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1. Introduction

The population trajectory with which this paper is concerned is the changes
in numbers of people which would result from certain birth and death rates,
specific by age and sex, when these are applied to a given initial age distribution.
Considering either sex, let the probability that a person aged x to x + 4 years
at last birthday will survive for five years be sLz+5/&L=; the age specific fertility
rates for age x to x + 4 be m.; the number of individuals alive at the time t
be 5K". (In general the superscript on the upper right in parentheses will refer
to time, that on the lower right to the initial age of the interval, that on the
lower left to the length of the interval.) This paper will estimate the path of
5K-P' subject to two restrictions: (a) that the age specific rates of birth and
death are constant; and (b) that their application is without any random varia-
tion, which is to say the argument will be entirely in terms of expected values.
The extension of the method to rates varying in time, and for probabilistic as
well as for deterministic models, is important, and one hopes that it will attract
the attention of the good minds needed to cope with it.
The conditions of birth and death set up in the preceding paragraph enable

us to show the relation between the population at time t + 1 and that at time t,
where t is in units of five years, as a set of linear, first order, homogeneous,
difference equations with constant coefficients

2 {['Kt + 6Ki(t51)]m16 + [5K(l) + sK2('o+1]m2o
(1.1) + + [6K3) + 5K4t3+1)]m4o} = 5Kot+°

5L5 5Ko() = K5(t+1)
6Lo

5L85 K8(tO) = &K8`5+1)
The project of which this is a part received initial financing from the Ford Foundation

and the Population Council, and a grant from the National Science Foundation has supported
the actual computation.
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In the first equation of the set, the age specific fertility rates m15, and so forth,
are applied to the average number of persons alive in age groups over the
period, [rK(l') + JK('5+1)]/2; the factor allowing for the children born over five
years surviving to the end of the period is &Lo/to. The survivorships in the left
side of the equations below the first can be substituted for 6KV5+", and so forth,
on the left side of the first equation. When this is done the entire set can be
written as
(1.2) LK(t) = t+l,
where K(') is the (vertical) vector of unknowns at time t,

5K")'F 6Kgt 1

(1.3) K() =

and L is the matrix of the coefficients in the difference equations, fully specified
in the set (1.1).

There are two approaches to (1.2). The most obvious is to think of it as an
equation in scalars, and solve by

LK(O) = K()
(1.4) LKM = K(2,

This is what is done in the conventional population projection, when the initial
age specific rates are held constant, and each point of time is obtained from
the preceding. It can be somewhat broadened by writing the solution in the form
K(') = LtK(o), which enables one to study separately the effects of the pattern
of fertility and mortality contained in L and LI, in separation from the initial
age distribution K(M).
Another approach to the solution of (1.1) or (1.2) is to analyze the matrix

of the coefficients in terms of its latent roots. This is what is done in factor
analysis. In our case it will turn out that the first three roots contain most of
the meaning; this being so, there may be some simplification, and hence under-
standing, to be gained by the more analytical form of solution.

It is convenient to express the following argument in terms of a partition of L.
In fact L and its powers may be expressed as four square submatrices by a
split at a point which corresponds to the highest age of reproduction

(1.) L=FM 01, L [ 3f2 01) L FMt 01.
(1.5) L = [A B]' L2 = LAM + BA B2J L' = [A, B]-

The important feature of the partitioning is that the upper right submatrix is
zero, and it remains zero at all positive integral powers of L, which may be
verified by application of the rules of matrix multiplication. If now the age vec-
tor {K} also be split at the same highest age of reproduction, say as
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(1.6) _K{D
then K(t) = LtK(o) becomes

(1.7) K)=fKt=FKAlt 0] K(lM 1VK(0)
D(t) A, B' D(O)J tAtK(O) + BtD()J'

from which it is evident that the A, B, and D, referriing to the ages beyond
reproduction, never affect the younger ages. Our subsequent work will be in
terms of the matrix Mt and the vector {K(t)} covering the fertile ages onily,
rather than Lt and {K(t)} which deal with the whole of life. We start with a
numerical example in 15 year age groups, so that a 3 X 3 matrix will describe
ages 0 to 44 inclusive.
To derive a usable 3 X 3 matrix we start with M, compiled in five year age

groups, and cube it to obtain M3 (this is the only part done by computer).
Table I shows M3 for Taiwan females, 1961, in which a partitioning into nine
submatrices is sketched out. In parallel to the notation introduced earlier, where
MKM°) = KM, we write the same symbols with a bar below when they refer to
the 3 X 3 matrix, that is to the condensation into 13 year age groups; thus
MK_ = K(1) stands for

[nii M12 Mu] kL FIC( 1

(1.8) MM2 M22 M23 I2 = 2 I.

M31 M32 -M33J L3_ Li3l
To find the mij from the mW3) and the ki, we have two conditions to meet.
The first is that each age group in the population as projected by the small

matrix be equal to the sum of the corresponding three ages in the population
as projected three times by the large one, for example, k(l) = k + V) + k ,

since both sides stand for the population under 15 years of age, 15 years in time
after the zero point.
The second condition is that the cohorts already alive at time zero each move

into the following 15 year age group over the 15 year period of projection by
the small matrix. This last is met by making each element of the small matrix
depend only on the corresponding partition of M3; thus, mul will depend only
on the upper left 3 X 3 of M3 for example. The equation representing the two
conditions is

(1.9) mjl k1 + m132k2 + m13k3 + m23k1 + m22k2 + m233k3
+ m3Pki + m33k2 + m3)k3 = mLl(kI + k2 + k3),

and on solving for mil we have

(1.10) mll = {[m(3) + m23) + m3l)]k, + [m32)+ m)2 + m(3,JI
+ [m1332 + m23 + m33]k3}/(ku + k2 + k3).

A similar argument applies to the remainder of the mij.
The construction of the 3 X 3 matrix now requires only a decision on the k's.

One possibility is the use of the initial given population in five year age groups,



84 FIFTH BERKELEY SYMPOSIUM: KEYFITZ

TABLE I

TAIWAN FEMALES 1961
MATRIX M, M2, AND MJ

Power 1, Year 5

F~90.71 0. 0.0524870 0.3402551 0.6842584 0.6814820 0.4660676 0.2739481 0.0933682-
0.9787761 0. 0. 0. 0. 0. 0. 0. 0.
0. 0.9955489 0. 0. 0. 0. 0. 0. 0.
0. 0. 0.9958544 0. 0. 0. 0. 0. 0.
0. 0. 0. 0.9931794 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.9914279 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.9898080 0. 0. 0.
° 0. 0. ° 0. 0. 0.9871292 0. 0.

_0O. 0. 0. 0. 0. 0. 0. 0.9830797 0.
K(@) 941917. 865780. 628352. 451027. 452576. 397055. 350994. 291156. 231310.
K(1)1031655. 921926. 861926. 625747. 447951. 448696. 393008. 346476. 286230.

Power 2, Year 10

F0. 0.0522534 0.3388445 0.6795913 0.6756403 0.4613174 0.2704221 0.0917884 0.
0. 0. 0.0513731 0.3330335 0.6697358 0.6670183 0.4561758 0.2681338 0.09138660.9744195 0. 0. 0. 0. 0. 0. 0. 0.
0. 0.9914218 0. 0. 0. 0. 0. 0. 0.
0. 0. 0.9890620 0. 0. 0. 0. 0. 0.
0. 0. 0. 0.9846657 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.9813232 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.9770683 0. 0. 0.

