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1. Introduction and Summary

This paper is a discussion of the Hodges-Lehmann [7] method of proving
admissibility for quadratic loss.

Section 2 compares the inequality EU2 > (EU )2 with the best Schwarz in-
equality EU2 = (EU)2 + {Cov (U, V)}2/Var V obtainable using linear func-
tions of U and V, and considers invariance properties of these inequalities.

In Section 3, for a random variable X with possible distributions indexed by
0, we define a Cramer-Rao type inequality as one giving a lower bound on
Var T(X) in terms of ET(X). Theorem 2 shows that for the best Schwarz in-
equality Var T _ {Cov (T, V)}2/Var V using V = V(X, 0) to be of Cramer-Rao
type, it is necessary that V depend on X only through a minimal sufficient stati-
stic; this condition is also sufficient when there is a sufficient statistic with a
complete family of possible distributions. In this case of completeness, it follows
that the Cramer-Rao and Bhattacharyya inequalities require no regularity con-
ditions beyond existence and nonconstancy of the derivatives involved.

Section 4 describes the Hodges-Lehmann method of proving an estimator T *
admissible for quadratic loss. In this method, the inequality showing that T
makes T * inadmissible is relaxed using the Cramer-Rao type inequality
Var (T - T*) > {Cov (T - T*, T*)}2/Var T*, and the relaxed inequality is
shown to have no nontrivial solutions. In all examples known to us, this use of a
Cramer-Rao type inequality can be replaced by a use of the weaker result
Var (T - T *) > 0; we suppose there are examples in which this cannot be done,
but we have no such example.

Section 5 consists of several examples illustrating this method of proving
admissibility.

2. Schwarz's inequality

For real valued random variables U and V, Schwarz's inequality

(2.1) {EU2} {EV2} _ {EUV}2
means that ifEU2 and EV2 both exist, then EUV also exists and its square does
not exceed their product.
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18 SIXTH BERKELEY SYMPOSIUM: BLYTH AND ROBERTS

If V is a nonzero constant, Schwarz's inequality reduces to the Jensen in-
equality

(2.2) EU2 > {EU}2.

This inequality is invariant under nonzero constant multiplications, and under
translations: replacing U by cU just multiplies each side of (2.2) by c2; and
replacing U by U - a just adds a2 - 2aEU to each side of (2.2).

If V is not a constant, Schwarz's inequality can be written

(2.3) EU2 > {EUV 2
=EV2

This inequality is invariant under nonzero constant multiplications, but is not
invariant under translations: replacing U by cU, and V by dV, just multiplies
each side by C2; but replacing U by U - a, and V by V - b, changes the in-
equality to

(2.4) E(U - a)2 > {E(U - a)(V - b)}2(2.4) E(U - ~~~E(V - b)2
that is,

(2.5) EU2 > {EU}12 - (EU - a)2 + {E(U- a)(V-b)}2(2.5) _ {EU}2 ~~~~~~~~E(V- b)

THEOREM 1. The strongest result obtainable by considering the Schwarz in-
equality under all possible translations is

(2.6) EU2 > {EU12 + {CoV (U, V)}2(2.6) {EU} ~~~~VarV
PROOF. To show that the inequality

(2.6') EU2 > {EU}2 + sup -(EU - a)2 + {E(U - a)(V -b) ]
a, b LE(V - b)2 j

reduces to (2.6), notice that the second term on the right in (2.6') is translation
invariant: translations on U and V inside the square brackets just change a and
b, and supremum over all a and b is being taken. In particular, (2.6') is left un-
changed when we replace, inside the square brackets only, U by U1 = U - EU
and V by V1 = V - EV. The result of this, after some easy simplifications, is

[-a2EV?2 + 2abEU,V, + (EUV)1
(2.7) EU2 > {EU}2 + sup + EV +bV

a,b EL 2J
Here the quantity in square brackets has, for each b, its maximum value
(EU1 V1 )2/EV?2 when a = b(EU, V1 )/EV12. So the inequality (2.6') becomes

