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1. Introduction

1.1. Biological populations and mathematics. Biological populations, involv-
ing one or more species of animal or plant or disease producing organism, have
been a source of inspiration to the mathematically minded for more than two
centuries [4]. Today there can be little doubt that the study of mathematical
population models helps to deepen our understanding of real population processes
and to render intelligible many phenomena which would otherwise remain ob-
scure (for example, (1) the stability of the age structure in a freely growing
population, (2) the occurrence of distributions akin to the logarithmic in studies
on the diversity of communities).
Even so, these advances have had much less impact on the consumer, the

conventional ecologist, than they merit. The reasons are threefold:
(i) very few ecologists understand sophisticated mathematics couched in

modern terms;
(ii) the mathematician's preoccupation with rigor often appears inconsistent

with his somewhat superficial attitude to biological realities, often apparently
dismissed as unwelcome complications best forgotten;

(iii) mathematical systems, because of their abstract beauty and austere
elegance contrast sharply with the color and richness of animate nature.

Nevertheless, the biologist and the mathematician, despite their different atti-
tudes, are both right, each in his own way. It is only proper for the mathema-
tician to exercise a high degree of thoroughness in deducing the properties of
the mathematical system from which he starts, and it is equally proper for the
biologist to question the applicability of a model with just the same thorough-
ness, even to the point of asserting that no mathematical system can receive his
unqualified approval unless it embodies the logical structure of a real system
exactly. It is indeed paradoxical that when biologists adopt the unbending logic
characteristic of mathematics and proceed to demand of applied mathematicians
that they justify their formulations, the gulf between the two disciplines im-
mediately widens.
The resolution of this paradox is perhaps a matter more appropriate to the

field of scientific epistemology, but the causes underlying this regrettable di-
chotomy are clear. They arise in part from differences in the historical develop-
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ment of these two great disciplinies, in part from the perpetuation of traditional
attitudes to education, but primarily from a widespread failure to recognize the
critical importance of a small neglected area of intellectual activity, which for
want of a generally accepted label may be called "theoretics." To this both nat-
ural science and applied mathematics are methodologically subordinate.
With the mathematical model as its central concept, theoretics is both an

art and a science. The art of theoretics consists in the construction of models
which are both mathematically tractable and scientifically meaningful. The
applicability of the model depends on the extent to which the theoretician suc-
ceeds in abstracting the essential operative factors from the real situation which
he strives to simulate. But it is not enough just to rely on his insight and judg-
ment. The time has come when there is a clear need for the systematic investi-
gation of models with a view to discovering which features are of crucial im-
portance and which are not, and to determine the extent and under what cir-
cumstances various levels of abstraction and simplification may be safely em-
ployed. To achieve this end theoretics must adopt both the comparative and
the experimental approach. Admittedly much is already well known or appears
obvious or elementary to those who are experienced in the construction of
mathematical models, but very little of this valuable knowledge has been pre-
sented in an orderly way or given sufficient prominence in the literature.

1.2. Early population models. At first population models, quite understand-
ably, were extremely simple, for example,
(1.1) N+i = cNt
(Linnaeus [16] with c = 2),

(1.2) dN o N(K - N)

(Verhulst [25]). In these examples it will be observed: (i) that all individuals
are treated as if they were alike regardless of their condition; (ii) that no ac-
count is taken of the operation of chance factors; and (iii) that time, whether
discrete or continuous, is regarded as homogenous.
The first defect has been largely overcome by classifying the individuals into

more homogeneous groups by sex and age. As a result a number of valuable
theorems have emerged which relate population growth and age structure to
fecundity and survival [21]. It is interesting, however, to note that the more
elaborate system of Lotka still behaves like its simple Malthusian prototype, at
least asymptotically.
The second defect has also been surmounted to some extent by the formula-

tion of population models in stochastic terms. As a result many valuable theo-
rems on ergodicity and extinction have appeared [6], [7], [12]. Even so, it is
interesting to note that the "growth in mean" of a stochastic population sys-
tem is often identical with the growth curve of its deterministic analogue, and
is rarely appreciably different unless the population tends to remain at a low
level or is followed through an excessively long interval of time.
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With these two defects largely overcome it has become possible to construct
mathematical schemata which do appear to mimic real biological systems and
some even attempt to simulate special or unusual structural features (see [20],
where egg cannibalism in laboratory populations of Tribolium creates a serious
complication).
The third apparent defect mentioned earlier (the assumption that the vital

coefficients are independent of time) has received little attention from mathe-
matical ecologists. This is indeed amazing because the most striking features
of life on this planet are directly attributable to the diurnal rotation of the
earth on its inclined axis and its annual journey round the sun. The behavior
and reproductive cycles of living organisms are closely adapted to the regular
alternation of summer and winter or of wet season and dry season.

In view of these obvious facts, it is certainly unrealistic to expect field ecolo-
gists to accept as an act of faith that conclusions drawn from the study of
population models built in "homogeneous time" are ecologically meaningful or
useful. In order to justify our classical formulations it is necessary to demon-
strate that the general properties of models with built in temporal uniformity
are not substantially altered when the models are deliberately modified by
building periodic features into their structure. The present pilot effort in the
field of experimental theoretics is an attempt to investigate the role of periodicity
by a simple direct approach.