_0. 0. 0. 0. 0. 0. 0.9704267 0. 0.
K(2)1175256. 1009759. 917822. 858353. 621479. 444111. 444123. 387950. 340614.

Power 3, Year 15

0.0511444 0.3373363 0.6767740 0.6710320 0.4573630 0.2676660 0.0906070 0. 0.
0. 0.0511444 0.3316529 0.6651677 0.6613006 0.4515265 0.2646827 0.0898403 0.
0. 0. 0.0511444 0.3315512 0.6667547 0.6640493 0.4541454 0.2669403 0.0909798

0.9703799 0. 0. 0. 0. 0. 0. 0. 0.
0. 0.9846596 0. 0. 0. 0. 0. 0. 0.
0. 0. 0.9805837 0. 0. 0. 0. 0. 0.

0. 0. 0. 0.9746300 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.9686928 0. 0. 0. 0.

L0- 0. 0. 0. 0. 0.9605361 0. 0. 0.
K(')1413211. 1150312. 1005265. 914017. 852499. 616152. 439584. 438407. 381386.

but this offends the objective of making projection matrices depend only on
the mortality and fertility, and not on the initial conditions of age distribution.
Hence we have chosen the k's for (1.10) as those age distributions which would
be reached by the continued operation of the matrix M. These, known as the
stable population (see below), are only available to within a multiplicative con-
stant, and it is seen from (1.10) that they are only needed to within such a
constant.
The M resulting from equations such as (1.10) is

-0.44324 1.62701 0.46043-
(1.11) M = 0.97791 0 0

L 0 0.96872 0

for Taiwan females 1961. The interpretation to be put on the elements of the
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matrix is essentially unchanged: ml, or 0.44324 is the number of girl children
alive at the end of the 15 year period expected to be born to a girl child now
0 to 14 years of age at last birthday; n2l or 0.97791 is the probability of survival
over the next fifteen years of the same girl randomly selected out of the initial
population 0 to 14 years of age. The method is perfectly general and could be
used conveniently on the computer to proceed from single years of age to five
year age groups, that is, to condense a 45 X 45 matrix to one 9 X 9.
Thinking again of the set of linear recurrence equations in the k's, that is,

KM = MK°), the condition of stability is met if the operation of the equa-
tions (or multiplication by the equivalent matrix) on a distribution of a popula-
tion among the several ages produces the same distribution for the next time
period except for a multiplicative constant X. The three equations, MK(') =
K(t+1), are written out for the Taiwan females 1961 as

0.44324i0" + 1.62701iA') + 0.46043)=k='+1),
(1.12) 0.97791iA') = 0+1',

0.96872k" =
At stability,
(1.13) -+) = Xi('k)'0'+ = Xk"', +1) =

Substituting these values for the three 0(t+1) on the right side of (1.12), and then
transposing the terms in X to the left side, the condition for consistency of the
three simultaneous equations in ki, k2, and ks is seen to be the determinantal
relation

0.44324 - X 1.62701 0.46043
(1.14) 0.97791 -X 0 = 0.

0 0.96872 -X

Values of X satisfying (1.14) will give nontrivial solutions in the k's. Expanding
the determinant in (1.14), we have

(1.15) X3 - 0.44324X2 - 1.59107T - 0.43617 = 0,

which is referred to as the characteristic equation of the system of recurrence

equations and of the matrix of its coefficients. The roots of (1.15) are

X= 1.6045,

(1.16) X2 =-0.8357,

X3 =-0.3256.

That there can be at most one positive root of (1.15) follows from Descartes'
rule of signs; in fact, the equation which emerges in such analysis always has
only one change of sign, after the term in the highest power of X, whether the
matrix be 3 X 3, 9 X 9, 45 X 45, or some other size.

Eiitering X, in the equations (1.12) and (1.13) and solving for the stable age
distribution &i, k2, ks gives, to within a multiplicative constant,
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Fi(k = (1,130,000]
(1.17) {K1} = ik2 = q 688,800 ,

Li3J = ( 415,800J
anld similarly, by entering X2 and X3 in the same equations (1.12) and (1.13),

+0.69841 +0.1117)
(1.18) {K2} = -0.8172k, {K3} = .-0.3358 .

1+0.9473J +.0oooJ
It turns out, however, that although the set of X's is complete, the columns of
{Ki}, {K2}, and {K3} derived from them are not the only stable vectors. There
is a set of rows, again one corresponding to each X, which we will call [ffl],
[H2], and [H3], such that
(1.19) [ft]M = Xi[fif, i = 1, 2, 3.
For the first of the X's the equations are M[ffl] = X1[ff1] or

0.44324h, + 0.97791h2 = 1.6045h1,
(1.20) 1.62701hi + 0.96872h3 = 1.6045h2,

0.46043h, = 1.6045h3.
The resulting [fI,], a horizontal stable vector, is

(1.21) [fLI] = [2.5744 3.0566 0.7388],

and the other two horizontal stable vectors are

(1.22) [f2] = [0.6984 -0.9137 -0.3848],
[3] = [1.0 -0.7862 -1.4141].

We continue with the arithmetic, promising to show later the logic that lies
behind it. Corresponding to each of X1i, X2, and X3, a stable 3 X 3 matrix can be
found, called a spectral component Z, which enjoys the same property as the
eigenvectors MZ = XZ. In fact Zi is nothing more than the column vector {Kt}
multiplied by the row vector [HIi] and normalized by dividing by the scalar
[Hi] {Ki},

(1.23) Zi = Wi} il i = 1, 2, 3.

For Taiwan females 1961
[0.5467 0.6491 0.15691

(1.24) Z= {-}[Kf] - 0.3332 0.3956 0.0956 .
[ffi]{} L0.2011 0.2388 0.0577

Applying the same argument to the negative roots, we secure for each of them
a stable row vector and a stable column vector, and hence stable matrices Z2
and Z8
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[ 0.5607 -0.7336 -0.3089-
Z2= -0.6561 0.8583 0.3615 ,

o0.7605 -0.9950 -0.4190
(1.25) [-0.1074 0.0845 0.1520-

Z3 = +0.3229 -0.2539 -0.4571 .
L-0.9616 0.7562 1.3613

The stable matrices Zi, Z2, and Z3 constitute a useful decomposition of M;
not only is

(1.26) M = XlZl + X2Z2 + X3Z3

but, much more generally, for any polynomial function,f,

(1.27) f(M) = f(X1)Z1 + f(X2)Z2 + f(X3)Z34
This is Sylvester's theorem. Applying it to f(M) = Mt,
(1.28) M' = XIZI + X22 + 3Z-3
Since jX21/1iX1 = 0.203, and 1Xsj/|Xj, = 0.521, we can expect that Mt will be
approximated more and more closely by 1'Zl as t increases.

