the factorial power sums read vertically downwards as far as and including the
heavy type diagonal.

NOTATION. For example

[k3k2] = E Kr = h ki'
t ~~~~~i=l

(A.1) [k2k] - k(2)k(2)k
2 1- L f h t

TABLE All

EIGHT SQUARES: Two SQUARES IN COMMON

Number of Total score for partition
Permutations Partition Diagonals (Yes) Diagonals (No)

1 (6) 36 16
6 (51) 90 40
15 (42) 112 52
10 (32) 58 28
15 (412) 73 33
60 (321) 140 70
15 (23) 22 12
20 (313) 20 10
45 (2212) 25 15
15 (214) 1 1
1 (16) 0 0

TABLE AIII

EXACT DISTRIBUTION OF S
K = 8, m = 4, n = 2

Object Specification
s (8) (71) (62) (612) (53) (521) (513) (42) (422) (4212) (414) (216)

18 1
17
16
15 4
14 2 1
13 2
12 4 4 4 4
11 8 8 4
10 2 8 20 4 1 3
9 8 8 4 4 8 4 4
8 4 2 24 28 8 2 14 1
7 4 20 44 24 8 32 24 2
6 36 9 19 48 8
5 32 20 96 90 8
4 4 18 132 16
3 36 92 26
2 16 9 2
1 14
0 12

Totals 1 8 28 28 56 168 56 35 210 420 70 28
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TABLE AIV

DISTRIBUTION OF S ACCORDING TO
LATTICE CONFIGURATION IN FIGURE 1

OBJECT SPECIFICATION (422)

S A B

10 3 1
9 4 2
8 2 10
7 32 28
6 19 32
5 96 64
4 18 45
3 36 28

Total 210 210

Pi, 5.143 5.167
P2 2.199 2.106
fl1 0.443 0.201
P2 3.811 2.851

A B

FIGURE AI

Two versions of small lattice configuration
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