1.3. Periodicity. From an intuitive standpoint, a sequence of discrete evenly
spaced instants in time displays an extreme type of periodicity, evidenced by
the occurrence of arbitrary periodic functions in the solution of finite difference
equations. It is certainly not unusual for discrete time to be employed in models
designed to represent successive generations of annual organisms [22]. Some
field ecologists also seem to share this intuitive standpoint, for their investiga-
tions are usually planned to cover a whole number of annual cycles, comparisons
being made at the same season in successive years. The close analogy which
exists between finite difference and differential equations and their solutions
also suggests a priori that periodicity in general might only play a subsidiary
role.
Whether time is considered uniform or not depends in practice on the scale

employed, and rapid quantitative changes may have qualitative effects. Just
as the vibratilng column of air in an organ pipe generates a sustained musical
ilote, so might the diurnal rhythm in the long life of many animals and plants
be regarded as a qualitative feature of the environment. Few organisms, how-
ever, survive so long that the same could be said of the annual seasonal rhythm.

2. Matrix representation of a population process under periodic conditions

2.1. Matrix representation of population change. The model, which Lotka
and his associates [21], [17], [5] originally used to represent a population in
continlous time, is built on the assumptioni that age specific birth and death
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rates remain constant at all points in time, irrespective of the season of the
year. In this respect the model is more readily applicable to human populations
than to most animal populations in the wild. Lotka's arguments and results
are stated in terms of linear integral equations and definite integrals. He found
that with the passage of time, population growth (or decline) was asymptotically
exponential, and that the age structure approached a stable form.

Substantially the same conclusions were also reached by Lewis [15] and inde-
pendently by Leslie [13], [14], who reframed the model in discrete time. The
population in a given year was represented as a vector, the elements being the
number of individuals in the separate annual age classes. The direct linear
relations connecting the numbers in the age classes one year with those in the
appropriate age classes the previous year were displayed as a square matrix,
thus

No,t+I] Fro ri r2 r31Not
(2.1) NN1 e+1| So * l L . X = MNt.

-N3,t+l S2 * N
The elements in the top row are conceived as coefficients of reproduction or

multiplication, and those in the subdiagonal as coefficients of survival. The
interpretation adopted here is made selfevident by reference to figure 1. The
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Population in age classes.
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FIGURE 3

Seasonal change in number of individuals.
Numerical values taken from table I. Case m = 4.

population is considered as being continuous but observed only at time points
t, t + 1, t + 2, - * *, and the individuals are classified at those instants accord-
ing to their ages, 0+, 1+, 2+, -.. . For a > 0, Na,t is simply related to
Na.-, t-I by survival. The manner in which the Na,t contribute to No0,+j is
more complex, especially if reproduction is bisexual, or if the newly born die
or reproduce before recruitment into class O+ at the next observation point.
Even so, by apportioning the contributions made by the two parents to each
offspring in an appropriate manner, by treating offspring which do not survive
to recruitment as stillborn, and by treating precocious reproduction as twinning,
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it is always possible to give a rational interpretation to the coefficients ro, rl, r2, * * -

(figure 2). It is often convenient to regard the population as asexual or alterna-
tively as purely female, the males being disregarded as being merely part of
the environment. The latter convention is adopted in the stochastic formulation
given later.
The matrix representation of population change is particularly appropriate

to populations of wild animals in which the reproductive season is condensed
into a few weeks each year. The classification of the population into age classes
is perhaps most meaningful if made as soon as the reproductive season ends.
The application of matrix schemata, however, is not restricted to such cases.
By taking the observation points sufficiently close together, a matrix scheme
may be used as a finite difference approximation to a continuous system.

If, for example, we divide the annual cycle into n parts (say, n = 13 or 52)
it is possible to make each matrix M. appropriate to the time of the year, and
to represent regular season change by repeating the matrices in cyclical order.
Thus, if time is denoted by t = j + s/n, where j is an integer,

Nj+l/n = MoNj,

(2.2) Nj+2/n = M,Nj+,/, = M1MoNj,
Nj+1+s/n = Ms_1M8.2 ... MoMn-, *..MsN.+8/n

= QqNj+s/n~
where

(2.3) G. = M-,1 ... MoM.-1 ... Ms.

The matrix product G, is necessarily square.
A numerical example designed to show the behavior of a population system

of this kind (with n = 4) is illustrated in figures 3 and 4. The numerical values
allotted to the matrix elements are set out in table I together with the initial
vector. It will be seen that the values are not entirely unrealistic.

2.2. Seasonal population model. As is well known, the asymptotic behavior
of the system, Nt+i = GNt, is controlled by the latent roots and latent vectors
of the matrix G. If there is a single dominant latent root Xi, and if L1 denotes
the corresponding latent vector, then the population vector N, acquires a stable
limiting form

(2.4) N '+i- X1Nt, Ng lcML1.