Let us check this by calculating MI directly. When one wants to find a high
power of a scalar it is easiest to square it, then square the square, and so forth,
and so with a matrix. The first, second, fourth, eighth, sixteenth, and thirty
second powers of M for Taiwan females 1961 are shown below (table II). Some

TABLE II

POWERS OF M FOR TAIWAN FEMALES 1961

0.4432 1.6270 0.4604 [1.7875 1.1671 0.2041
M = [0.9779 0 0 M2= .4334 1.5910 0.4502

0 0.9687 0 0.9473 0 0

3.8942 3.9430 0.89021 -24.127 28.314 6.812
M4 = 1.8908 3.0372 0.8048 | M8 = 14.468 17.570 4.283

L1.6933 1.1056 0.1933J 9.011 10.248 2.434

[1053.2 1250.4 302.2 M32 F2029 2409 582
= 641.9 762.2 184.2 1000 1237 1468 355

L387.6 460.2 111.2 `10 L747 887 214

suggestion of stabilization appears in M4. By M32 the result is stable to about
four significant digits; the ratio of the jth element in the ith row of M33 to the
corresponding element of M32 is

(33) 1.6044 1.6043 1.6045 i 1, 2, 3,(1.29) M(32-= 1.6043 1.6044 1.6042' j 1, 2, 3._tj 1.6044 1.6044 1.6043
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Thus any two elements of M32 would provide the dominant root. If we know
rn?¶2) and m2i3, then taking account of the zeros in M,

(1.30) XI = =31)= 2M'32) 0. = 1.6043,

as appears in the second row first element of the array above. Conversely,
knowing Z4, we could have multiplied it by X32 = (1.6044)32 = 3,715,500 and
found

F2031 2412 583
(1.31) X2Z = 100011238 1470 355

L 747 887 2141
which is nearly identical to M32 as shown in table II.

2. General analysis of the matrix

Having worked a simple arithmetical example, we are now ready to retrace
our steps and go over the same argument in more systematic fashion. Again
we think of a characteristic or stable vector, a fixed point in the space of the
age distribution expressed in homogeneous coordinates, defined by the property
of being unaltered when premultiplied by the matrix operator M. To find it,
we solve the set of linear equations M{K} = X{K}, or set out more fully,

m11k1 + m12k2 + *-- + mi.k. = Xkl,
m21kl + m22k2 + *-- + m2.k. = Xk2,

(2.1)

mn.1k + Mn2k2 + * * + k = xk.,
where the m's are the elements of M, and k1, k2, *. *, kn, are the number of per-
sons in the first age group, the second age group, and so forth, represented as
a vertical vector

(2.2) {K} = {j.

lknJ
A set of k's which are not all zero may be found which satisfy the set (2.1)

only if the several equations are consistent, the condition for which is

Mll- X M12 ... Mln
M21 M22 - X ... m2n

(2.3) =0,

Mnl Mn2 ... Mn2
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or more compactly

(2.4) IM - NIl = 0.

This is a polynomial equation of the nth degree in X, for which there are n
roots, in our application all distinct. We call them XI, X2, *-- , X,n. The latent
roots for Mexico females 1960 and United States females 1962 are given in
table III.

TABLE III

LATENT ROOTS FOR MEXICO FEMALES 1960 AND UNITED STATES FEMALES 1962

Mexico 1960 United States 1962

Xi 1.1830 1.0988
X2, X3 0.4406 -4 0.7918i 0.3060 -- 0.7910i
X4, X5 0.0042 -- 0.7353i 0.0264 -i 0.5330i
X6, X7 0.4478 -- 0.4925i -0.4095 -- 0.3910i
Xs, Xo 0.5885 -- 0.1747i -0.4723 -d 0.1619i

When we replace X by one of these, say Xi, in the set (2.1), we could find a
solution in the k, say the vector,

(2.5) {Ki . i = ly 2, *- , n,

tkniJ

where one of the elements of the vector is arbitrary. It is also easy to show that
the elements of {KE} are proportional to the transpose of the cofactors of
IM - XII. But these general methods are not necessary for the particular matrix
M with which we are dealing.
The elements of the stable vectors are readily calculable by recurrence from

M and the several Xi. For the vector equation M{Ki} = Xi{Ki} may be expressed
as a series of recurrence relations. Because the relevant nonzero elements of M
are in the subdiagonal, it follows from row by column multiplication that
(mj+l j)(ki) = Xikj+l for the jth row (j > 1), or

(2.6) kj+ im J+k

the subdiagonal elements being survivorships

(2.7) mj+l j= &L6(j) .
6L5(j_j,

If we arbitrarily take k1 as rLo/sXi, and apply the recurrence equation suc-
cessively, then the stable vector corresponding to Xi is
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I5L5Xtl/2|5L1)X-3/2(2.8) {Ki} {LloX 5/2}.

The n vectors {K1} are the stable populations. If they are arraliged side by
side to constitute a matrix

-kil 7k12 ... kin-
k2, k22 ... k2n

(2.9) K = [KiK2...K] =Kn

Lknl kn2 ... knnj
then, because of the fact that the column components of the matrix K are {Kij,
and M{Ki} = {Ki} Xi, it follows that

-X 0 ... O-
0 X2 ... O

(2.10) MK=K ]

LO O . . . Xn_j
or MK = KA, where A stands for the diagonal matrix of the roots of the char-
acteristic equation. For the right side of (2.10) on the row by column rule will
give a matrix whose first column is X,K,, whose second is X2K2, and so forth,
and from (2.1) the columns of MK will be equal to these. From (2.10) on mul-
tiplying on the right by K-1, we obtain
(2.11) MKK- = KAK-
orM = KAK-1.
The factoring of M indicated in (2.11) is important in what follows. For

M2 = (KAK-')(KAK-') = KA(K-'K)AK-' = KA2K-1, and repeating the pro-
cedure proves that Mt = KAtK-1, if t is integral > 0. Thus, to raise M to a
power, given K aind K-1, oIne need merely raise A, whose powers are calculated
simply as

XII 0 ... O

(2.12) At =

_O O - n_j

This applies only when the roots are distinct, a condition found empirically to
hold in demographic work.

All of what precedes can be said also for multiplication on the left by a new
set of vectors [Hi], horizontal this time. Corresponding to (2.1) we would have
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[H]M = X[H], and the condition of consistenicy would be the same equation in
X, IM- XI = 0, producing the same latent roots. For each latent root Xi we
could find [Hi] determined, except for a constant multiplier, by the set of linear
equations (2.13), or more compactly [Hi]M = Xi[Hi]. These give a new set of
vectors [Hi] not related in any obvious way to the {Ki}, but in fact a very
simple relation is shown below to connect the two sets.