(2.8) EU2 > {EU12 + ( V, ,EV?2
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which, written in terms of U and V, is (2.6).
This best Schwarz inequality (2.6) is invariant under nonzero constant multi-

plications, under translations, and under replacement of U by U - V: replacing
U by cU, and V by dV, just multiplies each side of (2.6) by C2; replacing U by
U - a, and V by V - b, just adds a2 - 2aEU to each side of (2.6); and replacing
U by U - V just adds EV2 - 2EUV to each side of (2.6).
Comparing the Jensen inequality (2.2) and the best Schwarz inequality (2.6),

we see that (2.6) is a stronger result unless U and V are uncorrelated. Both in-
equalities reduce to the same equality when U is a constant. The Jensen in-
equality is an equality if and only if U is a constant. The best Schwarz inequality
is an equality ifand only if U and V are linearly related (which is true in particular
if U is a constant).

3. Inequalities of Cramer-Rao type

Let X be a random variable with possible probability measures Po, 0 E Q) on
subsets of X. There are no restrictions here on the space X or on the family of
probability measures: any such restrictions will be stated where needed. For

T = T(X) any real valued statistic, and
V = V(X, 0) any real valued random variable,

the best Schwarz inequality (2.6) gives, at every 0 for which Var V > 0,

2 > {ET}2 + {Cov (T, V)}2(3.1) ET' = +E
a

that is,

(3.2) Var T _ {Cov (T, V)}2
Var V

or equivalently, from the invariance properties of (2.6),

(3*3) E{T _ g(0).2> {ET -g(0)}2 + {Cov (T, V)}2(3.3) g(6)}2 ~~~~~VarV
for any real valued function g defined on Q2. This inequality appears to give a
lower bound on the risk of T as an estimator of g(0) for squared error lows
{T _ g(0)}2, and obviously also for quadratic loss a(0){T _ g(0)}2 with
a(0) > 0. But the apparent bound is useless because it depends on T: rather than
compute Cov (T, V) to get a lower bound on the risk, we would compute Var T
to get the risk itself.

However, when V is such that Cov (T, V) depends on T only through ET;
that is, when V has the property

(3.4) ET, -ET2 = Cov (T1, V) _Cov (T2, V),
0 0~~~~~~~~~



20 SIXTH BERKELEY SYMPOSIUM: BLYTH AND ROBERTS

then the best Schwarz inequality (3.1) takes the very useful form of a lower bound
on the risk of T in terms of ET:

(3.5) ET = m(0) = ET2 > {m(0)}2 + bm(0),
that is,

(3.6) ET = m(0) = Var T _ bm(0),

or equivalently,

(3.7) ET = m(O) => E{T _ g(O)}2 > {m(0) _ g(0)}2 + bm(0),

where bm(O) = {Cov (T, V)}2/Var V. We will refer to (3.5) as an inequality of
Cramer-Rao type. The question as to what functions V satisfy condition (3.4)
and therefore give Cramer-Rao type inequalities has the following partial answer.

THEOREM2. A necessary conditionfor V to give a Cramer-Rao type inequality
is that V depend on X only through a minimal sufficient statistic. This condition is
also sufficient, when the minimal sufficient statistic has a completefamily ofpossible
distributions.
PROOF. NecesCsity. For every statistic T and every sufficient statistic S. notice
that E(TIS) is a statistic and has the same expectation as T. The property (3.4)
for V therefore implies

(3.8) Cov {E(TIS). I)[ Cov (T. 1).

that is.

(3.9) E{[E(TjS)]J } - [E{E(TjS))]EV -E(TV) - (ET)(EV).
that is.

(3.1()) {[E(TIS)]II E(TJ').

that is.

(:3.1 1 ) WE[E([E(TjSAN)] I j,Sl] _EI[E(TVI S)].
tlhat is.

