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1. Introduction

The population trajectory with which this paper is concerned is the changes
in numbers of people which would result from certain birth and death rates,
specific by age and sex, when these are applied to a given initial age distribution.
Considering either sex, let the probability that a person aged z to z + 4 years
at last birthday will survive for five years be sL..s/sL.; the age specific fertility
rates for age £ to = + 4 be m,; the number of individuals alive at the time ¢
be ;K. (In general the superscript on the upper right in parentheses will refer
to time, that on the lower right to the initial age of the interval, that on the
lower left to the length of the interval.) This paper will estimate the path of

¥ subject to two restrictions: (a) that the age specific rates of birth and
death are constant; and (b) that their application is without any random varia-
tion, which is to say the argument will be entirely in terms of expected values.
The extension of the method to rates varying in time, and for probabilistic as
well as for deterministic models, is important, and one hopes that it will attract
the attention of the good minds needed to cope with it.

The conditions of birth and death set up in the preceding paragraph enable
us to show the relation between the population at time ¢ + 1 and that at time ¢,
where ¢ is in units of five years, as a set of linear, first order, homogeneous,
difference equations with constant coefficients

52%: {[5K(1% + 5K{l5+1)]m15 + [5K(2l5 + 5K§to+l)]m20

(1.1) + -0+ KB 4+ K P mag} = sKEHY
sLs

{4 t+1
2K = K
5440

sLgs
B KQ = K.
sLso
The project of which this is a part received initial financing from the Ford Foundation
and the Population Council, and a grant from the National Science Foundation has supported
the actual computation.
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In the first equation of the set, the age specific fertility rates ms, and so forth,
are applied to the average number of persons alive in age groups over the
period, [(K{ 4+ sK"V]/2; the factor allowing for the children born over five
years surviving to the end of the period is ¢Lo/f. The survivorships in the left
side of the equations below the first can be substituted for ¢K{"?, and so forth,
on the left side of the first equation. When this is done the entire set can be
written as

(1.2) LE® = K@+y,

where K is the (vertical) vector of unknowns at time ¢,
KO
BK )

(1.3) Ko ={"

®
85
and L is the matrix of the coefficients in the difference equations, fully specified
in the set (1.1).
There are two approaches to (1.2). The most obvious is to think of it as an
equation in scalars, and solve by

LE® = KW
LR® = R,

This is what is done in the conventional population projection, when the initial
age specific rates are held constant, and each point of time is obtained from
the preceding. It can be somewhat broadened by writing the solution in the form
K® = L:K®, which enables one to study separately the effects of the pattern
of fertility and mortality contained in L and L¢, in separation from the initial
age distribution X©,

Another approach to the solution of (1.1) or (1.2) is to analyze the matrix
of the coefficients in terms of its latent roots. This is what is done in factor
analysis. In our case it will turn out that the first three roots contain most of
the meaning; this being so, there may be some simplification, and hence under-
standing, to be gained by the more analytical form of solution.

It is convenient to express the following argument in terms of a partition of L.
In fact L and its powers may be expressed as four square submatrices by a
split at a point which corresponds to the highest age of reproduction

M0 0 M0
(1.5) L_[A B]’ Lz_[AM-}-BA B2:|’ L"[A, Bt]’

The important feature of the partitioning is that the upper right submatrix is
zero, and it remains zero at all positive integral powers of L, which may be
verified by application of the rules of matrix multiplication. If now the age vec-
tor {K} also be split at the same highest age of reproduction, say as

(1.4)
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(1.6) K- {g}

then K® = LtK® becomes

- K® KO MU
(1.7) K® = D(”} = I: A, ] D(o)} {ALI((O) + B‘D“’)JL’

from which it is evident that the A, B, and D, referring to the ages beyond
reproduction, never affect the younger ages. Our subsequent work will be in
terms of the matrix M* and the vector {K(} covering the fertile ages only,
rather than Lt and {K®} which deal with the whole of life. We start with a
numerical example in 15 year age groups, so that a 3 X 3 matrix will describe
ages 0 to 44 inclusive.

To derive a usable 3 X 3 matrix we start with M, compiled in five year age
groups, and cube it to obtain M? (this is the only part done by computer).
Table I shows M? for Taiwan females, 1961, in which a partitioning into nine
submatrices is sketched out. In parallel to the notation introduced earlier, where
MK® = K® we write the same symbols with a bar below when they refer to
the 3 X 3 matrix, that is to the condensation into 15 year age groups; thus
MEK® = KO stands for

my me M ||k ki
(1.8) Moy Me M || ke | =] K |
Mg Maz Mas || ks ks

To find the m;; from the m{y’ and the k;, we have two conditions to meet.

The first is that each age group in the population as projected by the small
matrix be equal to the sum of the corresponding three ages in the population
as projected three times by the large one, for example, ki = k® + k¥ + £k,
since both sides stand for the population under 15 years of age, 15 years in time
after the zero point.

The second condition is that the cohorts already alive at time zero each move
into the following 15 year age group over the 15 year period of projection by
the small matrix. This last is met by making each element of the small matrix
depend only on the corresponding partition of M3; thus, my, will depend only
on the upper left 3 X 3 of M3 for example. The equation representing the two
conditions is

(1.9) mll)kl + m/(:%)k2 + 7,”’(3)]{;3 + m )kl + WL(S)]‘I2 + m(3)
+ m§3)k1 + m )kz -+ m(s) ?"_111(]01 + k2 + ka),
and on solving for m;; we have
(1.10) mn = {[m(3) + m(3) + mé?i)]kl + [m(3) §3) (3)]k2
+ [mB + mE + miP Ik} / (k1 + ke + ka).

A similar argument applies to the remainder of the m,;.
The construction of the 3 X 3 matrix now requires only a decision on the k’s.
One possibility is the use of the initial given population in five year age groups,
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TABLE I

TarwaN FEMALEs 1961
MaTtrix M, M? anp M3

Power 1, Year 5

0. 0. 0.0524870 0.3402551 0.6842584 0.6814820 0.4660676 0.2739481 0.0933682
0.9787761 0. 0. 3 0. 0. 0 0. 0.
0. 0.9955489 0. 0. 0. 0. 0. 0. 0.
0. 0. 0.9958544 0. 0. 0. 0. 0. 0.
0. 0. 0. 0.9931794 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.9914279 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.9898080 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.9871292 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.9830797 0.
K® 941917, 865780. 628352. 451027, 452576. 397055. 350094. 291156. 231310.
K11031655. 921926. 861926. 625747, 447951, 448696, 393008. 346476. 286230.
Power 2, Year 10
0. 0.0522534 0.3388445 0.6795913 0.6756403 0.4613174 0.2704221 0.0917884 O.
0. 0. 0.0513731 0.3330335 0.6697358 0.6670183 0.4561758 0.2681338 0.0913866
0.9744195 0. 0. 0. 0. 0. 0. 0. 0.
A 0.9914218 0. 0. 0. 0. 0. 0. 0.
0. 0. 0.9890620 0. 0. 0. 0. 0. 0.
0. 0. 0. 0.9846657 0. . 0. 0. 0.
0. 0. 0. 0. 0.9813232 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.9770683 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.9704267 0. 0.
K®1175256.  1009759. 917822, 858353. 621479, 444111. 444123. 387950. 340614
Power 3, Year 15
[C0.0511444 0.3373363 0.6767740 | 0.6710320 0.4573630 0.2676660 | 0.0906070 O. 0. =
0. 0.0511444 0.3316529 | 0.6651677 0.6613006 0.4515265 | 0.2646827 0.0898403 O.
0. 0. 0.0511444 | 0.3315512 0.6667547 0.6640493 | 0.4541454 0.2669403 0.0909798
0.9703799 O. 0. 0. 0. 0. 0. 0. 0.
0. 0.9846596 0. 0. 0. 0. 0. 0. 0.
0. 0. 0.9805837 | 0. 0. 0. 0. 0. 0.
0. 0. 0. 0.9746300 O. 0. 0. 0. 0.
0. 0. 0. 0. 0.9686928 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.9605361 | 0. 0. 0. _
K®1413211. 1150312. 1005265. | 914017. 852499. 616152, 439584. 438407. 381386.