Recurrence equations may be obtained for the successive elements of the
stable horizontal vector as for the vertical vector, but the equations are some-
what more complicated. For any X the equations are (where only mrj and mi+,,i
can be nonzero)

~Mll M12 M13 ... mln
m21 M22 m23 ... m2n

M31 M32 M33 ... m3n
(2-13) [hi h2h3.-.*. h.] . =X[hi h2 h3... hnl ,

-Mnl Mn2 Mn3 ..**Mnn_

so that the typical equation is

(2.14) h,im, + hi+lmi+X,i = Xhi.
One of the h is at our choice, and it seems convenient to put hi = 1. Then

(2.15) h = Xhi- ml
- Xhi-mnii

Mi+i i 6L6i/sL5(i-,)'

6t5(i-) (Xh - rmni).sLsi
Given the life table and the matrix M this is easily worked out for any one of
the X. For complex X, [H,] will consist of complex elements, except for the
arbitrary hi.
There is a stable row vector correspoildinig to each of the X's, and if the [Hi]

are arrayed one beneath the other to make

(2.16) H=

HnJ
then

Hi' MllMn 2 *- mi.-.-xi 0 ... ° Hi,

1H2 M2in1 M22, ... M2n2J 10
2..0

(2.17) KJL.J [
Hn

Mnl Mn2
..

n 0 0

or HM = AH. Multiplying by H-' on the left gives
(2.18) 3. = H-'AH,
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this being the same equation as (2.11), since it will be shown that HK = I.
We only know the stable vectors to within a multiplicative constant. If the

column vector for the ith root as originally calculated is {Ki}, and the row vec-
tor for the same root is [7i], then it may be convenient to write

(2.19) [Hi] = [77i] {K} =_K___=_{Ki_ l
([17iR]{K.})112'7] Ki I

the expression within the square root being a scalar quantity. The product
[Hi] {K,} in (2.19) equals one.
The stable vectors possess an important orthogonality property: if i #d j, then

[Hj]{K,} = 0. For
(2.20) M{Ki} = Xi{Ki}
by the definition of the stable column vector. Multiplying (2.20) on the left by
[Hi] gives
(2.21) [Hj]M{Ki} = Xi[Hj].
But it is also true by the definition of the stable row vector that

(2.22) [Hj]M = j[Hj].
Multiplying (2.22) on the right by {Ki} gives

(2.23) [Hj]M{Ki} = Xj[Hj]{Ki}.
Equations (2.21) and (2.23) are the same on the left and differ by having scalars
Xi and Xi respectively on the right, where X,i z! X)j. Subtracting (2.23) from (2.21)
and dividing through by Xi - Xj gives

(2.24) [Hj] {Ki} = 0.

Among other uses, this result enables us to express any age distribution, say
the arbitrary column of frequencies {K'}, as a sum of the stable vectors each
multiplied by a constant

(2.25) {K'} = c1{K1} + c2{K2} + *-- + cn{K.}1
To find ci premultiply (2.25) by the normalized row vector [Hi]; the result is

(2.26) [Hi] {K'} = ci.
In terms of the unnormalized vectors

(2.27) ci= [H7i]{K'}
[Hei] {K,}

Equation (2.25) makes the analysis of changes easy in age distribution under
a given regime of fertility and mortality. Multiplying (2.25) by M on the left,
(2.28) M{K'} = c,M{Kl} + c2M{K2} + *-- + c.M{K.}

= Xici{Ki} + X2c2{K2} + *-- + X.c. {K.},
since M{K1} = X1{Kj} and so forth; by a t-fold repetition of the multiplication,
(2.29) Mt{K'} = XVcm{K1} + V2c2{K2} + *-- + X!c.{K.},



TRAJECTORY OF A POPULATION 93

where t is integral. Insofar as X1I is larger than any other of the X's in absolute
value, the first term on the right side of (2.29) will be of increasing relative mag-
nitude. The age distribution will approach closer and closer to cl1? {KK}, which is
called "the" stable population, irrespective of the shape of the original age
distribution {K'}. This is the ergodic theorem-the tendency of a population
to forget its past ages under the action of a fixed regime of mortality and fertility.
Strong ergodicity-to which the preceding discussion has been confined-con-
cerns the way in which the forgetting takes place under a fixed regime of mortal-
ity and fertility. Weak ergodicity [7], due to Coale and Lopez, which we will
study elsewhere, concerns a given changing regime of mortality and fertility.
By virtue of the orthogonality of the stable vectors, HK is a diagonal matrix,

and when the vectors are in their normal form, HK = I.. For the ith row of
H is [Hi], and the jth column of K is Kj; the product of these is unity when
i = j and zero when i #d j. Hence K-1 = H, and recalling (2.11), M = KAK-1,
we have, on substituting H for K-1,
(2.30) M = KAH.
Now A may be looked on as a sum of matrices each containing one element,

x1 0 _- O- -O O ... O- -O O*- O-
O O ... O 0 1X2 ... O O O ... O

(2.31) A= + + +

LO O ... OLo --.. O_ L O *-..1X

Substituting this sum for A in (2.30), gives
(2.32) M = XI{Kj} [HI] + X2{K2} [H2] + *-- + X.{K} [H.]

= 'XlZl + 1X2Z2 + ***+ )nZn,
all other components vanishing.
The same argument that we have here used to decompose M = KAK-1 also

applies to M' = KA'K-1. Substituting K-1 = H, we have M' = KA'H, and
decomposing Al into n matrices each with a single nonzero term Xt gives

(2.33) M' = KAtH = E Xt{Kj [Hi].

Equation (2.33) may be multiplied by a constant scalar, say ct. If a number of
equations such as (2.33) for values t, t - 1, *-- ,1, are each multiplied by an
arbitrary constant and then added, we have

(2.34) ctM' + ct_1M'-1 + *-- + coIl
= E2 (ct¶4 + ct_X`- + *- + co) {Kt}[Hi],

which is to say that f(M), any polynomial function of the matrix M, may be
expanded as

(2.35) f(M) = f(X1)Zl + f(X2)Z2 + * + f(Xn)Zn,
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where the Zi = {Ki [Hi] are known as spectral operators. If f(X) is the char-
acteristic function jM - XIj, then

(2.36) f(X1) = f(X2) = f(X.) = 0,

and hence, f(M) = 0. This proves, for distinct X, the remarkable Cayley-
Hamilton theorem that a matrix satisfies its own characteristic equation.

Spectral operators are idempotent: they are equal to powers of themselves.
The Zi satisfy this condition, for

(2.37) Z2 = ({Ki}[Hi])({Ki}[Hi]j) = Ki([Hi]{Ki})[Hi]
= {Kij [Hi],

since we normalized according to (2.19) to make [Hi]{Ki} = 1. By repeating
the argument, Zf = Zi, where k is any positive integer.

Spectral operators are orthogonal. Zi and Z, also satisfy the condition

(2.38) ZiZj = {Ki} [Hi]{K} [Hj] = {Ki} ([Hi]{Kj})[Hj] = O

since the expression [Hi] {K,} in parentheses is zero by the orthogonality prop-
erty (2.24), with i $ j.

Finally the sum of the spectral operators is the unit matrix. The total of
our Z's,

(2.39) E Zi = {Kl}[H] + {K2} [H2] + - + {K} [H.],

turns out to be equal to KH. For KH may be broken down by separating out
the column components of K and the row components of H into separate
matrices

(2.40) K = [K10 ... O] + [O K2 ... ]+ *+ [O0 ... K.],

(2.41) Hj:{ +{: + +{J}

and multiplying; .{Ki} [Hi] Zi are the only nonzero terms in the product;
this proves that E Zi = HK, and we know that HK = I.