(3.12) E[E(TIS)E(V jS1)] E[E(Tl l,IS)].
This is true for every T. In particular. for T = (,X. 0,) the above identity gives,
at 0 = 00.

(3.13) E60[{E( Vj|S)}2] = E E0[E( 121lS)].
This shows, for every 00 in Q., that the distribution of IV given S must be concen-
trated on one point. that is, V must be a function of S.

Sufficiency. If S is a sufficient statistic and V = V(S. 0) we have
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(3.14) Cov (T, V) = E{TV(S, O)} - (ET)(EV)
= E{[E(TIS)] V(S. 0)} - (ET) (EV).

When S has a complete family of possible distributions (making S minimal),
we see that if ET1 -ET, then E(T1 IS). E(T2IS) are two functions of S which
have the same expectation and are therefore (with probability one) the same
function, giving us Cov (T1, V) _ Cov (T2, V).
REMARK. When the minimal sufficient statistic S does not have a complete

family of possible distributions, ET1 _ ET2 does not imply Cov {T1, V(S. 0}
Cov {T2, V(S. 0)}. A counterexample is provided by the usual example X rect-
angular (0- ,0 + ), -OC < 0 < oo. in which X is minimal sufficient but
not complete. Take V = X, T1 = 0, T2 = + 1 according as the integer nearest
to X is above or below X. Then ET1 0 and ET2 O0 but Cov (T1, V) $
Cov (T2, V).
COROLLARY 1. When X has a conzplete family ofpossible measures, X is itself

a minimal sufficient statistic, and the theorem reduces to this simple form: every
best Schwarz inequality is of Cramer-Rao type; that is. every random variable V
has property (3.4).

Without appealing to the theorem, it is clear that ET determines T and there-
fore determines Cov (T, V).
COROLLARY 2. Every Cramer-Rao type inequality is invariant under a

sufficiency reduction. If instead of working with X, we work only with the sufficient
statistic S. then any Cramer-Rao type bound that was available is still available,
and unchanged. because the V involved is a function of X through S only.
For the standard particular Cramer-Rao type inequalities, this invariance

under a sufficiency reduction is usually proved using the factorization theorem
for densities.

3.1. Families ofvariables V. In all of this section, we could have taken a family
V2 = V (X, 0), x EA of such V and replaced bm by supj{Cov (T. V2)}2/Var Vj.
This is a commonly used way ofgetting a good bound. We have not done this here,
because we are considering applications in which an obvious best V is available.

3.2. Particular inequalities. Particular choices of the V give the following
particular Cramer-Rao type inequalities:

(a) the Cramer-Rao inequality [4] uses

(3.15) V pl(X) {o (X)}

(b) the kth Bhattacharyya inequality [2] uses

(3.16) V" = p(X) { cc .P (X)

where the ci, range over all real numbers,
(c) the Barankin inequality [1] uses
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(3.17) V2 = p I(X){ c.iPo(X)}.

where n2 ranges over the positive integers. the ci, range over the reals, and the O0
range over Q;

(d) the Chapman-Robbins inequality [3] uses

(3.18) 12 = 1 {Po{(X)}.
Po (X)

where 0S ranges over Q;
(e) the Kiefer inequality [9] uses a continuous mixture. where Barankin uses

a discrete mixture, of pHI(X) over points 0, of Q.
In all of these, the family of distributions is taken to be dominated, with Po
having density p0 relative to a fixed measure /u. The V used are all of the form
po, (X)/po (X) where 0 indexes the true distribution and 0, is any other point of
Q, or linear combinations over values of 0, in Q, or limits of such linear com-
binations.