Here we have n equations of the type Nt+i = G,N, with t = j + s/n and
s = 0, 1, * * n - 1. Both intuitively and on the basis of the numerical example
we would expect the population to grow in the same asymptotic manner irre-
spective of the season of the year at which it is measured. It is of vital importance
however that this characteristic of the model should be firmly established mathe-
matically. The following argument uses only elementary matrix theory.
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TABLE I

EXPECTED NUMBER OF FEMALE BIRTHS (PER FEMALE PARENT) RECRUITED AT THE
STATED SEASON ACCORDING TO THE AGE OF THE PARENT THE PREVIOUS SEASON

Age
(X4)

Season 0 1 2 3 4 5 6 7 8 9 10 11 12

Midspring 0 0 0 3 3 4 5 5 5 4 3 2 0
Midsummer 0 0 0 2 3 2 4 4 3 3 2 1 0
Midautumn 0 0 0 1 2 2 3 3 3 2 1 0 0
Midwinter 0 0 0 0 1 2 3 3 2 1 0 0 0

Percentage of female individuals surviving to the next season
according to their present age and season

Midwinter 20 30 40 50 55 60 55 40 15 5 0 0 0
Midspring 80 90 95 90 85 80 75 70 50 30 10 0 0
Midsummer 75 85 90 85 80 75 70 65 40 20 5 0 0
Midautumn 70 80 85 80 75 70 65 55 20 10 5 0 0

Initial winter population

15 18 20 25 7 9 10 12 2 3 2 0 0

We already have

(2.5) G. = Go = M-lM .-2 .. M8M.-8 ...M. Mo
G( = M.-, ... MoM- *-... Ms.

It will now be shown that the matrices Go and G, have the same characteristic
equation. The argument, which otherwise would be very simple indeed, is com-
plicated by the fact that matrices of the form M are commonly singular owing
to the presence of zeros at the extreme right of the top row. Clearly Go = AB
and G. = BA, where A = M,,- *.. M,, and B = M8,1-.. Mo. Let A be of
rank p. Then nonsingular matrices H and K can always be found (using suc-
cessive elementary operations) such that HAK = C, where C, the equivalent
normal matrix, is a canonical diagonal form, whose elements are all zero with
the exception of p unitary elements occupying the first p places in the principal
diagonal (see [3], p. 86 or [8], pp. 89-90). One property of C is, that for any
square matrix E (of the same order)
(2.6) ICE - XIj = IEC -XII,
a result which is immediately evident when these determinants are displayed
in full. Now if E denotes K-1BH-1,

HGoH-1 = HABH-1 = HAK-K-KBH-1 = CE,
(2.7) K-1G8K = K-1BAK = K-1BH-1-HAK = EC.



188 FIFTH BERKELEY SYMPOSIUM: SKELLAM

Hence
H(Go- XI)H-1 = CE - XI,

(2.8) K-1(G. - XI)K = EC - XI.
It follows, on takiing determinants, that
(2.9) Go- XII = IG8 - XII.
The latent roots associated with G. are therefore the same for all s, and in
particular those of greatest modulus.

If there is a single dominant root XI, the population vectors associated with
a particular season (s fixed) acquire a constancy of form characteristic of that
season and undergo multiplication annually by Xi. The vectors associated with
different seasons are tied rigidly together by relations of the type, Nj+,,1 =

(M-, *-- Mo)Nj. If any one of them acquires constancy of form, the rest do
so automatically. The approach to stability may therefore be described as
"simultaneous."

2.3. Use of the theorem of Frobenius. Like stochastic matrices, population
matrices, whether of form M or G, are necessarily made up of real nonnegative
elements, and therefore fall within the scope of a weakened form of a theorem
of Frobenius set out in Gantmacher ([9] Vol. 2, p. 66). According to my inter-
pretation, the theorem implies that if the elements of a square matrix A are
real and nonnegative, and if the latents roots are denoted by Xi, then either
(i) all Xi = 0, or (ii) there is a positive root (say XI), such that XI > 1Xil for
every i, and that there exists a latent vector L of nonnegative real elements
(not all zero) such that AL = XIL (case ii) or 0 (case i).
On the basis of this theorem population matrices may therefore be classified

for present purposes into three kinds:
I trivial: Xi = 0 for all i;

II special: Xi > 0, Xi = IXil for one or morei$ 1;
III stable: a single dominant root Xi > 0.
From the biological standpoint it is convenient to recognize at least two

degrees of stability:
III A: (low stability), the dominant root being only slightly greater than the

moduli of the subdominant roots;
III B: (high stability), the dominailt root being appreciably greater than the

moduli of the subdominant roots.
Class II may be regarded as the extreme limit of class III A.
The following is an example of a trivial population matrix. It will be seen

that no individual survives to maturity, so that rapid extinction is inevitable.

(2.10) M = [b r , M4 = null matrix.

Since by definitioni the characteristic equation of a trivial matrix is of the form
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Xn = 0, it follows by the Cayley-Hamilton theorem (whereby every square
matrix may be said to "satisfy" its own characteristic equation) that Mn = null
matrix. This property entails total extinction after n "generations."
An example of a population matrix of the special class (II) is given below

together with its nonnegative latent vector. The characteristic equation is
xI = c3, whence M3 = c3I.

--*6c3-r60 6C2-
(2.11) 2 * 3]c] = [3]c C > 0,

but

(2.12) M3 [ = C3 y x, y, z arbitrary.