3. Iterative methods of calculation

The first of the spectral components Z1 of the 11 X 11 matrix for United
States males 1960 is shown in table IV. Since Xi is larger in modulus than the
other roots, and since by (2.33)

(3.1) Mt-Xt=Z + X272 +X3Z3 +
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Z1 is computed readily by dividing Mt by M to obtain

(3.2) Vt = zi + T2 Z2+
so that if t is sufficiently large, Z1 = Mt/X1. For the United States male 1960
data x128 is 600156.21. It is easy to verify arithmetically on Z1 the property
Z2 = z1.
From the fact that Zi = {Ki}[Hi], its rows are proportional to one another;

it can have no nonvanishing determinant of second or higher order. The same
applies to any other matrix which is related to it by multiplication of all terms
by a constant. In particular, Mt = V4Z1 must be of rank unity when t is large
enough. The computer program for the calculation of Z1 was controlled by the
magnitude of the second order determinant in the upper left of MI, this deter-
minant being evaluated for each of the successive squarings of M. When t was
such that

(3.3) mil m12
became less than 0.000001 the program stopped the squaring, calculated X1 by

(3.4) E-im +,/Em'>),
and then divided all terms of MI by X1 to obtain Z1.
We are likely to be interested in more than the first latent root and its cor-

responding vectors, and it happens that similar methods can be applied to find
the next pair of roots. To use the analogue of Z, = M'/Xt, it is first necessary
to remove Xi. We need merely take M - Xi{Kl} [HI], that is to say, subtract
the first of the spectral components from the original matrix, to obtain

(3.5) )X2{K2} [H2] + X3{K3} [H3] + *-- + X.{Kn} [H.] = N,
say. There are again a number of options, but suppose we proceed by taking N
to a high power. It is not necessary to go as high as for the first latent root,
because the drop in absolute value from the third to the fourth roots is greater
than from the first to the second. The ratio of the third to the fourth roots for
Australian females in 1962 is 1.673, which is more than the square of 1.238, the
ratio of the first to the second. Less than half the power we used before will
do-say the 32nd.
Though N is a real matrix, most or all of its roots are complex, and we will

have to pick them up in pairs. We use Sylvester's theorem again to express a
special matrix function in terms of the corresponding function of the latent
roots. If

(3.6) N = M - ZI = X2Z2 + X3Z3 + ** + )Z

then

(3.7) f(N) = f(X2)Z2 + f(X3)Z3 + * + f(Xn)Zn,
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wheref is any polynomial function. Hence choosingf(N) = (N - X2I) (N - X3)Nt,
we have
(3.8) (N - X2I)(N - X3I)Nt

(2- X2)(X2 - XS))2Z2 + (X3 - 2)(X3- X3)X.Z3
.0,

where t is large enough that X4, and so forth, are negligible compared to X2'
and Xt.
Expanding the left side of (3.8), we can write it in the form

(3.9) Nt+2 - (X2 + X3)Nt+' + X2X3Nt = 0.

Equation (3.8) applies not only to entire matrices, but to each term separately
as well. If the jth element of the ith row of Nt is nW, then (3.8) gives us
(3.10) ng+2)-(X2 + s3)n(+1) + (X2X3)n(f) = 0.
Any two elements will provide two equations such as (3.10) so that we may
solve for the two unknowns X2 and 3X. Suppose that we take the first and second
elements of the first row, then

(311) nitl2)- (X2 + X3)nljl+l) + (X2X3)nV = 0,

(3.11) %j*n+2)- (X2 + Xs)n(12+1) + (X2X3)n(1'2 = 0,

or
(t+2) I t2))

fl 2 fl(lj+i) flj+2)(3.12) X2 + X3 = Xjt2+X)7 X 2\3 = nt+l)I
Inlt2l nil2 Ini2l ) nil2

Thus, in order to find X2 and X3, we seek the roots of the quadratic X2 -ax + b
where a is the ratio of determinants given for X2 + X3 in (3.12) and b is the
ratio of determinants for X23. To put the same matter more compactly, the
quadratic whose roots are X2 and X3 is

X2 X 1
(3.13) ni *+2) n(+l) nil = 0

n"1+2) n"1+1) ('l'
where nil and n1'2) may be any two elements of the power of N. For the first
three roots simultaneously, the equation must be

x3 x2 x 1

(3.14) mpi+3) m(t+2) mPi+l) m(!.j
-m"2~~~(+3) m"2+2) m"1+1) ('l'

Equation (3.13) for Australian females 1962 comes out to
x2 x 1

(3.15) .02008 -.04730 - .06963 = 0,
.05166 .02016 .04749
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or x- .724lx + .7803 = 0. Thus, x = -.3620 i .8058i. The directly cal-
culated X2 and X3 are .3616 i .8046i.
The calculation of the second and third spectral components is not difficult

from this point. The matrix from which the first spectral component has been
subtracted out, N = M -XZ = 1 - Xi{K1} [H1], when raised to the tth
power is equal to Nt X2Z2 + X3Z3; to the (t + 1)th power it is Nt+1 .-X2+'Z2 +
3+1Z3. Subtracting the first of these multiplied by X3 from the second gives

(3.16) Nt+' - X3Nt = (X'2+1-3)Z2
so that

(3.17) Z2=Nt - X3Nt
2 - X3X2

One can work out from (3.17) the ith row and jth column of Z2, and fill in the
remainder of Z2 with

(3.18) Z)z(2)j

taking advantage of the fact that since Z2 is of rank one all of its determinants
of the second order must vanish, including

(3.19) IZ(2) Z(2) | = Z()Zj - ZtZ (2) 0.

Equation (3.18) is simply a rearrangement of (3.19).

4. Direct machine computation of the spectral decomposition

Tables V to XIII show an actual computation, the data being the officially
published estimate of the age distribution of U. S. females for mid-1963 and the
births and deaths of the calendar year 1963. The original matrix which cor-
responds to the conventional population projection of (1.1) is table V; the num-

TABLE V

PROJECTION MATRIX M FOR THE UNITED STATES 1963 FEMALES UP TO AGE 45

~0. 0. 0.092137 0.366868 0.495232 0.346164 0.186575 0.078636 0.017885
0.995736 0. 0. 0. 0. 0. 0. 0. 0.
0. 0.998591 0. 0. 0. 0. 0. 0. 0.
0. 0. 0.998065 0. 0. 0. 0. 0. 0.
0. 0. 0 0.997004 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.996028 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.994866 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.992404 0. 0.

_0. 0. 0. 0. 0. 0. 0. 0.988459 0. _J

ber of women exposed to the risk of childbearing was the arithmetic average
of the number of women in each age group at the beginning and end of the
five year period; the subdiagonal elements are 5Lz+5/5Lz from an abridged life
table.
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Table VI exhibits the odd numbered latent roots and their powers up to the
fifteenth. Each even numbered root is the conjugate of the next following odd
root, and this is true for powers and other functions of the roots. Inspection of
the table shows how rapidly the roots, after the first, and especially after the

TABLE VI

LATENT ROOTS Xi OF THE PROJECTION MATRIX FOR THE UNITED STATES FEMALES 1963
WITH THEIR POWERS UP TO THE FIFTEENTH

Each even numbered root is the conjugate of the following odd numbered root.
All roots beyond the first are complex.