Existence of V = p01 (X)/p0(X) requires only that Po dominate Po,: we can

use '(Po + Po,) for 4u and will have p0, (x) = 0 whenever po(x) = 0. Such a V
satisfies property (3.4) because for ET = m(0) we have

(3.19) Cov (T. V) = E(TV) - (ET)(EV)

ft(f ) Po (x) p (x) dX (x) -m (0) f Po' (x) po (x) dx (x)
Po (x) po (x)

= m(01) -m(0
which depends on T only through ET. And such a V will not be a constant,
provided Po, and Po are not the same measure. Thus, for the Barankin and
Chapman-Robbins inequalities, all that is needed is that the Po, measures used
differ from and be dominated by Po.
For the Cramer-Rao and Bhattacharyya inequalities, 0 must be real valued

(easily extended to linear spaces [2]) and the derivatives involved must exist and
not be constants. In addition property (3.4), obvious for the Barankin V, must
survive the limit operation: this is assured by requiring differentiability under
the expectation sign. However, this additional regularity condition is unneces-
sary when there is sufficient statistic S with a complete family of possible
measures, because the Barankin variables V and therefore limits of them depend
on X only through S, and all functions of S, 0 have property (3.4) by Theorem 2.

Barankin [1] sho.ws that when po(x) = 0 implies po1(x) = 0 for all 0, E Q, it
is enough to consider variables V of his form, because they give an achievable
bound. It is unnecessary to use any other V because they cannot give a better
bound; but it may be convenient to use other V that give the best bound more
easily.

Crame'r-Rao type inequalities have two uses in proving something good about
T as an estimator of g(0) with quadratic loss: (i) in proving minimum risk, either
locally or uniformly., for given expectation, and (ii) in proving admissibility.
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The second use (ii) is the subject of the rest of this paper; the first use (i) is as
follows.

3.3. Local use (i). Suppose To, with ETo = m(0), achieves equality in (3.5)
at 0 = 00:
(3.20) Eo.{To - g(00)}2 = {m(00) -_ (0o)}2 + bm(00).
Then every other estimator T with the same expectation ET = m(0) has

(3.21) E0 {T - g(00)}2 _ E00{T0 -g(00)}
Therefore among all estimators of g(0) having expectation m(0), the unique
(with Po, probability one) one with minimum risk for 0 = 00 is To; this for every
g(0) and every quadratic loss. Uniqueness because if T1 were another estimator
with expectation m(0) and achieving equality in (3.5) for 0 = 00, then 2 (To + T1)
would also have expectation m(0) and would violate (3.5) at 00 unless
Poo(T = To) = 1.

In particular, taking g(0) = m(0), we see that To is the unique (with Poo prob-
ability one) unbiased estimator of m (0) with minimum risk (minimum variance)
at6 = 00.

3.4. Uniform use (i). Suppose T*, with ET* = m* (0), achieves equality in
(3.5) for all 0:

(3.22) E{T* _ g(0)}2 = {m*(0) _ g(0)}2 + bm*(0).
0

Then every other estimator T with the same expectation ET = m*(0) has
E{T _ g(0)}2 _ E{T* _ g(0)}2, all 0. Therefore among all estimators of g(0)
having expectation m*(0), the unique (with probability one, all 0) one with uni-
formly minimum risk (or variance) is T *; this for every g (0) and every quadratic
loss.

In particular, taking g(0) = m*(0), we see that T* is the unique (with prob-
ability one) unbiased estimator of m*(0).

This use (i) is vacuous when there is a sufficient statistic S with a complete
family of measures. The Rao-Blackwell theorem enables us to restrict attention
to functions of S, and if T * has expectation m*(0), then no other T has this same
expectation and so the stated uniformly minimum risk properties are obvious.

4. Admissibility proofs for quadratic loss

An estimator T* is inadmissible for estimating g(0), with quadratic loss, if
there is an estimator T that is a nontrivial solution of the inadmissibility in-
equality

(4.1) E{T _ g(0)}2 . E{T* g(0)2,
or equivalently, writing m (0) for ET,

(4.1') Var T + {m(0) _ g(0)}2 < E{T* g(0)2,
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or, again equivalently,

(4.1") E{T - T*}2 + 2E{T - T*}j{T* - g(O)} . 0.