but this offends the objective of making projection matrices depend only on
the mortality and fertility, and not on the initial conditions of age distribution.
Hence we have chosen the k’s for (1.10) as those age distributions which would
be reached by the continued operation of the matrix M. These, known as the
stable population (see below), are only available to within a multiplicative con-
stant, and it is seen from (1.10) that they are only needed to within such a

constant.

The M resulting from equations such as (1.10) is

0.44324 1.62701 0.46043

(1.11)

M

0.97791
0

0
0.96872

for Taiwan females 1961. The interpretation to be put on the elements of the
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matrix is essentially unchanged: my, or 0.44324 is the number of girl children
alive at the end of the 15 year period expected to be born to a girl child now
0 to 14 years of age at last birthday; ms or 0.97791 is the probability of survival
over the next fifteen years of the same girl randomly selected out of the initial
population 0 to 14 years of age. The method is perfectly general and could be
used conveniently on the computer to proceed from single years of age to five
year age groups, that is, to condense a 45 X 45 matrix to one 9 X 9.

Thinking again of the set of linear recurrence equations in the k’s, that is,
K® = MK®, the condition of stability is met if the operation of the equa-
tions (or multiplication by the equivalent matrix) on a distribution of a popula-
tion among the several ages produces the same distribution for the next time
period except for a multiplicative constant N\. The three equations, MK =
K@D, are written out for the Taiwan females 1961 as

0.44324k{ + 1.62701k + 0.46043kY = kf+?,

(1.12) 0.97791k{" = kD,
0.96872k° = kY,

At stability,

(1.13) EHHD = NP, ESHD = MNP, ESTY = AEP.

Substituting these values for the three k“+V on the right side of (1.12), and then
transposing the terms in A to the left side, the condition for consistency of the
three simultaneous equations in ki, ks, and k; is seen to be the determinantal
relation
0.44324 — X 1.62701 0.46043
(1.14) 0.97791 -\ 0 = 0.
0 0.96872 -

Values of A satisfying (1.14) will give nontrivial solutions in the 4’s. Expanding
the determinant in (1.14), we have

(1.15) N — 0.44324\2 — 1.59107\ — 0.43617 = 0,

which is referred to as the characteristic equation of the system of recurrence
equations and of the matrix of its coefficients. The roots of (1.15) are

M= 1.6045,
(1.16) A = —0.8357,
)\3 = —'03256

That there can be at most one positive root of (1.15) follows from Descartes’
rule of signs; in fact, the equation which emerges in such analysis always has
only one change of sign, after the term in the highest power of A, whether the
matrix be 3 X 3, 9 X 9, 45 X 45, or some other size.

Entering \; in the equations (1.12) and (1.13) and solving for the stable age
distribution ki, ks, ks gives, to within a multiplicative constant,
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o ks 1,130,000
(1.17) {Ki} =<k 688,800 ¢,
ks 415,800

and similarly, by entering \; and \; in the same equations (1.12) and (1.13),

+0.6984 +0.1117
(1.18) (K2} =4 —08172}, {Ki} =< —0.3358".

+0.9473 +1.0000

It turns out, however, that although the set of N’s is complete, the columns of
{K1}, {K:}, and {K;} derived from them are not the only stable vectors. There
is a set of rows, again one corresponding to each A, which we will call [H,],
[H.], and [H3], such that

(1.19) - [HIM = \[H], 1=12,3.
For the first of the N's the equations are M[H,] = M[H,] or
0.44324h, + 0.97791h, = 1.6045h,,
(1.20) 1.62701h, + 0.96872h; = 1.6045h,,
0.46043h, = 1.6045h;.
The resulting [Hi], a horizontal stable vector, is
(1.21) - [Hi] = [2.5744 3.0566 0.7388],

and the other two horizontal stable vectors are

[H:] = [0.6984 —0.9137 —0.3848],
[Hs] = [1.0 —0.7862 —1.4141].

We continue with the arithmetic, promising to show later the logic that lies
behind it. Corresponding to each of \;, \;, and \;, a stable 3 X 3 matrix can be
found, called a spectral component Z, which enjoys the same property as the
eigenvectors MZ = M. In fact Z; is nothing more than the column vector {K}
multiplied by the row vector [H.] and normalized by dividing by the scalar
[H{K},

(1.23) Zi= %]}T[Kﬂ—f i=1,23

(1.22)

For Taiwan females 1961

0.5467 0.6491 0.1569
(1.24) Z, = t{g:]} {[Ilé‘; [0.3332 0.3956 0.0956:|.

0.2011 0.2388 0.0577

Applying the same argument to the negative roots, we secure for each of them

a stable row vector and a stable column vector, and hence stable matrices Z,
and Z;
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0.5607 —0.7336 —0.3089]
Z,=| —0.6561 08583  0.3615 |,
0.7605 —0.9950 —0.4190

T —0.1074  0.0845  0.15207]
Zs = | +0.3229 —0.2539 —0.4571 |.
| —0.9616  0.7562  1.3613

(1.25)

The stable matrices Z, Z., and Z, constitute a useful decomposition of M ;
not only is

(1.26) M = MZi 4+ NZo + NZs
but, much more generally, for any polynomial function f,

(1.27) FM) = fM)Z1 + f(\)Z2 + f(Ns)Zs.
This is Sylvester’s theorem. Applying it to f(M) = M¢,
(1.28) : Mt = NZy + NoZp + NoZs.
Since [Ne|/[M| = 0.203, and |As|/|M| = 0.521, we can expect that M will be
approximated more and more closely by \iZ, as ¢ increases.