Powers of Eigenvalues

Dominant Number 3 Number 5
1 1.089351 0.311546 -0.783686i 0.019564 -0.532708i
2 1.186686 -0.517103 -0.488308i -0.283395 -0.020844i
3 1.292717 -0.543782 0.253116i -0.016648 0.150559z
4 1.408223 0.028950 0.505011i 0.079878 0.011814i
5 1.534049 0.404790 0.134646i 0.007856 -0.042321i
6 1.671118 0.231631 -0.275279i -0.022391 -0.005013i
7 1.820434 -0.143569 -0.267288i -0.003109 0.011830i
8 1.983091 -0.254198 0.029240i 0.006241 0.001887i
9 2.160282 -0.056279 0.208321i 0.001128 -0.003288i
10 2.353306 0.145725 0.109007i -0.001729 -0.000665i
11 2.563576 0.130827 -0.080242i -0.000388 0.000908i
12 2.792634 -0.022126 -0.127527i 0.000476 0.000224i
13 3.042159 -0.106834 -0.022391i 0.000129 -0.000249i
14 3.313978 -0.050831 0.076749i -0.000130 -0.000074i
15 3.610086 0.044311 0.063746i -0.000042 0.000068i

Number 7 Number 9
1 -0.406258 -0.391959i -0.469528 - 0.157209i
2 0.011414 0.318473i 0.195742 0.147628i
3 0.120191 -0.133856i -0.068698 -0.100088i
4 -0.101295 0.007270i 0.016521 0.057794i
5 0.044001 0.036750i 0.001329 -0.029733i
6 -0.003471 -0.032177i -0.005298 0.013752i
7 -0.011202 0.014433i 0.004650 -0.005624i
8 0.010208 -0.001473i -0.003067 0.001910i
9 -0.004724 -0.003403i 0.001740 -0.000414i
10 0.000586 0.003234i -0.000882 -0.000079i
11 0.001030 - 0.001543i 0.000402 0.000176i
12 -0.001023 0.000223i -0.000161 -0.000146i
13 0.000503 0.000310i 0.000053 0.000094i
14 -0.000083 -0.000323i -0.000010 -0.000052i
15 -0.000093 0.000164i -0.000004 0.000026i

third, diminish when taken to powers. The fifteenth power of the real root is
X15 = (1.08935)'5 = 3.610; the absolute value of the fifteenth power 'of the
second and third roots is 1X)51 = 11M351 = 0.07763; the absolute value of the
fifteenth power of the largest of the remaining roots is IX51 = 1X751 = 0.000188.
Next in the sequence of calculations is the set of vertical stable vectors {Ki},
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i = 1, 2, 3, * , 9 (table VII). These might have been obtained by the evalua-
tion of the cofactors in IM - XII, but it was easier to program the recurrence
equations (2.6) relating each element to the preceding one. The same program-
ming served for the real and complex roots; no special instruction is required

TABLE VII

UNITED STATES FEMALES 1963
STABLE VERTICAL VECTORS {Kj), j = 1, 2, ..., 9

The assembly of the (K,) is the matrix K = [1K)l}K2} ... (Kg I]. The vectors of this and
the succeeding table have been normalized so that HK = I with maximum error of 0.00002.

1KI) fK21 {Ks}

'0.953246I 1.046381 -0.062243i' 1.046381 0.062243i
0.871327 0.388111 -1.175221i 0.388111 1.175221i
0.798732 -1.123362 -0.941121i -1.123362 0.941121i
0.731800 -1.526125 0.823965i -1.526125 -0.823965i

10.669763 0.238689 2.036 0.238689 -2.036422i
10.612386 2.339125 0.626532i 2.339125 -0.626532i
10.559270 1.706194 -2.291171i 1.706194 2.291171i
0.509498 -1.763717 -2.861749i -1.763717 2.861749i
,0.462310, -3.880584 0.681882i, -3.880584 -0.681882i,

{K4) f{K.) K61

0.393668 -0.349736i' 0.393668 0.349736if' 0.849793 -0.280286i'
-0.625858 -0.758827i -0.625858 0.758827i -1.421988 0.684958i1
-1.463577 1.119454i -1.463577 -1.119454i 0.968951 2.618488i

1.993980 2.815341i 1.993980 -2.815341i 1.981539 -4.521115i
5.398902 -3.533609i 5.398902 3.533609i -8.062657 3.316461i

-6.227818 -10.323288i -6.227818 10.323288i 14.300550 5.666204i
I- 19.680001 10.908085i - 19.680001 - 10.908085i - 11.203706 -24.685070i

18.949112 37.358612i 18.949112 -37.358612i -15.956632 44.905494i
70.516446 -32.571008i, 70.516446 32.571008i 74.701472 -37.186530i

{K7} {Ks} {K91
0.849793 0.280286X' 0.516277 -0.571833i( 0.516277 0.5718331'

-1.421988 0.684958i -1.349616 0.760813i -1.349616 -0.760813i
0.968951 -2.618488i 3.068173 -0.590800i 3.068173 0.590800i
1.981539 4.521115i -6.242596 -0.834318i -6.242596 0.834318i

- 8.062657 -3.316461i 11.386013 5.583910i 11.386013 -5.583910t
14.300550 -5.666204i1 -{18.152471 - 17.923239i - 18.152471 17.923239i

-11.203706 24.685070i 23.151608 45.728608i 23.151608 -45.728608ij
-15.956632 -44.905494i -14.901487 - 101.642290i -14.901487 101.6422901
74.701472 37.186530iJ -36.214495 201.853754i, -36.214495 -201.853754i)

for the latter in Fortran IV other than the interpretation of certain symbols as
complex numbers. Table VIII shows the horizontal stable vectors [Hi], i = 1,
2, 3, *- , 9. As these were originally calculated from (2.15), they contained
arbitrary elements; the program found [T7i] {Ki} and then divided each element
of [7i] and {RK} by the square root of the scalar product, ([Hi] {Ki})112, to
normalize, that is, to find [Hi] and {Ki}.
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TABLE VIII

STABLE HORIZONTAL VECTORS [Hi], j = 1, 2, *--, 9, DISPLAYED VERTICALLY AS [Hj'

[H1]' [H,]' [H3]'

0.203602 0.169287 0.100739i 0.169287 -0.100739i
0.222744 -0.026319 0.164755i -0.026319 -0.164755i
0.242989 -0.137510 0.030746i -0.137510 -0.030746i
0.246418 -0.082694 -0.107676i -0.082694 0.107676i
0.194323 -0.003495 - 0.135716i -0.003495 0.135716i
0.111297 0.021519 -0.095289i 0.021519 0.095289i
0.051024 0.022897 -0.047941i 0.022897 0.047941i
0.017730 0.013220 - 0.015908i 0.013220 0.015908i
0.003343 0.003312 -0.002547i 0.003312 0.002547i

[H4]' [H5]' [H6]'

0.078613 0.003199i 0.078613 -0.003199i 0.088880 0.105023i
-0.000167 0.042120i -0.000167 -0.042120i -0.077604 -0.007863i
-0.022472 0.000736i -0.022472 -0.000736i 0.034658 -0.027262i
-0.008091 -0.012275i -0.008091 0.012275i -0.011606 0.015012i
-0.022527 -0.005741i -0.022527 0.005741i -0.033878 -0.049325i
-0.036459 -0.013752i -0.036459 0.013752i -0.010963 -0.045431i
-0.020707 -0.020906i -0.020707 0.020906i -0.008550 -0.022310i
-0.003966 - 0.012129i -0.003966 0.012129i -0.004398 -0.013989i
0.000204 -0.002632i 0.000204 0.002632i 0.000284 -0.004350i

[H7]' [H8]' [H,]'

0.088880 -0.105023i 0.093229 0.060131i 0.093229 -0.060131i
-0.077604 0.007863i -0.053455 -0.013635i -0.053455 0.013635i
0.034658 0.027262i 0.027281 -0.002004i 0.027281 0.002004i