This is a slightly modified form of a matrix (c = 1) given in Leslie [13] in con-
nection with a hypothetical beetle population conceived by Bernardelli [2].
The latent vector is clearly unstable, for if its elements are slightly altered
arbitrarily, the resulting vector changes from generation to generation in a
cyclical manner.
The example given above is readily generalized to represent any population

with a stereotyped life cycle expressible in discrete generations with reproduc-
tion occurring only in the age classes, a1+, a2+, *- - ak+, where 1 + a1,
1 + a2, * * * 1 + a,k are simple multiples of an integer n > 1, and where survival
to the reproductive stage is possible. The characteristic equation then has the
form Xrp(Xn) = 0, where P is a polynomial, and yields n dominant roots of
equal modulus. This situation is very similar to that which arises in ordinary
renewal theory in discrete time when the probability generating function of the
primary distribution is "reducible" [23]. By analogy, population matrices may
be termed "reducible" if their characteristic equation is of the form XrP(X"n) = 0,
n > 1. The term "reducible" is being used here in a special sense.

If each year is divided into n parts, a reducible population matrix could be
used to describe a restricted class of seasonal populations in which (i) mortality
is dependent on age but not on season, (ii) reproduction occurs at one season
only, provided that (iii) the initial vector reflects an age distribution consistent
with the times at which reproduction could have occurred. For example, with
n = 2, we find

- ri r3_ No- r 1 r ,l r,1r 1 rrlNi + '3N 3[
(2.13) sO*..Si Noo|| e***||N

(2.13 *: 2 = LN2S2i L- * S2 ALAT3- L _
If the year is the unit of time and the initial vector arbitrary, it will readily

be seen that the whole population considered from a genetic standpoint is really
an aggregate of n genetically distinct, interlaced, coexistent streams each repro-
ducing every nth year. The only case which appears likely to be realized ill
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nature is that in which there is only one age (a, > 0) at which reproduction
occurs, and a number of insect populations are already known with a stereo-
typed life cycle which appears to conform to this pattern.
The so called "periodical Cicada" (Magicicada septendecim L.) of U.S.A. is a

classical example, which was intensively studied by Marlatt [19], and Strandine
[24]. The 17 year race in the north has been reared under field conditions from
the egg. In many districts several broods of different ages are known to coexist,
thus explaining the appearance of swarms of the insect several times during the
17 year cycle. A 13 year race occurs in. the south. Is it pure coincidence that
13 and 17 are prime?
The study of systems, which can be described in terms of matrices of classes

II and III A, would, I feel sure, throw much light on a wide variety of funda-
mental problems: subspeciation by separation in time; the coexistence of species
with similar biology; the avoidance of endemic parasitism, and the outbreak of
pests. Such studies would be immensely more valuable if consideration were
given to fortuitous irregularities in the environmental conditions as well as the
stochastic aspects of the birth and death processes occurring in the population
itself. The present pioneer study, however, is primarily concerned with large
populations which have high structural stability (due to genuine irreducible
overlapping of reproductive generations) and regular seasonal periodicity.

2.4. Characteristics of seasonal population model. The seasonal population
model discussed in 2.2 has three main characteristics:

(i) there are n discrete time points in each year;
(ii) the vital coefficients expressed as elements in the matrices are independ-

ent of the size and composition of the population;
(iii) the conception is essentially deterministic. With regard to (i), it is ap-

parent that by making n large enough it is possible to approximate to a system
in continuous time with continuous coefficients, and that the general properties
of the system will still hold. Characteristic (ii), however, is a serious defect and
restricts the applicability of the system to low population densities. Even with
free lateral diffusion, the density could not remain low indefinitely in a favorable
environment. Approximate exponential growth could hardly be achieved in
systems of low stability if density dependent factors were to operate quickly.
It seems reasonable, however, to conjecture that, even where density effects
operate, stability of the seasonal age structure might nevertheless be achieved
as in the nonseasonal models of Lotka [18] and Leslie [14]. With regard to (iii)
it may be pointed out that this deterministic system also describes the "growth
in mean" (not only of the whole system but of each separate age class) of its
stochastic analogue. A proof of this assertion follows.

2.5. Stochastic analogue of Lewis-Leslie matrix model. The stochastic analogue
of the Lewis-Leslie matrix model may be formulated in general terms for an
asexual or female population as follows.

Let 9t (zo, zl, Z2, * be the probability generating function of the joint dis-
tribution of the numbers in the age classes, 0+, 1+, 2+, * at time t. Let
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Ua (Zo, Za+i) be the probability generating function of the joinlt distribution of
the number of offspring and the number of survivors arising from a single
individual in class a. If the processes (birth and survival) carried out by one
individual are statistically independent of those performed by every other indi-
vidual, the system may be regarded as an example of a generalized Galton-
Watson process [11]. The homogeneity of each class is assumed. We then have

(2.14) 9t+i(ZO, Z1, * * * ) = 9t(9o(Zo, Z1) gI(ZO, Z2), * * - )-
Roughly speaking, the independence assumption corresponds to an absence

of competitive and density effects. The expected number of individuals in class a
is obtained in the usual way by differentiating with respect to z, and setting
all z = 1.