Let us check this by calculating M* directly. When one wants to find a high
power of a scalar it is easiest to square it, then square the square, and so forth,

and so with a matrix. The first, second, fourth, eighth, sixteenth, and thirty
second powers of M for Taiwan females 1961 are shown below (table IT). Some

TABLE II

Powers oF M ror TaiwaN FEMALEs 1961

[0.4432 1.6270  0.4604 | 17875 11671  0.2041 ]
M =]09779 0 0 M2 =|04334 15910 0.4502
| 0 o0.9687 0 | [ 0.9473 0 o |
(3.8042 3.9430 0.8902 ] [24.127 28314 6.812 |
Mt =|1.80908 3.0372 0.8048 M®=|14.468 17.570 4.283
—  |1.6933 1.1056 0.1933_ | 9011 10248 2434 |
[1053.2 12504 3022 | mn  [2020 2409 582 ]
M*=| 6419 7622 1842 jooo = | 1237 1468 355

| 387.6 460.2 111.2 | | 747 887 214

suggestion of stabilization appears in M4 By M?? the result is stable to about
four significant digits; the ratio of the jth element in the ith row of M* to the
corresponding element of M32 is

e 1.6044 1.6043 1.6045
(1.29) By = 1.6043 1.6044 1.6042> =
T 16044 1.6044 1.6043 J

—
~

MW
ww
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Thus any two elements of M32 would provide the dominant root. If we know

m{t? and m§3?, then taking account of the zeros in M,

m® _ mamf® _ 0.9779mf}?
(150 NPT e T w
as appears in the second row first element of the array above. Conversely,
knowing Z;, we could have multiplied it by A? = (1.6044)32 = 3,715,500 and

found

2031 2412 583
(1.31) MPZ, = 1000 ] 1238 1470 355 |,

= 1.6043,

747 887 214

which is nearly identical to 32 as shown in table II.

2. General analysis of the matrix

Having worked a simple arithmetical example, we are now ready to retrace
our steps and go over the same argument in more systematic fashion. Again
we think of a characteristic or stable vector, a fixed point in the space of the
age distribution expressed in homogeneous coordinates, defined by the property
of being unaltered when premultiplied by the matrix operator M. To find it,
we solve the set of linear equations M {K} = M {K}, or set out more fully,

muky + muks + -+ 4+ muk. = Ny,
Mmaky + Mmasks + -+ A Makn = Ny,
2.1) ’ : )

mnlkl + mn2k2 + e + mnnkn = )\km

where the m’s are the elements of M, and ki, ks, - - - , k. are the number of per-
sons in the first age group, the second age group, and so forth, represented as
a vertical vector

ky

ks
(2.2) {K} =

kn
A set of k’s which are not all zero may be found which satisfy the set (2.1)
only if the several equations are consistent, the condition for which is

mn — N My e My,
Mma1 Moy — N -+ Mo,
2.3) =0,

Mp1 Mapa ccr Map — A
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or more compactly

(24) M — \I| = 0.
This is a polynomial equation of the nth degree in A\, for which there are n
roots, in our application all distinct. We call them Ay, N, ¢ -+, A\n. The latent

roots for Mexico females 1960 and United States females 1962 are given in
table III.

TABLE III

LaTeNT Roots For MEXIco FEMALEs 1960 aND UNITED STATES FEMALES 1962

Mexico 1960 United States 1962
M 1.1830 1.0988
Az, A3 0.4406 3= 0.7918¢ 0.3060 =+ 0.7910:
Ay Ns 0.0042 =+ 0.7353:¢ 0.0264 = 0.5330¢
Ae, A7 0.4478 + 0.4925¢ —0.4095 == 0.3910¢
Az, Mo 0.5885 == 0.1747¢ —0.4723 + 0.1619¢

When we replace A by one of these, say \;, in the set (2.1), we could find a
solution in the k, say the vector,

kli
(2.5) {Kt} =3 r 1=12-,m,
km'

where one of the elements of the vector is arbitrary. It is also easy to show that
the elements of {K,} are proportional to the transpose of the cofactors of
|M — AI|. But these general methods are not necessary for the particular matrix
M with which we are dealing.

The elements of the stable vectors are readily calculable by recurrence from
M and the several \;. For the vector equation M {K;} = \:{K.} may be expressed
as a series of recurrence relations. Because the relevant nonzero elements of M
are in the subdiagonal, it follows from row by column multiplication that
(m;41,5)(k;) = Nikjqa for the jth row (j > 1), or

(26) s = T

the subdiagonal elements being survivorships

@.7) My = B0

sLs (-1

If we arbitrarily take ki as sLo/ \/x‘, and apply the recurrence equation suc-
cessively, then the stable vector corresponding to A; is
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sLoh /2
sLshi 2

(2.8) (K} = {slaod ™2 L.

The n vectors {K,} are the stable populations. If they are arranged side by
side to constitute a matrix

kn ki -0 ke

k2l k22 ctt k2n
(2.9) K = [Kle' . Kﬂ] = ,

knl kn? cre knn

then, because of the fact that the column components of the matrix K are {K},
and M{K,} = {K.;}\, it follows that

)\1 0 0
0 )\2 0
(2.10) MK =K\ .
0 0 - X\,

or MK = KA, where A stands for the diagonal matrix of the roots of the char-
acteristic equation. For the right side of (2.10) on the row by column rule will
give a matrix whose first column is M\ K;, whose second is A.K3, and so forth,
and from (2.1) the columns of MK will be equal to these. From (2.10) on mul-
tiplying on the right by K-, we obtain
2.11) MKK-' = KAK!
or M = KAKY,

The factoring of M indicated in (2.11) is important in what follows. For
M? = (KAK-Y)/(KAK™') = KA(K'K)AK—! = KA?K—1, and repeating the pro-
cedure proves that M¢ = KA'K-1, if ¢ is integral > 0. Thus, to raise M to a

power, given K and K-, one need merely raise A, whose powers are calculated
simply as

N O - 0
0 N -+ 0
(2.12) A= )
0 0 -+ N\

This applies only when the roots are distinct, a condition found empirically to
hold in demographic work.

All of what precedes can be said also for multiplication on the left by a new
set of vectors [H,], horizontal this time. Corresponding to (2.1) we would have
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[H]IM = A[H], and the condition of consistency would be the same equation in
N\, |M — M| = 0, producing the same latent roots. For each latent root \; we
could find [H,] determined, except for a constant multiplier, by the set of linear
equations (2.13), or more compactly [H,]M = \J[H;]. These give a new set of
vectors [H,] not related in any obvious way to the {K,}, but in fact a very
simple relation is shown below to connect the two sets.

Recurrence equations may be obtained for the successive elements of the
stable horizontal vector as for the vertical vector, but the equations are some-
what more complicated. For any \ the equations are (where only m,; and m 4,
can be nonzero)

my M Mz - Mg
Moy Mo Moz **° May
mz Mzgz Mgz - Maa
(2.183) [hihahs--- h,]| . | =N~ haha -+ hyl,
[ Ma1 Mpz Mp3 ¢ Man_]

so that the typical equation is
(214) hlmn + hi+1m,-+1,,~ = )\hl
One of the h is at our choice, and it seems convenient to put Ay = 1. Then

My — mii . My — my

2.15 = = ’
(2.15) hivt My, sLsi/sLs(i—1)

= B—I:l(;:n (Xh, - ml,-).
Given the life table and the matrix M this is easily worked out for any one of
the N\. For complex \,, [H,] will consist of complex elements, except for the
arbitrary h;.

There is a stable row vector corresponding to each of the N's, and if the [H]
are arrayed one beneath the other to make

/Hl
(2.16) H=<- 1
H,
then
H) [mu mg - muy [\, 0 -+ 0 H,
H2 Moy Mo cer . Moy 0 N e O Hz
(2.17) =" . .
Hn Mn1 Mpz - mnnJ _0 0 LRI W H”

or HM = AH. Multiplying by H-! on the left gives
(2.18) . M = H-'AH,
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this being the same equation as (2.11), since it will be shown that HK = I.