-0.011606 -0.015012i -0.021125 -0.000311i -0.021125 0.000311i
-0.033878 0.049325i -0.024308 -0.025311i -0.024308 0.025311i
-0.010963 0.045431i -0.030900 -0.021803i -0.030900 0.021803i
-0.008550 0.022310i -0.014410 -0.015516i -0.014410 0.015516i
-0.004398 0.013989i -0.008252 -0.006247i -0.008252 0.006247i
0.000284 0.004350i -0.002504 - 0.003129i -0.002504 0.003129i

The program then assembled the vertical vectors into K and the horizontal
ones into H, and worked out HK and showed it to six places of decimals (not
reproduced here); there were only two off diagonal elements which did not show
zero to five places, and the diagonal elements were equally close to unity. This
verifies the calculation up to this point.
The first spectral component is Z1 = {K,} [HI]; its upper left term is obtained

by multiplying the first elements of {K,} and [H1], that is, (0.953246) (0.203602) =
0.194083, as shown in table IX, and similarly for its other elements. Only the
odd spectral components, with the imaginary parts of each element separately
displayed, are given below; the second component is the same as the third,
except that the signs of the imaginary part are reversed, and similarly for the
other even numbered components.
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Representation of any arbitrary age distribution in terms of the several
stable vectors is now readily carried through. The cj which are the weights on
the several vertical vectors when the age distribution of mid-1963 {K'}, is
expanded as

(4.1) {K'} = cl{Kl} + C2{K2} + * + c9{K9}
are given as table X; much the heaviest weight is on the {K1}, with the next

TABLE X

UNITED STATES FEMALES 1963
COEFFICIENTS C1 OF THE VERTICAL STABLE VECTORS

IN TH1E EXPANSION OF THE AGE DISTRIBUTION
9

{K'} = E2 C,K,

Ci 10563.038818 0.
C2 -55.489507 321.165070i
C3 -55.489507 -321.165070i
C4 51.007514 34.245224i
C5 51.007514 -34.245224i
CG 9.147722 59.698857i
C7 9.147722 -59.698857i
Cs 27.375117 29.359058i
C9 27.375117 -29.359058i

heaviest on {K2} and {K3}. Table XI shows the comparison of the actual age
distribution with the stable age distribution taken from the dominant root alone;
the high birth rates of the 1920's, the low ones of the 1930's, and the high ones
after World War II account for the divergencies.

TABLE XI

UNITED STATES FEMALES 0-44 1963
DECOMPOSITION OF AGE DISTRIBUTION

(in thousands)

9
Age [KI} ci,Kfl E cl[Kil

2

0-4 10168 10069 99
5-9 9841 9204 +637
10-14 8848 8437 +411
15-19 7663 7730 -67
20-24 6284 7075 -791
25-29 5522 6469 -947
30-34 5760 5908 -148
35-39 6289 5382 907
40-44 6271 4883 1388

The projection of the same set of ages through one, two, and so forth, cycles
of five years each is given in table XII. For each of these points of time the
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age distribution is broken down into its several stable components; underneath
{K'} are shown the several X'ic{Ki} for odd i, the values for each even i being
the conjugates of the next following odd component. The conjugate terms which

TABLE XIIa

UNITED STATES FEMALES 1963
EXPANSION )¶c, {Kj} OF THE PROJECTED AGE DISTRIBUTION

IN TERMS OF THE VERTICAL STABLE VECTORS
AGE DISTRIBUTION FOR POWER NUMBER 1

(in thousands)

M{K'} 6X5cdK5}

10332.' 2.94867 - 16.99166i
10125.1 31.92012 4.33936i
9827. -5.92887 60.05378i
8831. -112.77073 -6.96657i
7641. 5.28009 -211.25302i
6260. 394.81927 -4.62754i
5494.] 35.67371 736.03989i
5716. -1366.91512 116.65806i
6216.) -309.19679 -2525.00507i

Xici{Ki} X7C7I K7)

10968.8667 -28.83569 9.96298i
10026.240) 24.40195 -47.96229i
9190.897 27.84397 91.02839i
8420.7131 -147.17172 -81.64017i
7706.868 287.16903 -76.70719i
7046.633 -270.66454 449.20200i
6435.4423 -206.38340 -900.91016i
5862.719 1360.76651 887.86477i
5319.733J -2794.14963 535.55664i

X3c3IKaI x9cIKg)

-277.93436 -75.93741i - 14.44050 -5.09432i
-37.91038 -338.06706i 30.78978 0.49448i
355.40239 -189.59271i -59.19912 18.76960i
363.88443 307.96510i 101.14082 -73.76244i

-179.40571 534.25397i -145.95839 205.49875i
-664.62184 36.19712i 147.16822 -485.20786i
-329.31755 -712.80093i 29.13303 1018.33508i
636.29776 -669.97761i -703.38704 - 1916.86337i
1005.22473 402.94263i 2546.45999 3182.80139i

are omitted are taken into account by doubling the real parts of the terms which
are shown, after the first, and omitting the imaginary parts. When this is done
the decomposition accounts exactly for the number of individuals projected, age
by age. For example, the projection through one period, M{K'}, in table Xlla
shows at 0-4, the first age group, 10,332. This is equal to 10,969 + 2(-277.9 +
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2.9 - 28.8 - 14.4), obtained from the top row of the expansion. The point of
the exhibit is that the several complex roots have considerable importance at
the outset, since the actual age distribution is far from the real stable vector;

TABLE XIIb

AGE DISTRIBUTION FOR POWER NUMBER 2

M21K'} BXic5tKs}

11682.) -8.99390 -1.90321i
10288. 2.93610 - 16.91920i
10110. 31.87514 4.33325i
9808. -5.91739 59.93758i
8804. -112.43287 -6.94570i
7611. 5.25912 -210.41391i
6228.1 392.79226 -4.60378i
5452. 35.40273 730.44892i
5650., -1351.13950 115.31241i

x'JC, I}K, c7 K71

11948.945' 15.61981 7.25487i
10922.0941 -28.71273 9.92050i
10012.113 24.36756 -47.89471i
9173.112 27.79009 90.85225i
8395.484 - 146.73078 -81.39558i
7676.256 286.02839 -76.40250i
7010.455 -269.27493 446.89577i
6386.558 -204.81568 -894.06682i
5795.057J 1345.06183 877.61790i

X2c3IK.j{,R9}K9g)
-146.10042 194.15527i 5.97935 4.66210i
-276.74924 -75.61361i -14.37893 -5.07260i
-37.85696 -337.59072i 30.74639 0.49378i
354.71467 - 189.22584i -59.08457 18.73328i
362.79423 307.04242i 100.83780 -73.54144i

-178.69310 532.13190i -145.37864 204.68250i
-661.20966 36.01128i 146.41267 -482.71680i
-326.81605 -707.38648i 28.91172 1010.59979i
628.95423 -662.24538i -695.26923 - 1894.74080i

first the stable vectors beyond the third lose their importance, and by the end
of 15 five year cycles or 75 years only the first vector is of consequence.
The latent roots beyond the first are responsible for waves in the trajectory,

and it is easier to portray the waves in terms of the logarithms of the X's. If r

be defined by the equation elr = X, or r = 0.2 ln X, and r = x + iy, then the
equation (2.29) becomes
(4.2) M'{K'} = Vlc1{Kl} + ?4C2{K2} + *--