By a nontrivial solution (there is always the trivial solution T = T*) we mean
one for which the inequality is strict for at least one 0.
Hodges and Lehmann [7] introduced the following method, also used in [6]

and [10], of proving admissibility. Using any Cramer-Rao type inequality (3.5)
we see that if T is a nontrivial solution of the inadmissibility inequality (4.1)
then T is also a nontrivial solution of the relaxed inequality

(4.2) bm(0) + {m(0) _ g(0)}2 < E{T* _ g(0)}2.

This inequality is a relaxation of (4.1), the left side of (4.1) having been replaced
by something at least as small. If it can be shown that this relaxed inequality
(4.2) has no nontrivial solution m that is the expectation of some T, it therefore
follows that (4.1) can have no nontrivial solutions. and so T * is proved admissible
for every quadratic loss.
The Hodges-Lehmann method works directly with the definition of admis-

sibility, using the standard mathematical technique of replacing a complicated
expression by a simple bound for it. This replaces an integral inequality in T by
an easier inequality in m. When the Cramer-Rao inequality is used, as in the
examples of [6], [7]. [10], we have bm(0) = [m'(0)]2/Var V. so that (4.2) is
always a differential inequality, which in those examples is easily shown to have
no nontrivial solutions. (Any best Schwarz inequality could be used on (4.1) in
the same way, but failing property (3.4) the relaxed inequality would still involve
T so would be no improvement on (4.1).)

4.1. Which Cramer-Rao type inequality to use. The Hodges-Lehmann
method cannot succeed unless T * achieves equality in the Cramer-Rao type
inequality (3.5) for all 0: otherwise m*(0) = ET* would be a nontrivial solution
of the relaxed inequality (4.2). So for the method to succeed the V used in (3.5)
must be a linear funetion oa(0)T * + /3(0) of T *,. or equivalently V = T * because
of the invariance of (2.6) under linear transformations: there is no point in
trying special cases of (3.5) such as the Cramer-Rao inequality.
For a Hodges-Lehmann proof of the admissibility of T*. we check that T*

has property (3.4) [no check is needed when the family of distributions of X is
complete], and write down the relaxed inequality (4.2) that results from using
V = T* in (3.5):

(4.3) {Cov (T, T*)2 + {m(0) - g()}2 -E{T* -g(0)}2 0.
(4.3) VarT*

-ET

Because of the invariance of (2.6) under replacement of U by U - V, the
application of (3.5) with V = T* to E(T - T*)2 in (4.1") gives the same in-
equality as (4.3):

( {Cov T - T*. T*)} 2 + M(0)(4.3 ) VarT* M*(0)_2+ 2E{T-T*}{T*-g(O)l _ O
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NOTE 1. The relaxed inequality (4.3') can be further relaxed to

(4.4) {m(0) - m*(0)}2+ 2E{T - T*T*- g(O)} 0.

This amounts to using the Jensen inequality (2.2) instead of the Cramer-Rao type
inequality (3.5) on E(T - T*)2 in (4.1"). If it can be shown that the further
relaxed inequality (4.4) has no nontrivial solution m that can be the expectation
function of some T, then the inadmissibility inequality (4.1) can have no non-
trivial solutions, and T * is proved admissible. All the examples of [6], [7], [10]
can be worked using (4.4) instead of (4.3).
NOTE 2. Can the Hodges-Lehmann method fail to work? That is, can it

happen that T* is admissible so (4.1) has no nontrivial solutions, but (4.3) does
have nontrivial solutions? And can it happen that neither (4.1) nor (4.3) has
nontrivial solutions, but (4.4) does have nontrivial solutions? We do not yet
have answers to these questions, except that it is easy to give examples (see
Example 4) in which T* is a constant and admissible, but (4.4) does have non-
trivial solutions (the relaxed inequality (4.3) is not available when T* is a
constant). Negative answers for a particular T* or class of T* would permit use
of the Hodges-Lehmann method in proving such a T* inadmissible.
NOTE 3. When X, or a sufficiency reduction of X, has a complete family of