We only know the stable vectors to within a multiplicative constant. If the
column vector for the ith root as originally calculated is {K.}, and the row vec-
tor for the same root is [H;], then it may be convenient to write

[H.] (K}

2.19) H{ = sy s =1 K,’ = =)
( W= mmEyw 5 - mmEne
the expression within the square root being a scalar quantity. The product
[H]{K} in (2.19) equals one.

The stable vectors possess an important orthogonality property: if ¢ £ j, then
[H;]{K} = 0. For
(2.20) M{K} = N{Ki}
by the definition of the stable column vector. Multiplying (2.20) on the left by
[H,] gives
(2.21) (HiIM{K} = MH;]
But it is also true by the definition of the stable row vector that
(2.22) [H;1M = N{H].
Multiplying (2.22) on the right by {K.} gives
(2.23) (HiIM{K.} = N[H{KS
Equations (2.21) and (2.23) are the same on the left and differ by having scalars
\: and \; respectively on the right, where \; # \;. Subtracting (2.23) from (2.21)
and dividing through by \; — ); gives
(2.24) [H]{K} = 0.

Among other uses, this result enables us to express any age distribution, say

the arbitrary column of frequencies {K’}, as a sum of the stable vectors each
multiplied by a constant

(2.25) {K} = ax{Ki} + c2{K3} + -+ + ca{Ka}-
To find ¢; premultiply (2.25) by the normalized row vector [H;]; the result is
(2.26) [H,] {K,} = C;.
In terms of the unnormalized vectors
; '
227 _ KD,

“ T HNKY

Equation (2.25) makes the analysis of changes easy in age distribution under
a given regime of fertility and mortality. Multiplying (2.25) by M on the left,

(2.28) M{K"} = eM{Ki} + csM{Ks} + -+ + caM {K,}

= Me{K} + Nea{Ka} + -+ 4 Naca{Ka},
since M {K;} = M{K.} and so forth; by a i-fold repetition of the multiplication,
(2.29) M{K'} = Nci{Ki} + Neco{Ka} + -+ + Mca{Ka),
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where ¢ is integral. Insofar as \; is larger than any other of the N’s in absolute
value, the first term on the right side of (2.29) will be of increasing relative mag-
nitude. The age distribution will approach closer and closer to c;A\{ {K.}, which is
called ‘“the’’ stable population, irrespective of the shape of the original age
distribution {K’}. This is the ergodic theorem—the tendency of a population
to forget its past ages under the action of a fixed regime of mortality and fertility.
Strong ergodicity—to which the preceding discussion has been confined—con-
cerns the way in which the forgetting takes place under a fixed regime of mortal-
ity and fertility. Weak ergodicity [7], due to Coale and Lopez, which we will
study elsewhere, concerns a given changing regime of mortality and fertility.

By virtue of the orthogonality of the stable vectors, HK is a diagonal matrix,
and when the vectors are in their normal form, HK = I,. For the 7th row of
H is [H,], and the jth column of K is K;; the product of these is unity when
1 = j and zero when 7 # j. Hence K—! = H, and recalling (2.11), M = KAK™,
we have, on substituting H for K1,

(2.30) M = KAH.

Now A may be looked on as a sum of matrices each containing one element,
N O - 0 00 ---0 00 --- 0
0 0 --- 0 0 X\ --- 0 00 --- 0

@31) A=|: 1+ ot '
o 0 --- 0 00 --- 0 00 -+ N\,

Substituting this sum for A in (2.30), gives

(2.32) M = N{K}[Hi] + MK} [He] + -+ + M{Ka} [Ha]

=M1+ NZ+ -+ NZ,

all other components vanishing.

The same argument that we have here used to decompose M = KAK™! also
applies to Mt = KA!K-1. Substituting K—! = H, we have M* = KA'H, and
decomposing A into » matrices each with a single nonzero term \; gives

(2.33) Mt = KAH = ¥ N{K}[H.].

Equation (2.33) may be multiplied by a constant scalar, say c.. If a number of
equations such as (2.33) for values ¢, t — 1, --- , 1, are each multiplied by an
arbitrary constant and then added, we have

(2-34) ceMt+co M 4 -0 A coln

= Z (eM+ N + -+ + co){K}[H],
which is to say that f(M), any polynomial function of the matrix M, may be
expanded as

(2.35) JM) = f(M)Zy + fN)Z2 + - -+ + f(Na)Zn,
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where the Z; = {K;}[H.] are known as spectral operators. If f(\) is the char-
acteristic function |M — A|, then

(2.36) FM) = f(h) = -+ =7(\) =0,

and hence, f(M) = 0. This proves, for distinct N\, the remarkable Cayley-
Hamilton theorem that a matrix satisfies its own characteristic equation.

Spectral operators are idempotent: they are equal to powers of themselves.
The Z; satisfy this condition, for

(2.37) 7} = (K3 HDUK}H]) = K([HH{K:})[H]
= {K}[H.],
since we normalized according to (2.19) to make [H;]{K,} = 1. By repeating

the argument, Zf = Z,, where k is any positive integer.
Spectral operators are orthogonal. Z; and Z; also satisfy the condition

(2.38) Z:iZ; = {K:}[H:]{K;} [H;] = {KJ((H:{K;})[H;] = 0,

since the expression [H;]{K;} in parentheses is zero by the orthogonality prop-
erty (2.24), with 7 5 j.

Finally the sum of the spectral operators is the unit matrix. The total of
our Z’s,

(2.39) X Zi = (K} [H] + K [He] + -+ + K} [Ha),

turns out to be equal to KH. For KH may be broken down by separating out
the column components of K and the row components of H into separate
matrices

(240) K =[Ki0 0]+ [0Ks - 0]+ - +[00 - K,

N

Hq (0) (0
0 H, 0
0 0 0
(2.41) H =< _?—I—{ . ++J RS
L0) L0 (Ha

/

and multiplying; {K:}[H:] = Z; are the only nonzero terms in the product;
this proves that > Z; = HK, and we know that HK = I.

3. Iterative methods of calculation

The first of the spectral components Z; of the 11 X 11 matrix for United
States males 1960 is shown in table IV. Since A; is larger in modulus than the
other roots, and since by (2.33)

3.1) Mt = NZi+ NZs + NZs + -+,
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Z, is computed readily by dividing M* by A to obtain

t t
e=n+ln+.,
so that if ¢ is sufficiently large, Z; = M*/\i. For the United States male 1960
ngta M? is 600156.21. It is easy to verify arithmetically on Z; the property

1 = Z1.

From the fact that Z; = {K.}[H.], its rows are proportional to one another;
it can have no nonvanishing determinant of second or higher order. The same
applies to any other matrix which is related to it by multiplication of all terms
by a constant. In particular, M* = \,Z; must be of rank unity when ¢ is large
enough. The computer program for the calculation of Z, was controlled by the
magnitude of the second order determinant in the upper left of M, this deter-
minant being evaluated for each of the successive squarings of M. When ¢ was
such that

(3.2)

(t) (O]
miy m
(3.3) 1 12

® (0
ma1  Ma2

became less than 0.000001 the program stopped the squaring, calculated A; by
(3.4) > m%“’/‘; m{,
) .

and then divided all terms of M* by A} to obtain Z,.