If the partial derivative of 9 with respect to the ith variable is written 9()
and the derivative of ga(zo, z,a+) with respect to zi is written g(i2(zo, za,±), we
obtain

t+)(Zo' zi**) = S go, *)gq0(zo, Za+i),
(2.15) a

9it+' (zo, z1 .) = St)(go, g,, *)g(a +1)(zo, Z+a).
Noting that g(1, 1) = 1 = 9(1, 1, * .), and writing ra for g°0)(zo, Za+l)zo=z.+i=i
and sa for g(,a+l)(zo, Za+±)Izo=z,+=1, so that ra and 9a are the expected numbers of
offspring and survivors from a single individual aged a, we obtain

No, t+i = E Na,t fa,
(2.16) a

Na+, t+i = Na, t Sa.
This result is formally identical with the original deterministic scheme, but
with Na t fa and 9a substituted for Na t, ra and sa.
The result holds for every pair of adjacent time points for which the ga are

defined. It therefore holds when 9a is replaced by 9as where s is independent
of the composition of the population and changes with time or takes on the
values 0, 1, 2, * * . n - 1, cyclically.

3. Periodic productive processes

3.1. Processes performed by a population. Modern population ecology is not
solely concerned with the traditional demographic aspects of population (num-
bers, births, deaths, life expectation) but with a wide range of processes per-
formed by a population considered as a component in an ecosystem. It is
concerned, for example, with the intake of fixed energy in the food, the utiliza-
tion of that energy, its temporary storage by bodily growth, and the passing
on of fixed energy to the next trophic level, notably in the bodies of the indi-
viduals which die. Such processes are clearly depenidenit not only on the seasonal
chaiiges in the size and composition of the populationi itself but also on the
changing environment.
The mathematical treatmeint of population processes often involves substan-
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tially the same mathematical operations regardless of the biological nature of
the processes, and many things not normally considered as genuine processes
can, with a little imagination, often be regarded as such. The symbol 4 is used
here to denote any additive quantity which may be regarded as the outcome
of any one of a wide class of processes, the following being typical examples:

(i) the total fixed energy ultimately discharged by a cohort on the death of
the component individuals;

(ii) the number of deaths occurring in a defined population or subpopulation
in a stated period of time;

(iii) the amount of heat lost by all individuals born between ri and r2;
(iv) the amount of amino acid assimilated by a cohort throughout its exist-

ence;

ti t21~~~1}t
_~_______ I

_ _____ I

FIGURE 5

Representation of an individual by a fiber and of a

population as a mass of interwoven fibers.
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(v) the weight of offspriig born to a defined age class in a stated period
(tl to t2);

(vi) the total amount of bodily growth achieved by a population in a year;
(vii) the total of the ages at death of all individuals alive at instant t.
3.2. Geometrical representation of a population. If we wish to speak of the

change which a population undergoes between two time points, ti and t2, it
must be fully defined throughout the interval. Ambiguity may arise as a result
of births or deaths occurring in the interval. This consideration leads us to
represent an individual by a fiber of finite length conceived as extending in
time, and to regard a population as a mass of interwoven fibers similar to a
rope (figure 5).
The activities of ain organism at time t depend not only on the conditions

prevailing at that instant but also on the stage of development which the
individual has attained-a state which may be summarized (perhaps imper-
fectly) by its age a. The life path of an organism is not like that of a particle in
a single corridor of time, for the organism is always moving progressively into
a later stage of development. This consideration has already been suggested by
the changing form of the fibers in figure 5. Another way of showing this addi-
tional aspect is to represent each life as aii oblique line in a plane with coordi-
iiates t and a, as in figure 6. The value of t when a = 0 is the time of birth T.

If we make cuts (t = tl, t = t2) at right angles to the time axis, the figure
lying between these "horizontal sections" is a "population segment." If, how-
ever, we make oblique cuts (r = Tr, r = T2, where T = t - a) the figure lyillg
between them refers to a particular set of successive lives, and is termed here a
"population array." A population segment and a population array based on
the same time interval (T1, = tl, T2 = t2) are somewhat analogous to a rectangle
and parallelogram on the same base and between the same parallels, and under
certain conditions can be shown to be "equivalent."
A region such as BAC or EDF defined by one horizontal and oiie oblique

section (to = To) may be termed a "population sector." A third type of section,
the "vertical section" (a fixed) is important in establishing relationships between
segments and arrays.
When a population is so large that a high denisity of births occur per unIit

time, it is convenieint to group the individuals into narrow cohorts, and to
arrange the life lines of all individuals born in a small fixed interval above one
another in order of length (with the longest at the bottom). The three
dimensional result so obtaiiied has the general form showni in figure 7.
The simplest type of region is the array because the individual lives are not

cut through and the picture of survival is direct. The study of population
segments is necessitated by the fact that many practical investigatioiis are
confined to or refer to a definite interval of chronological time. The overall
picture of survival is so obscured by the incompleteness of many of the cohorts
at one or both ends that it is not immediately apparent how best to define the
survivorship function at a point in chronological time in the absence of an over-
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FIGURE 6

Representation of population segment and population array.

riding theoretical model. Whereas an oblique section in figure 7 describes sur-
-vival, a horizontal section describes age structure.
The position of a point in the population plane is determined when any two

of the three possible coordinates are given:; a (age), T (time of birth), t (actual
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time prevailing). When studying an array, a and T are most appropriate, and
for studying a segment, a and t. A point in the plane may be denoted alterna-
tively by (a, T) or [a, t], where t = a + T, the coordinate system adopted being