= e5rltci {K,} + e5rc2C{K2} + *-
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and we can see what happens with the increase of t by breaking up XI in terms
of r = x + iy
(4.3) V' = e5rt = e6zt(cos 5yt + i sin 5yt).
The real part x is negative and determines the rate of attenuation of the waves,

TABLE XIIC
AGE DISTRIBUTION FOR POWER NUMBER 5

M56K'j} I{K, }

(15514.' 0.43628 - 1.32243i
14460. 2.49846 0.72373i
13141. -1.18307 4.72695i
I11593. -8.92563 -1.88876i
10223. 2.91752 - 16.81215i
10021. 31.59216 4.29478i
9690. -5.84606 59.21506i
8658. -110.56506 -6.83031i
7427. 5.13245 -205.34596i

),Ile, I{K I wX7C7 {K7}

15446.606' 0.05585 -0.91874i
14119.178 0.48010 1.78763i
12942.829 -2.06279 -3.11126i
11858.239 5.93396 4.62671i
10852.987 -14.28795 -5.04051i
9923.228 30.47344 0.48940i
9062.536 -58.37234 18.50746i
8256.013 99.16262 - 72.31972i
7491.369J -141.87711 199.75260i

X35C3 {K31} 5A?Cg{K. }

30.30301 -142.55841 2.84847 -1.21883i
169.63020 -28.93227 -2.12311 5.03573i
106.03543 173.99350 -3.48222 -9.01827i

-144.99136 192.68142 15.50124 7.19979i
-274.99816 -75.13518 -28.53106 9.85773i
-37.52087 -334.59368 24.15124 -47.46951i
350.43877 - 186.94482 27.45509 89.75707i
356.76724 301.94164 -144.29319 -80.04338i

-174.38918 519.31517 279.13922 -74.56229i

and y determines their period, in time units of five years; r is on an annual
basis and X on a five year basis. Table XIII shows eleven of the roots r = x + iy
corresponding to each of the X.
The record for the United States female population from 1920 to 1963 is pulled

together in table XIV. The real root ri is known as the intrinsic rate of natural
increase; from its definition it may be shown to be the rate, compounded mo-
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mently, at which the female population would increase if the age specific rates
of mortality and fertility of the year in question were maintained long enough
for the initial age distribution to wear off. The absolute value of x, the (negative)
real part of the first pair of complex roots r2, r3, shows a steady fall from 1940

TABLE XIId

AGE DISTRIBUTION FOR POWER NUMBER 10

M10{K' } ),I°c5 K5

(23759.' -0.05254 -0.02885i
21804. 0.05026 -0.10005i
19894. 0.19075 0.08720i
18023. -0.15005 0.36290i
16442. -0.68858 -0.25555i
15289. 0.42995 - 1.30326i
114238. 2.46009 0.71261i
12859. -1.15768 4.62553i
,11235. -8.65006 -1.83044i

X0citIKi}I70C7 IK71

r23695.846' 0.17013 0.05105i
121659.508 -0.27848 0.14355i
119854.932 0.17820 -0.52479i
118191.117 0.41748 0.88647i
i 16649.011 -1.61767 -0.61476i
15222.716 2.80719 -1.20116i
13902.372 -2.09051 4.95840i
12665.127 -3.40750 -8.82478i
,11492.126 15.02265 6.97751i

X31°C3 I K3 I x9°0cg Kgs

31.46132 -53.62598 -0.02724 -0.00288i
72.56017 11.12862 0.05379 -0.01190i
19.49444 84.70806 -0.09525 0.05720i

-84.63487 58.47288 0.14545 -0.17029i
-101.19973 -67.44146 -0.16885 0.41813i

29.86378 -140.49211 0.05504 -0.90542i
167.02544 -28.48800 0.47272 1.76018i
103.76033 170.26028 -2.01853 -3.04451i

-140.51487 186.73253 5.75075 4.48387i

to 1960; this corresponds to the narrowing of the ages within which reproduc-
tion takes place; the narrower this range of ages, the less rapid the attenuation
of waves arising from disturbances in the age distribution. The complex part y
has tended to increase, on the other hand. The period of the waves caused in
later generations by a disturbance in the age distributions, which is equal to
2ir/y years, tends to diminish. The upward trend in y shown in table XIV, from
0.2088 in 1920 to 0.2420 in 1960, corresponds to a decline in the wave length
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from 27r/0.2088 = 30.09 years to 27r/0.2420 = 25.96 years. These periods are
related to the mean age of women at childbearing. The mean length of genera-
tion T may be defined as the length of time that the population would increase
in the ratio of the net reproduction rate Ro when subject to the intrinsic rate r.

TABLE XIIe

AGE DISTRIBUTION FOR POWER NUMBER 15

M15 {K'J}X 5c5 {K5}

(36391.' -0.00163 0.00200i
33282. -0.00384 -0.00291i
30451. 0.00519 -0.00739i
I27822. 0.01418 0.00920i
25477. -0.01622 0.02713i
23415.] -0.01578 - 0.02843i
21469. 0.04949 -0.09851i
19468. 0.18666 0.08533i
X17466. -0.14542 0.35170i

X1%5c K 1 X75c71K71

(36350.584' 0.00561 0.00850i
I33226.742 -0.01753 -0.00392i
30458.434 0.02713 -0.01654i
I27906.062 -0.01421 0.05435i
25540.395 -0.04859 -0.08650i
23352.389 0.16766 0.05031i
21326.916 -0.714135i
19428.923 0.17438 -0.51353i
,17629.482 0.40459 0.85910i

Al5c3{K3} B9~~~~)5cgfKgj

19.95576 -17.47109 -0.00012 0.00081i
27.87318 14.27472 -0.00028 -0.00162i
-3.51449 36.91380 0.00157 0.00291i
-42.13248 12.27343 -0.00487 -0.00455i
-31.88385 -40.92579 0.01221 0.00558i
31.00531 -52.84870 -0.02685 -0.00284i
71.44598 10.95773 0.05296 -0.01172i
19.07617 82.89056 -0.09320 0.05597i

-82.02183 56.66757 0.14096 -0.16503i

The reproduction rate Ro is defined as the number of girl children expected to
be born to a girl aged 0, at the given age specific rates of birth m. and survivor-
ship L./4o,

(4.4) Ro LXM.
x to

If ert = Ro, then T = ln Ro/r and works out to 28.99 years for 1920 and 25.90
for 1960.
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5. Bibliographical note

The population projection on which this argument is based goes back to A. L.
Bowley [2] and P. K. Whelpton [9]. The suggestion for representing the opera-
tion of projection as a matrix seems first to have been made in print by H.
Bernardelli [1] and E. G. Lewis [6]. An elegant and complete exposition of the
theory and its application to a population of rats is due to P. H. Leslie [3],
[4], [5]. A. J. Coale and A. Lopez [7] extended the theory to prove ergodicity
when the projection matrix varies. E. M. Murphy [8] has set up and analyzed
matrices which recognize parity and incorporate the two sexes.

The Fortran program which delivered the "matrix package" of tables VI to
XIV was worked out by Susan Borker.
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