We are likely to be interested in more than the first latent root and its cor-
responding vectors, and it happens that similar methods can be applied to find
the next pair of roots. To use the analogue of Z; = M?!/)}, it is first necessary
to remove \;. We need merely take M — N {K,}[H,], that is to say, subtract
the first of the spectral components from the original matrix, to obtain

(3.5) N{Ko} [H] + N{Ks}[Hs] + - -+ + M{K.}[H,] = N,

say. There are again a number of options, but suppose we proceed by taking N
to a high power. It is not necessary to go as high as for the first latent root,
because the drop in absolute value from the third to the fourth roots is greater
than from the first to the second. The ratio of the third to the fourth roots for
Australian females in 1962 is 1.673, which is more than the square of 1.238, the
ratio of the first to the second. Less than half the power we used before will
do—say the 32nd.

Though N is a real matrix, most or all of its roots are complex, and we will
have to pick them up in pairs. We use Sylvester’s theorem again to express a
special matrix function in terms of the corresponding function of the latent
roots. If

(3.6) N = M bt )\121 = >\2Z2 + )\3Z3 + e + 7\,,Zn,
then
(3.7 SIN) = f(A)Zz + fN)Zs + -+ + f(Aa)Zn,
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where f is any polynomial function. Hence choosing f(N) = (N — NI )(N — NI)N?,
we have
3.8) (N — MND)(N — DN

= (A2 — M)Az — N)NZs + (As — M) (As — Na)N3Zs
=0,
where ¢ is large enough that Ay, and so forth, are negligible compared to A

and 5.
Expanding the left side of (3.8), we can write it in the form

(39) N2 — (Xz + )\3)N‘+1 + )\2)\3N‘ = u.

Equation (3.8) applies not only to entire matrices, but to each term separately
as well. If the jth element of the ith row of Nt is n{?, then (3.8) gives us

(3.10) ni}“’ - ()\2 + )\3)n§§+” + ()\2)\3)7’&8) =0.

Any two elements will provide two equations such as (3.10) so that we may

solve for the two unknowns \; and \;. Suppose that we take the first and second
elements of the first row, then

nfit? — e + N)nfTD + Qus)nf} = 0,

3.11
@-11) AP = O + Ml + Odonld = 0,
or .
i RO
(t+2) @) +1) __,,(t+2)
(3.12) P ORNTD R 0 IS 1 WONRS O it

nfst?  nf
Thus, in order to find \; and A;, we seek the roots of the quadratic 2> — ax + b
where a is the ratio of determinants given for \; + A; in (3.12) and b is the
ratio of determinants for A:A;. To put the same matter more compactly, the
quadratic whose roots are A\, and ; is

1+1 (3
ns?

z? T 1
1
(3.13) nfit? afit? af}| =0,
142 t+1 3
nst?  nfst? )

where n{] and n{3 may be any two elements of the power of N. For the first
three roots simultaneously, the equation must be

z? x? z 1
(3.14) e iy | B

mis miz miz miz

mED mE? mE mf

Equation (3.13) for Australian females 1962 comes out to

2 x 1
(3.15) .02008 —.04730 —.06963|= 0,
.05166 .02016 04749
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or 22 — 7241z + .7803 = 0. Thus, * = —.3620 & .8058¢. The directly cal-
culated A, and A; are .3616 4= .8046:.

The calculation of the second and third spectral components is not difficult
from this point. The matrix from which the first spectral component has been
subtracted out, N = M — \Z; = M — M{K,i}[H,], when raised to the tth
power is equal to N* = N\ Zy + N5Z3; to the (¢ + 1)th power it is N+ = Nt'Z, +
N\5t1Z;. Subtracting the first of these multiplied by A; from the second gives

(3.16) N — ANt = (N — \N)Zs
so that

_ N — NN
3.17) Zy = T 0N

One can work out from (3.17) the 7th row and jth column of Z,, and fill in the

remainder of Z, with
(2) ,(2)
(3.18) 2 = B2,

2
Zgj)

taking advantage of the fact that since Z, is of rank one all of its determinants
of the second order must vanish, including

&) P
ay

(3.19)

— M2) (2 2) (2) __
=227 — 2P = 0.

Equation (3.18) is simply a rearrangement of (3.19).

4. Direct machine computation of the spectral decomposition

Tables V to XIII show an actual computation, the data being the officially
published estimate of the age distribution of U. S. females for mid-1963 and the
births and deaths of the calendar year 1963. The original matrix which cor-
responds to the conventional population projection of (1.1) is table V; the num-

TABLE V

ProJECTION MATRIX M FoR THE UNITED STATES 1963 FEMALES UP TO AGE 45

0. 0. 0.092137 0.366868  0.495232 0.346164 0.186575 0.078636  0.017885
0.995736 0. 0. 0. 0. 0. 0. 0. 0.

0. 0.998591 0. 5 0. 0. 0. 0 0

0. 0. 0.998065 0. 0. 0 0. 0. 0.

0. 0. 0. 0.997004 0. 0 0 0. 0.

0. 0. 0. 0. 0.996028 0. 0. 0 0.

0. 0. 0. () 0. 0.994866 0. 0 0

0. 0. 0. 0, 0. 0. 0.992404 0. 0

0. 0. 0. 0. 0. 0. 0. 0.988459 0.

ber of women exposed to the risk of childbearing was the arithmetic average
of the number of women in each age group at the beginning and end of the
five year period; the subdiagonal elements are ;L..s/sL, from an abridged life
table.
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Table VI exhibits the odd numbered latent roots and their powers up to the
fifteent h. Each even numbered root is the conjugate of the next following odd
root, and this is true for powers and other functions of the roots. Inspection of
the table shows how rapidly the roots, after the first, and especially after the

TABLE VI

LateNT RooTs A\; OF THE PROJECTION MATRIX FOR THE UNITED STATES FEMALES 1963
wiTH THEIR PowWERS UP TO THE FIFTEENTH

Each even numbered root is the conjugate of the following odd numbered root.
All roots beyond the first are complex.