=~~~~~~~~~~~~~~~ HI

FIGURE 7

An oblique section of model describes survival,
a horizontal section describes age structure.

indicated by the form of the brackets. In order to preserve the same functional
notation throughout, the symbolism,

(3.1) f(a, r) = f(a, t - a) = f[a, t] = f[a, r + a],
is adopted. The oblique section (O _ a < oo, r) is denoted by (.r), and the
horizontal section [O _ a < oo, t] by [- t]. Where the range of variables is evi-
dent from the context, the vertical section [a, tl to t2] through a segment is
abbreviated to [a.], the vertical section (a, ri to r2) through an array to (a.),
a whole segment to [--], and a whole array to (- *).

3.3. Tracks of a cohort. Figure 8 shows a pencil of tracks representing the
basal part of a cohort born in T i - dT. At instant t the age range is a V da.
The individuals attain the age a (exactly) in the time interval t at 4 dt. Clearly
in this figure IdTl = Idti = Idal. If the cohort is really narrow and the popula-
tion extremely large, it will be apparent intuitively that both vertical and
horizontal sections (through the point with coordinates a, t, r) cut through
virtually the same number of tracks, for the numbers of deaths in quadrants
A and B are then approximately equal and relatively few compared with the
number of tracks cut by both sections. At least it seems reasonable to construct
a representation in terms of a continuous "density" function, and to image a
surface above the population plane. The number of tracks cut by the vertical
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section is appropriately denoted by N(a, r) dr or N[a, t] dt and the number of
tracks cut by the horizontal section by N[a, t] da or N(a, T) da.

If we now take any fixed point [a, t] in the plane and delimit a minute region
dR in the neighborhood of that poinlt. we confine our attention to events which

elemet ary

FIGURE 8

Pencil of tracks represents basal part of cohort.

are happening at virtually the same time to animals of virtually the same age,
and in a statistical sense with the same past history in so far as they experienced
similar conditions at the same age. The amount of biological activity associated
with dR depends not only on t and a but on the total number of "animal days"
included in dR, a quantity indicated diagrammatically by the amount of cross
hatching included in dR (the unit of measurement being the length of track
nmarked out by one animal in unit time).

3.4. Properties of total outcome b. If D is additive and denotes the total
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outcome of a process attributable to the life tracks in a region R of the popula-
tion plane, then in general

(3.2) 4 (for R) = fIR (a, r) dR = fIR 4[a, t] dR.

When R is the segment [0 < a < 0, tl _ t < t2],

(3.3) [.. ] = flo fIt 1a,t] dadt.

When R is the array (0 _ a < oo, 'Ti < T _ T2),

(3.4) f=IfO|24(a, T) da dT

Altogether there are four simple integrals involved and it is convenient to
employ a separate symbol for each. Thus,

(3.5) 4[.t] = f|4 [a, t] da, (-r) = lo0 (a, r) da.

Here .[- t] is the instantaneous rate of the process due to the whole population,
and 1(- r) dT is the total result of the process ultimately achieved by the cohort
born in Xr 41 2 dr. Similarly,

[a.] = It 4[a, t] dt,
(3.6)

4?(a- ) = |j4(a,T)dT

These integrals may be interpreted as the total rate of the process attributable
to the individuals involved as each attains the age a. Equations (3.3) and (3.4)
may now be written

(3.7) 4['**] = f0 4[a *]da, -t(*) =
I

f D(a *) da.

Whenever {[a-] = 4(a.), the outcome of the process is the same for both
segment and array.

3.5. Ratio of outcomes of two processes. We may often wish to compare the
outcome of a process 4h in some region with the outcome of another process 42
in the same region, by forming their ratio,

(3.8) x (for R) = 41' (for R)/42 (for R),
and it is logical to extend the definition of x from a narrow region to a section
(by abstraction) in the same way. Thus,

(3.9) x[a*] = 41[aC*]/4'2[a*].
Because x, being a ratio, is not necessarily additive, the integrals which express
its value in terms of more specific local values are weighted. Thus,

(3.10) x[**] = fo x[a*142[a ] da/4'2[..].
3.6. Strictly periodic process. With a view to simulating seasonal change,
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incorporating the regular aspects of the rhythm but ignoring superimposed
irregularities, it is now assumed that the process is strictly periodic in t. This
would certainly be so if both the characteristics of the population and the char-
acteristics of the environment were repeated, season for season, year after year.