distributions, why use a relaxed inequality? After all, the reason given for using
(4.3) instead of (4.1) was to get an inequality in m instead of T, and under
completeness m determines T so that (4.1) itself can be written in terms of m.
The answer is that (4.1) in terms of m may involve an integral that can be
eliminated by changing to (4.3). This is what happens in Example 1, where we
begin by trying to work with (4.1) without relaxations. Inequality (4.4) has no
such essential advantage over (4.3), but may be somewhat simpler and easier to
work with than (4.3).
NOTE 4. It is often convenient to carry out these proofs in terms of

Z = T - T* and C(O) = EZ = m(O) - m*(O). In terms of Z and 4, the in-
admissibility inequality (4.1) is

(4.5) {J(0)}2±+2(0){m*(0) - g(O)} + 2 Cov (Z, T*) + Var Z . 0,

and the relaxed inequality (4.3) is

(4.6) J4(0)12+ 2 (0){m*(0) - g(0) + 2 Cov (Z, T*) + {Cov (Z, T*)2 <0-
{~(O)}2± 2~(O{m*(O) g(O)}Var T*

and the further relaxed inequality (4.4) is

(4.7) {4(0)}2+ 2C(O){m*(0) - g(O)} + 2 Cov (Z, T*) < 0,

and the Hodges-Lehmann proof consists of showing that C(O) _ 0 is the only
solution of (4.6) or (4.7) that can be the expectation of some T, so that no non-
trivial solution exists, and T* must be admissible.
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5. Examples

EXAMPLE 1. Uniform (0, 0). For Y*, Y, independent, each uniformly
distributed on (0, 0), the sufficient statistic X = max Yi has the complete family
of possible densities

(5.1) on xn 1 0 < x < 0, .> O.

For estimating 0 with quadratic loss, the uniformly best constant multiple ofX is

(5.2) T* = n + 2X,
n+

which has expectation

(5.3) m*(0) = ET* = ( l 0

and risk

(5.4) E(T* - 6)2 = ( 1)2
(n++

This estimator T * was proved admissible by Karlin [8]. For an estimator T(X)
with expectation m(0) we have T(X) = m(X) + (X/n)m'(X). Because of this
simple inversion, T * provides an easy illustration of the advantage of working
with a relaxation instead of with the inadmissibility inequality itself (see Note 3,
Section 4).
We begin by trying to work directly with the inadmissibility inequality (4.1)

in the estimator T whose expectation is m:

62
(5.5) E{T(X) - m(0)}2 + {m(0) - 012 02

(n + 1)2

Because of the simple inversion, this can easily be written as an inequality in m:

x 601 M0 1
2

(5.5') E{m(X) + -m'(X) - m()}2 + {m() _ }2 < (n + 1)2'
Multiplying out the square in the first term and integrating one of the resulting
terms, EXm(X)m'(X), by parts, this inequality simplifies to

(5.5") on r [m'(X)]2xnl' dx + {m(6) _ 612 < 02(5.5-)-on fo, ~ ~~~~~~(n+ 1)2'

We want to prove that m = m* is the unique solution of this inequality, which
is hard to work with because of the integral in the first term. An application of
Jensen's inequality to that integral gives a relaxed inequality

n.+ 2 n +1 2 _ 62
(5.6) ,f()m(x)x"dX}+{M(6) 612 < 12
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A check shows that this is exactly the same relaxed inequality (4.3) as results from
applying to Var T the Cramer-Rao type inequality using T*. This inequality
(5.6) still contains an integral, but written in terms of r(6) = (1/0") f' m(x)x" dx,
for which m(0) = (n/6)r(0) + r'(0), it does not:

(5.6') n r{r(0)- 0)}+ { r(0) + r'(0) _ } _ 221)2-
Wewanttoshowthatr(0) = 62n/(n + 1)2, corresponding torm = m*, is the unique
solution of (5.6'). For convenience, we now write 028(6) = r(6) - 02n/(n + 1)2
and use a typical Hodges-Lehmann argument to show that s() 0= is the unique
solution of (5.6') written in terms of s(6) and slightly rearranged

(5.6") {0s'(0) + (n + 1)s(0)}2+ OS ++ 1} n + 1)2

n n + =(n

This inequality shows that Os'(0) < 0; and that 0s'(0) and 0s'(0) + (n + 1)s(0)
are both bounded, making s(6) also bounded. Now Os'(0) cannot be bounded
away from zero as 6 -O 0 or as 0 -. oo, because either of these would make s(0)
unbounded. So there must be a sequence of 0 values tending to zero and a
sequence of 0 values tending to infinity along which 0s'(0) -O 0, and (5.6") shows
that s(0) -. 0 along these sequences. This together with s'(0) _ 0 implies s(0) 0_
and proves T * admissible.

Admissibility of T* can also be proved using only the further relaxed
inequality (4.4):

(5.7) {Os'(0) + (n + 2)s()}2+ Os'(6) < 0.

This inequality requires 6s'(0) . 0, and at this point we could use the inadmis-
sibility inequality (5.5) with its first term omitted to see that s(6) must be
bounded, and admissibility would follow as above. But a proof can be given as
below using only the inequality (5.7). (Note that s(6) = a/06 2 is a nontrivial
solution of (5.7), but this solution is ruled out as not corresponding to any m,
becauses(0) = (1/0"+ 2) J8m(x)x"dx - n(n + 1)2which requires 0O+2S(6) -o0
as 0 - 0.)

First show that Os'(0) cannot be bounded away from zero as 0 -+ oo; for if it
were we would have s(0) -. -oo, and so would have for all 0 sufficiently large
8(0) < 0 and therefore {08'(0)}2 + {2/(n + 1)}Os'(0) < 0, which requires 0s'(0)
bounded as 0 -+ oo, which together with s(0) -oo as 6 -. oo would violate
(5.7).
Thus there must be a sequence of 0 values tending to infinity along which

Os'(0) -* 0, and (5.7) shows that s(0) - 0 along this sequence. From s'(0) . 0
we can now conclude s(0) - 0 as 0 -+ oo, and s(0) _ 0 for all 0.

Next show that 68'(6) cannot be bounded away from zero as 0 -. 0; for if it
were we would have s(0) -+ oo as 0 - 0. And in terms of t(0) = 6n+28(6), the
inequality (5.7) is
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(t'(0) 2 2 t'(0) _ n + 2 t(0)
on+1} n +I lOfJ X n +I1O

We saw above that t(0) - 0 as 0 - 0, so s(0) = t(0)/O,+2 + 00 would imply
(by L'Hospital's rule) t'(0)/0n+ I x, and therefore for all 0 sufficiently small
t,(0)10n+ 1 > 0 and so

(5.8)
(0)

< 2
n (0)(5.8) ~~~~~on+it. 1
n 0Ion '

This gives, for all x sufficiently small.

(5.9.) <(t(x) _ const x"'2.

Integrating both sides from 0 to 0 now gives, for all 0 sufficiently small,

(5.10) (t (0))1/2 < const on/2 +1

that is,

(5.11) t(0) < const On+2.
which would contradict the fact that t(0)/0n+2 o as 0 -O 0.

Thus there must be a sequence of 0 values - 0 along which Os'(0) - 0, and
(5.7) shows that s(0) -O 0 along this sequence. We can now conclude that
s(0) 0_ , and the admissibility of T* is proved.
EXAMPLE 2. Exponential family. Let X be a real valued random variable

with the following exponential family (which is complete) of possible densities
relative to a fixed a-finite measure u:

(5.12) A(w) ewx, -o< x < . a < o < b.