Powers of Eigenvalues
Dominant Number 3 Number 5
1 1.089351 0.311546 —0.7836862 0.019564 —0.532708¢
2 1.186686 —0.517103 —0.488308: —0.283395 —0.02084417
3 1.292717 —0.543782 0.2531162 —0.016648 0.1505592
4 1.408223 0.028950 0.5050117 0.079878 0.011814¢
5 1.534049 0.404790 0.1346462 0.007856 —0.0423212
6 1.671118 0.231631 —0.275279: —0.022391 —0.0050132
7 1.820434 —0.143569 —0.267288: —0.003109 0.0118307
8 1.983091 —0.254198 0.0292407 0.006241 0.001887¢
9 2.160282 —0.056279 0.2083217 0.001128 —0.003288¢
10 2.353306 0.145725 0.1090077 —0.001729 —0.0006657
11 2.563576 0.130827 —0.0802427 —0.000388 0.000908:
12 2.792634 —0.022126 —0.127527% 0.000476 0.000224¢
13 3.042159 —0.106834 —0.0223917 0.000129 —0.0002497
14 3.313978 —0.050831 0.076749: —0.000130 —0.000074:
15 3.610086 0.044311 0.0637467 —0.000042 0.000068:;
Number 7 Number 9
1 —0.406258 —0.391959: —0.469528 —0.157209¢
2 0.011414 0.318473: 0.195742 0.147628:
3 0.120191 —0.133856¢ —0.068698 —0.1000882
4 —0.101295 0.007270: 0.016521 0.0577947
5 0.044001 0.036750¢ 0.001329 —0.029733¢
6 —0.003471 —0.032177¢ —0.005298 0.013752¢
7 —0.011202 0.014433¢ 0.004650 —0.005624¢
8 0.010208 —0.0014732 —0.003067 . 0.001910¢
9 —0.004724 —0.003403% 0.001740 —0.0004142
10 0.000586 0.003234% —0.000882 —0.000079:
11 0.001030 —0.0015437 0.000402 0.000176¢
12 —0.001023 0.000223¢ —0.000161 —0.0001467
13 0.000503 0.0003107 0.000053 0.0000947
14 —0.000083 —0.0003237 —0.000010 —0.000052z
15 —0.000093 0.000164¢ —0.000004 0.0000267

third, diminish when taken to powers. The fifteenth power of the real root is
N® = (1.08935)'% = 3.610; the absolute value of the fifteenth power of the
second and third roots is |A®| = [A}®| = 0.07763; the absolute value of the
fifteenth power of the largest of the remaining roots is [A§*| = |N\*| = 0.000188.

Next in the sequence of calculations is the set of vertical stable vectors {K.}»
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1=1,2,3,---,9 (table VII). These might have been obtained by the evalua-
tion of the cofactors in |M — AI|, but it was easier to program the recurrence
equations (2.6) relating each element to the preceding one. The same program-
ming served for the real and complex roots; no special instruction is required

TABLE VII
Unitep StaTEs FEMALES 1963
StaBLE VERTICAL VECTORS {K;},j=1,2,:--,9

The assembly of the {K;} is the matrix K = [{Ki} {K2} --- {Ks}]. The vectors of this and
the succeeding table have been normalized so that HK = I with maximum error of 0.00002.

{Ki} {Ka} {Ks}

(0.953246) [‘ 1.046381 —0.062243:) 1.046381 0.06224311}
0.871327 0.388111 —1.175221% 0.388111 1.1752214
0.798732 —1.123362 —0.941121¢ —1.123362 0.941121¢
0.731800 —1.526125 0.823965¢ —1.526125 —0.8239657

40.669763 3 0.238689 2.0364227 -4 0.238689 —2.036422: -
0.612386 2.339125 0.6265327 2.339125 —0.626532¢
0.559270 1.706194 —2.2911714 1.706194 2.2911714
0.509498 —1.763717 —2.861749¢ —1.763717 2.861749:

10.462310) L —3.880584 0.681882:) | —3.880584¢  —0.681882:)

{K.} {Ks} {Ke}

[ 0.393668 —0.349736:) 0.393668 0.349736:) [ 0.849793 - 0.2802861}
—0.625858 —0.758827¢ —0.625858 0.7588271¢ —1.421988 0.684958:
—1.463577 1.119454¢ —1.463577 —1.119454¢ 0.968951 2.618488¢

) 1.993980 2.815341¢ 1.993980 —2.8153414¢ 1.981539  —4.521115¢
5.398902 —3.533609: 5.398902 3.533609¢ - 4 —8.062657 3.316461<
—6.227818 —10.323288¢ —6.227818 10.323288¢ 14.300550 5.666204
—19.680001  10.908085z| | —19.680001 —10.908085:| | —11.203706 —24.685070:
18.949112  37.358612¢ 18.949112 —37.358612¢| | —15.956632 44.905494:
| 70.516446 —32.571008:) 70.516446 32.571008:) 74.701472  —37.1865301)
{Kr) {Ks} {Ks}

[ 0.849793 0.2802861) 0.516277 —0.5718337) ( 0.516277 0.5718330

—1.421988 0.684958¢ —1.349616 0.760813: —1.349616 —0.760813¢
0.968051 —2.618488:; 3.068173 —0.590800¢ 3.068173 0.5908007
1.981539 4.521115¢ —6.242596 —0.834318:¢ —6.242596 0.834318¢

4 —8.062657 —3.316461: - 11.386013 5.583910¢ »4 11.386013 —5.5839107 -
14.300550 —5.666204¢ —18.152471 —17.923239: | | —18.152471 17.923239¢
—11.203706  24.685070z 23.151608 45.728608: 23.151608 —45.728608:
—15.956632 —44.905494¢| | —14.901487 —101 .642290ij —14.901487  101.642290:

L 74701472  37.186530:) (—36.214495  201.853754: L —36.214495 —201.8537542)

for the latter in Fortran IV other than the interpretation of certain symbols as
complex numbers. Table VIII shows the horizontal stable vectors [H;], ¢ = 1,
2,3, ---,9. As these were originally calculated from (2.15), they contained
arbitrary elements; the program found [H,;]{K.} and then divided each element
of [H,] and {K;} by the square root of the scalar product, ([H]{K.})'?, to
normalize, that is, to find [H;] and {K,}.
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TABLE VIII
StaBLe HorizontaL Vectors [H;),j =1,2, ---, 9, DispLaYED VERTICALLY As [H;]’
[H] [(H.] (Ha)
0.203602 0.169287 0.100739: 0.169287 —0.10073%
0.222744 —0.026319 0.164755¢ —0.026319 —0.164755¢
0.242989 —0.137510 0.0307467 —0.137510  —~0.030746¢
0.246418 —0.082694 —0.107676¢ —0.082694 0.1076762
0.194323 —0.003495 —0.1357162 —0.003495 0.1357162
0.111297 0.021519  —0.095289: 0.021519 0.095289¢
0.051024 0.022897 —0.047941z 0.022897 0.047941¢
0.017730 0.013220  —0.015908¢ 0.013220 0.015908¢2
0.003343 0.003312 —0.0025477 0.003312 0.002547¢
(H.] (Hs]' [He)

0.078613 0.003199: 0.078613 —0.003199: 0.088880 0.105023?
—0.000167 0.042120z —0.000167 —0.042120z —0.077604 —0.007863!
—0.022472 0.000736: —0.022472  —0.000736¢ 0.034658  —0.027262¢
—0.008091 —0.012275: —0.008091 0.012275¢ —0.011606 0.0150127
-0.022527 —0.005741% —0.022527 0.0057417 —0.033878 —0.049325z
—0.036459 —0.013752¢ —0.036459 0.013752¢ —0.010963 —0.045431z
—0.020707 —0.020906% —0.020707 0.0209067 —0.008550 —0.022310z
—0.003966 —0.012129: —0.003966 0.012129¢ —0.004398 —0.0139897

0.000204 —0.002632: 0.000204 0.002632: 0.000284 —0.0043507

[HA) [(Hs]’ [(Hs]'

0.088880 —0.105023: 0.093229 0.060131z 0.093229 —0.060131¢
—0.077604 0.0078637 —0.053455 —0.0136352 —0.053455 0.0136357

0.034658 0.027262¢ 0.027281  —0.002004: 0.027281 0.002004:
—0.011606 —0.015012¢ —0.021125 —0.000311: —0.021125 0.000311z
—0.033878 0.049325¢ —0.024308 —0.0253112 —0.024308 0.025311¢
—0.010963 0.045431¢ —0.030900 —0.021803z —0.030900 0.021803¢
—0.008550 0.022310z —0.014410 —0.015516¢ —0.014410 0.0155162
—0.004398 0.013989: —0.008252 —0.006247% —0.008252 0.006247z

0.000284 0.004350¢ —0.002504 —0.003129¢ —0.002504 0.003129¢

The program then assembled the vertical vectors into K and the horizontal
ones into H, and worked out HK and showed it to six places of decimals (not
reproduced here); there were only two off diagonal elements which did not show
zero to five places, and the diagonal elements were equally close to unity. This
verifies the calculation up to this point.