If T2- T, is an exact multiple of the period, and k is arbitrary,
fT' f T,+k

(3.11) fT 4,[,, t] dt = 4+k[a, t] dt

[T +k-a fT1T+k 4[a, + a] dT = 4'(a,Tr) dr.
If therefore an array and a segment have equal bases, which are exact multiples
of the period, 4[a-] = ?(a-) and hence 4[- *] = 4(. *). If x = Di/P2, where
~b and c12 have the same period as above, it immediately follows that x[ ] =

3.7. Specific applications of ?. The expressions already given in generalized
terms hold when the symbol 4 is replaced by N, D, Q or H, interpreted as
follows:
N[a, t] da = number of individuals in age class a 1 a da at t;
N(a, r) dT = number born in T :1: 4 dr surviving to age a;
Q(a, T) dr = total fixed energy content at age a of all individuals born in

7T 4t 2 dT;
D(a, T) da dT = number of deaths among individuals born in T :1 a dr at

ages between a - I da and a + a da;
ll(a, T) da dr = amount of fixed energy lost from the population through

death between the ages a -2 da and a + a da of individuals born in r i 4 dr.
By taking ratios of pairs of these four additive quantities, we may define

(3.12) ,u = D/N, W = H/D, W = D/N, r = ][/O;
A denotes mortality in the usual relative sense; ,u(a.) and ,iua*], for example,

are age specific mortality rates referring respectively to some defined array or
segment;
W denotes the mean energy content of an individual at death;
W denotes the mean energy content of a living individual;
7r denotes energy flow (in a relative sense) from a population (or conceptual

subpopulation) through mortality; 7r[. t], for example, is the relative rate of energy
flow from a whole population due to deaths at instant t.
These definitions imply that for any region, section or point of the population

plane,

(3.13) =W/W.
It is reasonable therefore to expect 7r and I to be of the same order of magni-
tude in most populations of wild animals.

If a population is insulated against immigration and emigration (or if these
are balanced age class for age class),
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(3.14) D(a, T) = a-dN(a,r), D(a*) d-N(a*), d(a)
d
log N(a

Further definitions and basic relationships include the following: B(T) =
N(O, T) = N[O, T] = B[T] denotes the rate at which births occur at time T;
for a segment and an array with the same base, B(-) = B[-]; [t] = B[t]/N[ -t]
is the crude relative birth rate at time t, and 3[.] = B[.]/N[.-] its overall
'average" value in a population segment.
In the absence of migration, S(a, r) = N(a, r)/B(r) is the survivorship func-

tion specific to the time of birth, S(a.) = N(a.)/B(-) its overall "average"
value for an array, and ,u(a.) = -(d/da)S(a-); X(r) = Jo S(a, T) da is the

mean length of life for a cohort born at r, and X(*) J S(a ) da is the mean
length of life of all individuals born to an array; A [a, t] = N[a, t]/N[ * t] describes
the age distribution at time t, and A[a.] = N[a-]./N[.-] describes the overall
"average" age distribution for a segment.

If a segment and array under periodic conditions have their bases equal to
the same integral number of periods, then it follows almost immediately that

(3.15) S(a.) = A[a ]/1[ ],
X(*) = 1/O[N] = 1/4.[ * -]

Since S(O.) = 1, it follows, under the conditions already stated, that, if it is
possible in practice to obtain a composite picture of the age distribution built
up from observations taken evenly over all seasons of the year, it is also possible
to obtain an average picture of survival, life expectation and natality.
The main reason for the multiplicity of definitions is to enable the ecologist

to factorize a process into facets which may be more amenable to practical
investigation separately. For example, the quantity 7r, which is a central con-
cept in the study of biological productivity, may be expressed

(3.16) r( *) J S(a.)tM(a.)W(a-) da/J S(a*)W(a.) da.

If therefore an animal ecologist can obtain the outlines of the overall age dis-
tribution in a seasonally periodic population, he can determine S and there-
fore ,u- . If in addition he can obtain the growth function W(a.), and make
an adjustment to get W(a.), he can then assess the value of 7r. By reasoning
on these lines, it has been possible (on the basis of the extensive unpublished
data of Dr. J. E. Satchell) to assess the value of 7r for the earthworm Lumbricus
terrestris L. in woodland in N.W. England as being of the order of 1 per year
despite formidable difficulties and complications connected with census work
and age determination.

3.8. Survivorship function. Whereas S(a, T) and S(a*) describe survival in
a meaningful way, the corresponding functions, S[a, t] and S[a-], do iot, for
they are more akin to age distributions and are not always monotonic in a.
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It is therefore desirable to define a survivorship function which refers to a
horizontal section. One way of doing this is to construct the pattern of survival 3
which would result if individuals were exposed at successive ages to the same
risks of mortality as currently apply at those ages. Thus,

S[0, t] = 1,

(3.17) log 8[a, t] = ,u[a, t],

whence

(3.18) S[a, t] = exp {-f0a la, t] da}.

Note that 8 is necessarily monotonic decreasing in a, and the area under the
8 curve provides a definition of X[t], the expectation of life conceived at an
instant in time. The corresponding function for a segment is

(3.19) 3[a-] = exp{f0[a{a-] da}.

As defined, these functions are indeterminate in practice if essential information
is lacking at one or more ages.

If now a segment and an array under periodic and insulated conditions have
bases equal to the same integral number of periods, p[a.] = IA(a-), whence
8[oa] = S(a-) = S[a-].

4. Mathematical description of periodic phenomena

4.1. Simple function to describe density of births. The most elementary pur-
pose served by mathematics in science is description. Even so, there are not
many standard periodic functions with a restricted number of parameters which
are well suited to describe periodic population phenomena.
The first need is for a simple function which will describe the density of the

occurrence of births or new recruits in time in such a way as to embrace cases
ranging from uniformity on the one hand to a high degree of concentration on
the other. When births (or the emergence of adults) are restricted to a short
season, the distribution of the time of individual occurrences is usually -unimodal
in any one year and roughly normal. The so called "circular normal distribu-
tion" [10] could therefore be employed. An alternative is the "periodic normal
distribution" derived here and illustrated in figure 9. It is conceived as having
been generated by the diffusion of a point mass of material either on a closed
circle or on a finite line segment with reflecting barriers, or alternatively from
a sequence of evenly spaced point masses on an infinite line.