Here the interval (a, b) must be contained in the interval Q of wo values for which
f -,e'°xdp(x) < oo. Consider T* = (X + k))/(l + A), where A > -1 and
k are constants, as an estimator of EX = -f3'(wo)/#3(w) with quadratic loss.
Hodges and Lehmann [7] proved admissibility for (a, b) = Q of particular

estimators T * for the specific exponential families binomial, Poisson. normal
(w(, 1), and gamma with scale parameter co, given by specific choices of ju. Their
proofs use the relaxed inequality (4.3): different proofs can be given using only
(4.4).

Girshick and Savage [6] proved T* = X admissible for (a, b) = Q = (-oo, oo).
Their proof uses (4.3) which they further relax to (4.4), so can be carried out
using only (4.4).

Karlin [8], using the limiting Bayes method, gave sufficient conditions for
T*, with k = 0, to be admissible for (a, b) = Q.
Ping [10] gave a Hodges-Lehmann type proof of the following extension of

Karlin's theorem: T* is admissible provided
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co-a ooo(5.13) limJ j) [A(4)] e~4 -E =lm-pi)e~:L/ dd.
Ping writes down the relaxed inequality (his formula 1.4) but then replaces this
by the further relaxed inequality (his formula 1.5), so that his proof actually
uses only (4.4).
EXAMPLE 3. Gamma with scale parameter. For X1.,, Xn independent,

each with density 2e-ix, x > 0, i > 0, the sufficient statistic X = Y2Xi has
exponential family (complete) of possible densities

Fn)(5.14) e- -i x._0. i2>0.

For this family with n > 2 (not necessarily integer valued), for estimating
2 = 1/EX with quadratic loss, the uniformly best constant multiple of X is

(5.15) T* = n 2

which has expectation

n-2
(5.16) m*(i) = ET* = 2

n-1

and risk

(5.17) E(T* - A)2 = 2

n-i

This extimator T* was proved admissible by Ghosh and Singh [5] using a
limiting Bayes argument. Here it provides an example, for an exponential family,
of using the Hodges-Lehmann method to prove admissibility of an estimator of
something other than EX. (Example 2 is restricted to estimation of EX.)
For an estimator T(X) with expectation m(2) and finite variance, Schwarz's

inequality for T, 1/X proves the existence of

(5.18) r(A) = E = r e)xn-ie-Axdx,

and we have

(5.19) m(A) = i r(A) - r'(A).

Written in terms of

(5.20) s(A)= (2)
2ri (n-

the relaxed inequality (4.3) is
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(5.21) (n - 1){)s'(,)}2 + 2{)s'(2)} + (n - 1)(n - 2){s()}2 _ 0

and the further relaxed inequality (4.4) is

(5.22) {(n - 2)s(() -_ .8(A)}2 + 2AWs'(,) < 0.

For each of these inequalities, it is easy to prove that s(A) _0 , corresponding
to m(A) = m*(A), is the only solution that corresponds to some m(i) = ET, so
either inequality can be used to prove T * admissible. The proofs are the same
as those given for the corresponding inequalities in Example 1, except that the
roles of A -O 0 and A -xo are reversed.
EXAMPLE 4. Normal (0, 1). For X normal (0, 1), -x < 0 < cc, the esti-

mator T * 0 is obviously admissible for estimating 0 with quadratic loss, but
the Hodges-Lehmann method fails to prove this. Because T * is a constant, the
relaxed inequality (4.3) is not available; the further relaxed inequality (4.4) is

(5.23) [m(O)]2 - 20m(0) . 0.

This inequality has the nontrivial solution m (0) = 0, corresponding to T (X) = X.
The same happens for any constant T* in the exponential family problem of
Example 2.
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