The first spectral component is Z; = {K,}[H.]; its upper left term is obtained
by multiplying the first elements of {K;} and [H,], thatis, (0.953246)(0.203602) =
0.194083, as shown in table IX, and similarly for its other elements. Only the
odd spectral components, with the imaginary parts of each element separately
displayed, are given below; the second component is the same as the third,
except that the signs of the imaginary part are reversed, and similarly for the
other even numbered components.
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Representation of any arbitrary age distribution in terms of the several
stable vectors is now readily carried through. The ¢; which are the weights on
the several vertical vectors when the age distribution of mid-1963 {K'’}, is
expanded as

4.1) {K'} = cl{Kl} + Ko} + - + co{Ko}
are given as table X; much the heaviest weight is on the {K,}, with the next

TABLE X

UniTEp STATES FEMALES 1963
COEFFICIENTS ¢; OF THE VERTICAL STABLE VECTORS
IN THE EXPANSION OF THE AGE DISTRIBUTION

9

{K'} = 21 ¢iK;

€ 10563.038818 0.

c2 —55.489507 321.1650707
c3 —55.489507 —321.1650702
C4 51.007514 34.2452241
Cs 51.007514 —34.2452241
Co 9.147722 59.6988577
c7 9.147722 —59.698857%
cs 27.375117 29.359058z
Co 27.375117 —29.359058¢

heaviest on {K,} and {K;}. Table XI shows the comparison of the actual age
distribution with the stable age distribution taken from the dominant root alone;
the high birth rates of the 1920’s, the low ones of the 1930’s, and the high ones
after World War II account for the divergencies.

TABLE XI

UniTED STATES FEMALES 0-44 1963
DEcoMPOSITION OF AGE DISTRIBUTION
(in thousands)

9

Age {K'} e { K1} ; alK,)

0-4 10168 10069 99

5-9 9841 9204 +637
10-14 8848 8437 +411
15-19 7663 7730 —67
20-24 6284 7075 —791
25-29 5522 6469 —947
30-34 5760 5908 —148
35-39 6289 5382 907
4044 6271 4883 1388

The projection of the same set of ages through one, two, and so forth, cycles
of five years each is given in table XII. For each of these points of time the
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age distribution is broken down into its several stable components; underneath
{K'} are shown the several Nc;{K,} for odd ¢, the values for each even 7 being
the conjugates of the next following odd component. The conjugate terms which

TABLE XIIa

Unitep StaTES FEMALES 1963
ExpansioN Mec; {K;} oF THE PROJECTED AGE DISTRIBUTION
IN TERMS OF THE VERTICAL STABLE VECTORS
AGE DistriBUTION FOR POWER NUMBER 1
(in thousands)

M{K'} Necs{ K5}
(10332.) 2.94867 —16.991667
10125. 31.92012 4.33936¢
9827. —5.92887 60.05378:
8831. —112.77073 —6.966577
-{ 7641. - 5.28009 —211.253022
6260. 394.81927 —4.627541
5494. 35.67371 736.03989:
5716. —1366.91512 116.65806¢
6216. —309.19679  —2525.00507¢

naf{Kil Mer{Kq}
10968.866) —28.83569 9.962987
10026.240 ) 24.40195 —47.96229¢
9190.897 27.84397 91.02839:
8420.713 —147.17172 —81.64017¢
4 7706.868 287.16903 —76.70719¢
7046.633 —270.66454 449.20200¢
6435.442 —206.38340 —900.910162
5862.719 1360.76651 887.864777
( 5319.733 —2794.14963 535.556647

sca{ K} Aeco{ Ko}
—277.93436 —75.93741% —14.44050 —5.094327
—37.91038 —338.067062 30.78978 0.49448:
355.40239 —189.592712 —59.19912 18.769607
363.88443 307.96510: 101.14082 —73.762441
—179.40571 534.253974 —145.95839 205.49875:
—664.62184 36.19712: 147.16822 —485.207862
—329.31755 —712.80093: 29.13303 1018.33508:
636.29776 —669.977612 —703.38704 —1916.86337:
1005.22473 402.942637 2546.45999 3182.801397

are omitted are taken into account by doubling the real parts of the terms which
are shown, after the first, and omitting the imaginary parts. When this is done
the decomposition accounts exactly for the number of individuals projected, age
by age. For example, the projection through one period, M {K'}, in table XIIa
shows at 0—4, the first age group, 10,332. This is equal to 10,969 -+ 2(—277.9 4
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2.9 — 28.8 — 14.4), obtained from the top row of the expansion. The point of
the exhibit is that the several complex roots have considerable importance at
the outset, since the actual age distribution is far from the real stable vector;

TABLE XIIb

AGE DisTriBUTION FOR POWER NUMBER 2

M2*{K'} Aes (K}
11682.) —8.99390 —1.90321¢
10288. 2.93610 ~16.91920:
10110. 31.87514 4.33325¢
9808. —5.91739 59.93758¢
< 8804.r —112.43287 —6.94570:
7611. 5.25912 —210.41391%
6228. 392.79226 —4.60378:
5452. 35.40273 730.44892¢
L 5650. —1351.13950 115.312412

Ma{Ki} Mer{Kq)
11948.945) 15.61981 7.254877
10922.094 —28.71273 9.920507
10012.113 24.36756 —47.89471¢
9173.112 27.79009 90.852251
< 8395.484 ~ —146.73078 —81.39558:
7676.256 286.02839 —76.402502
7010.455 —269.27493 446.895774
6386.558 —204.81568 —894.06682¢
L 5795.057) 1345.06183 877.61790¢

Aes{ K} Meo{ Ko}
—146.10042 194.155277 5.97935 4.66210¢
—276.74924 —75.61361% —14.37893 —5.072607
—37.85696 —337.59072: 30.74639 0.49378z
354.71467 —189.225847 —59.08457 18.73328¢
362.79423 307.04242¢ 100.83780 ~—73.541447
—178.69310 532.13190z —145.37864 204.68250z
—~661.20966 36.01128¢ 146.41267 —482.716807
—326.81605 —707.38648: 28.91172 1010.599792
628.95423 —662.24538: —695.26923 —1894.74080:

first the stable vectors beyond the third lose their importance, and by the end
of 15 five year cycles or 75 years only the first vector is of consequence.