4.2. Periodic normal distribution. Consider first the series

(4.1) f(x, T) = n2e-n2T cos nx.
n=1

This is readily seen to be uniformly convergent for x real and T _ e > 0,
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Y(x,T)= H2 + e cosnx]/T

T= 05

T-0O25

211~~~~~~~~~TzoL~~~~~~~-
o +r x

FIGURE 9

Periodic normal distribution.

where E is fixed arbitrarily small. The series may therefore be integrated term
by term with respect to either variable. We find that if

y(x, T) = Q + Een'T cos nx)/ ,

(4.2)
ay, 32y f

J y(x, T) dx=1.

When T is moderately large, y resembles a simple sinusoidal oscillation of low
amplitude around 1/27r to which y tends as T -X oo. When T is very small
indeed, the function y simulates a sequence of unit point masses repeated at
intervals of 27r. In fact, the formal Fourier expansion of the Dirac function is
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given by setting T = 0. It is intuitively clear that y(x, T) is positive because
it describes a diffusion process startiing with positive masses.

Because of its origin, it is not surprising that y(x, T) satisfies the convolution
theorem,

(4.3) f y(x -$, T1,) y(Q, 7'2) dS = y(x, T, + 1'2).
This theorem is in fact a particular case of a more general convolution theorem

which applies to all functions defined on a circle by uniformly and absolutely
convergent Fourier series. If

F(x) = eb + e cos [n(x -a)] 7~2 n=1

(4.4)
4(x) = g2 eno + eg- cos [n(x- an)]}/7r

then their convolution taken round the circle is

(4.5) F(x)*4(x) = eB' + ,2eBn cos [n(x - An)] 7

where Bn = bn + fln and An = an + an. The coefficients add like cumulants in
ordinary distribution theory.

4.3. Application to temporal phenomena. In order to employ the distribution
given above to temporal phenomena in which the period is the unit of time,
the substitutions, x = 27rt and T = k, are now made. The resulting density
function is

(4.6) R(t, k) = 1 + 2 E2 e-nk cos 27rnt,
n=1

for which R(t, oo) = 1 and

(4.7) f-1/2 R(t, k) dt = 1.

If now

(4.8) Q(t, k) = E e-n2k sin 27rnt
n=1 nr

it will be seen that f0o R(t, k) dt = t + Q(t, k).

The form of Q(t, k) is illustrated in figure 10. If k O-÷ 0, the curve becomes
serrated and t + Q is then a simple step function, being the cumulative curve
of a sequence of unit point masses spaced at unit intervals.

4.4. Advantage of standardized periodicfunctions. One of the main advantages
to be gained by using standardized periodic functions like R(t, k) is that they
can be used as modifiers of the vital coefficients ,B and ,u, to induce periodicity
into our models and yet enable us in simple cases to obtain results which are
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directly comparable with those which wvould arise if the coefficients were col-
stant. Indeed, constancy is included as a special case because R(t, I)1 and
Q(t,oo) = 0.
As a simple example, consider a populationl wvith a reproductive time lag due

Q(t ,K)

-n2K +0-5
=#Zjn2Ke s in 2Tnnt

n= 1

t

K=40O 0-5

FIGURE 10

Form of Q(t, k).

to the attainment of maturity at age a (an integer). The mortality rate of the
immature forms is taken to be mRo(t) = mR(t + a, K), say. The mortality rate
of the adults is 4R2(t) = AR(t + d, k), say. The birth rate (per adult) is
OR,(t) = ,BR(t + b, K), say. The adult population is denoted by N(t), and is
regarded as insulated against migration.
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The proportion of offspring surviving from birth at instant r to maturity
at T + a is

(4.9) p = exp {-m f|+a R(t + a, K) dt} = e-m,

which is indepeindent of T. The rate of enitry of recruits to the adult population
at time t is then
(4.10) pi3Rl(t - a) N(t - a) = pO3?(t) N(t - a).

The differenitial difference equationi satisfied by N is thei

(4.11) dIN(t) = _RN?2A (t) + p[3R1IV(t - a)
dt

or

(4.12) 1 dN = R2 + pOR, N(t-a)

Now because it is always possible to achieve an arbitrarily high degree of
approximation to a population system of this kind by means of a matrix rep-
resentation of the form Nt+1 = G8N, (see section 2) using a sufficiently fine
subdivision of the time scale, it is to be expected that N(t - a)/N(t) - positive
constant (say, g = e-ar). With this substitution we obtain

(4.13) log N(t) - const. + rt - MQ2 + p3gQl,
where r is the real root of r + A = 3e-a(r+m).
The asymptotic solution of the corresponding homogeneous hysterodifferential

equation with constant coefficients is perhaps more satisfactorily obtained by
employing the Laplace transform and taking the dominant term [1]. It will be
found that

(4.14) log N(t) const. + rt,

where r takes the same value as before.
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