The latent roots beyond the first are responsible for waves in the trajectory,
and it is easier to portray the waves in terms of the logarithms of the N’s. If »
be defined by the equation e = \, or r = 0.2 In A, and r = z + 4y, then the
equation (2.29) becomes

4.2) MH{K'} = Na{Ky} + Nco{Ks} + - -+
= nte, (K} + e {Ko) + -+,
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and we can see what happens with the increase of ¢ by breaking up )\ in terms
ofr=zx-+1y
4.3) At = bt = eb2t(cos Syt + 1 sin Syt).

The real part x is negative and determines the rate of attenuation of the waves,

TABLE XIIec

AGeE DisTRIBUTION FOR POWER NUMBER 5

M3{K’} Ades{ K}
15514.) 0.43628 —1.32243;
14460. 2.49846 0.723734
13141. —1.18307 4.726951
J 11593. —8.92563 —1.88876¢
10223. ¢ 2.91752 —~16.812157
10021. 31.59216 4.20478;
9690. —5.84606 59.215064
8658. —110.56506 —6.83031%
| 7427. 5.13245  —205.345964

e { K} Mer{Kq)
(15446.606) 0.05585 —0.918744
14119.178 0.48010 1.78763i
12942.829 —~2.06279 —3.111264
11858.239 | - 5.93396 4626715
410852.987 —14.28795 —5.040514
9923.228 30.47344 0.48940;
9062.536 —58.37234 18.507464
8256.013 99.16262 —72.31972¢
{ 7491.369) —141.87711 199.752607

Aes{ K} Acs{ Ko}

30.30301  —142.55841 2.84847 —1.21883i
169.63020 —28.93227 —2.12311 5.03573:
106.03543 173.99350 —3.48222 —9.01827;

—144.99136 192.68142 15.50124 7.19979;
—274.99816 —75.13518 —28.53106 9.85773¢
—37.52087  —334.59368 2415124 —47.46951%
350.43877  —186.94482 27.45509 89.75707i
356.76724 301.94164 —144.29319 —80.04338;
—174.38018 519.31517 279.13922 —74.56229i

and y determines their period, in time units of five years; r is on an annual
basis and X on a five year basis. Table XIII shows eleven of the roots r = z + 7y
corresponding to each of the A.

The record for the United States female population from 1920 to 1963 is pulled
together in table XIV. The real root r; is known as the intrinsic rate of natural
increase; from its definition it may be shown to be the rate, compounded mo-
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mently, at which the female population would increase if the age specific rates
of mortality and fertility of the year in question were maintained long enough
for the initial age distribution to wear off. The absolute value of z, the (negative)
real part of the first pair of complex roots rs, r3, shows a steady fall from 1940

TABLE XIId

AGe DistriBUTION FOR PowErR NUMBER 10

MK’} MO { Ks)
23759.) —0.05254 —0.028854
21804. 0.05026 —0.100053
10804, 0.19075 0.08720:
18023. —0.15005 0.36290:
J16442. ¢ —0.68858 —0.255551
15289. 0.42995 —1.303264
14238, 2.46009 0.712613
12859. —1.15768 4.62553¢
(11235. —8.65006 —1.830444

M {Ki} Mler{ K7}
(23695.846} 0.17013 0.05105¢
21659.508 —0.27848 0.14355:
19854.932 0.17820 —0.52479;
18191.117 0.41748 0.88647;
{16649.011 —1.61767 —0.614764
15222.716 2.80719 —1.201164
13902.372 —2.09051 4.958404
12665.127 —3.40750  —8.82478i
(11492.126 15.02265 6.977514

Al {Ks} %o { Ko}
31.46132 —53.62598 —0.02724 —0.002883
72.56017 11.12862 0.05379 —0.01190;
10.49444 84.70806 —0.09525 0.05720i
—84.63487 58.47288 0.14545 —0.17029i
—101.19973 —67.44146 —0.16885 0.41813i
2086378  —140.49211 0.05504 —0.90542;
167.02544 —28.48800 0.47272 1.76018;
103.76033 170.26028 —2.01853 —3.044514
—140.51487 186.73253 5.75075 4.483874

to 1960; this corresponds to the narrowing of the ages within which reproduc-
tion takes place; the narrower this range of ages, the less rapid the attenuation
of waves arising from disturbances in the age distribution. The complex part y
has tended to increase, on the other hand. The period of the waves caused in
later generations by a disturbance in the age distributions, which is equal to
2x/y years, tends to diminish. The upward trend in y shown in table XIV, from
0.2088 in 1920 to 0.2420 in 1960, corresponds to a decline in the wave length
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from 27/0.2088 = 30.09 years to 27/0.2420 = 25.96 years. These periods are
related to the mean age of women at childbearing. The mean length of genera-
tion 7' may be defined as the length of time that the population would increase
in the ratio of the net reproduction rate R, when subject to the intrinsic rate r.

TABLE XIIe

AGE DisTRIBUTION FOR POWER NUMBER 15

MB{K'} APes {Ks)
36391.) —0.00163 0.00200:
33282. —0.00384 —0.002914
30451. 0.00519 —0.00739
27822, 0.01418 0.00920¢
{25477, - —0.01622 0.02713:
|23415. —0.01578 —0.02843:
21469. 0.04949 —0.098514
19468. 0.18666 0.085337
117466.) —0.14542 0.35170¢
)\}501{1{1} )\%567{1{1}
36350.584 0.00561 0.008504
33226.742 —0.01753 —0.00392¢
30458.434 0.02713 —0.016544
27906.062| - —0.01421 0.05435¢
<25540.395 —0.04859 —0.086507
23352.389 0.16766 0.05031¢
21326.916 —0.27421 0.14135¢
19428.923 0.17438 —0.51353¢
117629.482) 0.40459 0.85910;
éscz{Ka} Ao Ce{K»}
19.95576 —17.47109 —0.00012 0.000814
27.87318 14.27472 —0.00028 —0.00162¢
—3.51449 36.91380 0.00157 0.002913
—42.13248 12.27343 —0.00487 —0.00455¢
—31.88385 —40.92579 0.01221 0.00558;
31.00531 —52.84870 —0.02685 —0.00284:
71.44598 10.95773 0.05296 —0.01172:
19.07617 82.89056 —0.09320 0.055974
—82.02183 56.66757 0.14096 —0.165037

The reproduction rate R, is defined as the number of girl children expected to
be born to a girl aged 0, at the given age specific rates of birth m, and survivor-

ship L./4,
4.4)

Z zmz

z

If et = Ry, then T = In Ro/r and works out to 28.99 years for 1920 and 25.90

for 1960.
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5. Bibliographical note

The population projection on which this argument is based goes back to A. L.
Bowley [2] and P. K. Whelpton [9]. The suggestion for representing the opera-
tion of projection as a matrix seems first to have been made in print by H.
Bernardelli [1] and E. G. Lewis [6]. An elegant and complete exposition of the
theory and its application to a population of rats is due to P. H. Leslie [3],
[4], [5]. A. J. Coale and A. Lopez [7] extended the theory to prove ergodicity
when the projection matrix varies. E. M. Murphy [8] has set up and analyzed
matrices which recognize parity and incorporate the two sexes.

The Fortran program which delivered the ‘“matrix package’ of tables VI to
XIV was worked out by Susan Borker.
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