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1. Introduction

Let f(t) be a characteristic function and suppose that the corresponding dis-
tribution function has a finite second moment. It is then known that

(1.la) Tif(t) = f'(t)-f(O)
and

(1.lb) T2f(t) = f"l(t)
f"(O)

are also characteristic functions. These operators may be applied to analytic
characteristic functions repeatedly and yield again analytic characteristic func-
tions. The present study is motivated by the wish to investigate the arithmetical
properties of the two families of characteristic functions which are obtained
if the operator T2' or T1Tt21 is applied to the characteristic function f(t) =
exp (-t2/2).

It is, however, convenient to investigate a more general class of character-
istic functions, namely the family of entire characteristic functions of order
two which have only a finite number of zeros. (In view of a theorem of Marcinkie-
wicz (see [4], p. 156), this family is identical with the entire characteristic
functions of finite order which have only a finite number of zeros.) In the fol-
lowing, we denote this class by @2. In section 2, we give some formulae concern-
ing Hermite polynomials and discuss the construction of characteristic func-
tions which belong to @2. Section 3 deals with factorization problems of char-
acteristic functions of @2.

2. The class Q2

It is well known (see [4], p. 134) that the zeros of analytic characteristic
functions cannot have an arbitrary location but are subject to the following
restrictions:
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(i) the zeros of an analytic characteristic function are located symmetrically
with respect to the imaginary axis.

(ii) An analytic characteristic function has no zeros on the segment of the
imaginary axis inside its strip of regularity. (This implies that an entire char-
acteristic function has no purely imaginary zeros.)
We show in this section that it is possible to construct entire characteristic

functions of order two which have preassigned zeros, subject only to the restric-
tions (i) and (ii).
An entire function of order 2 with a finite number of zeros has, according to

Hadamard's factorization theorem, the form f(t) = P(t)eA(W) where P(t) and
A (t) are polynomials and where A (t) is of second degree. If f(t) is also a character-
istic function (that is, f(t) E (52), then it has the Hermitian property [namely,
f- t) = fT)] and f(O) = 1; moreover, f(t) must also satisfy conditions (i) and
(ii). Therefore, P(t) is of even degree, say 2m, and has the form

(2.1) P(t) n 1_t)( - n 1 + 2i c' t - )

where , = a, + ib,,- = -a, + ib, (a,, b, real,c = aV + b2,;v = 1, 2, ,m)
are the zeros of P (t). In view of the properties of f(t), one can write
(2.2) A (t) = -a2t2/2 + i,Bt
where ,B is real and a2 > 0. If we study the decomposition of a characteristic
function, we can disregard factors of the form eift (f3 real) and write, therefore,
(2.3) f(t) = e-02t2/2P(t)
where P(t) is given by (2.1). It is sometimes convenient to write P(t) in an
alternative form by expanding it; then

2m
(2.1a) P(t) = E X(i0y.

v=o

Here the X, are real and Xo = 1.
We introduce next the Hermite polynomials

dk(2.4) Hk(x) = ex /2 d (e x2/2).dXk
It is not difficult to compute the coefficients of these polynomials (see for in-
stance, [5], pp. 104-105); one obtains

(2.5) Hk(X) = ()k2kk! i (k-2
,-o v! (k - 2)

We see from (2.4) that

(2.4a) dtk (e / Hk(t)e

and can therefore derive easily the families mentioned in the introduction. We get

(2.6) h2k(t) = Taet'/2 - ( ) H2k(t)e-t/2, (k = 1, 2, * )
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and

(2.7) h2k.l(t) = TiT2-let/= (.1)c H2k_,(t) et'/2, (k = 1, 2, * -

where a2k = (-_1)kH2k(0) = (2k) !/2kk! is the moment of order 2k of the normal
distribution with zero mean and variance one. Since

(2.8) e-U2/2 = ef eiUVe-y2/2 dy,

we conclude from (2.4a) that

(2.9) Hk(u)e u2/2 = (...)| e-iuyyke-y2/2 dy.

It follows easily that

(2.9a) 1 f e_ixttke-ff2t2/2 dt = 1 Hk (x) ez'/(20,2).
2 r a0ak+1 i)ka\2=

If the function f(t), given by (2.3), is a characteristic function, then

(2.10) p(x) = f e-i-tf(t) dt

is the frequency function of the corresponding distribution. This follows im-
mediately from the fact that f(t) is absolutely integrable. Using (2.10), (2.1a),
and (2.3), we get

(2.11) p(x) = Q(X)e_2/2a2
where

2m
(2.11a) Q(X) = E' (- 1)"Xkff- kHk (-)-

k=O a

An entire function f(t) of order two which has a finite number of zeros satis-
fying (i) and (ii) is not necessarily a characteristic function. Such a function
determines, by (2.11a), a polynomial Q(x) which we call the polynomial associ-
ated with f(t). We see from (2.11) that f(t) is a characteristic function if and
only if its associated polynomial Q(x) is nonnegative for all real x.
We wish to construct entire characteristic functions of order two having a

finite number of preassigned zeros. These must of course satisfy the conditions
(i) and (ii). For this construction, we need a lemma due to D. Dugu6 [2].
LEMMA 2.1. Let g(z) be an analytic characteristic function which has the strip

of regularity -a < Im(z) < , and choose a real r such that -a <77 < P. Then
h(z) = g(z + itJ)/g(in7) is an analytic characteristic function whose strip of reg-
ularity is given by -a -v < Im(z) < -77.
For the proof of the lemma we refer to [2] or to ([4], p. 194).
We put k = 1 in (2.6) and see that h2(t) = (1 - t2) exp (-t2/2), and therefore

also
(2.12) h2 () = -t2 e-t2/2a2
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are (entire) characteristic functions. We apply lemma 2.1 with 'q = -b to
h2(z/a) and see that

/2z-ib\2
h2 a ) z2 +2-bz\ 1(2 *2b

(2.13) h2(-ib/a) a(2 +b22 ) exp 21 -
is an entire characteristic function which has two complex zeros ¢ = a + ib and
- = -a + ib. It follows immediately that

(2.14) 1 a2-+ b) exp (2
and

t2 - 2ibt\-1/(2.15) 1 ea22t212b (2>a2 )

are characteristic functions. We see, therefore, that the function f(t)=
P(t) exp (-. 2t2/2), determined by (2.1) and (2.3) belongs to 652, provided
that

m
(2.16) u2 2 E a-

P51

holds.
We note that condition (2.16) is only sufficient but not necessary. This is,

however, irrelevant in the present context since we are here only interested
in the construction of a function of 62.

3. Factorization of functions of 02
It is well known that every factor of an entire characteristic function of finite

order p is also an entire function of finite order not exceeding p. We conclude
from this result that a function f(t) C 652 can have only factors which belong to
@52. It follows that the distribution functions of all factors of f(t) are absolutely
continuous.

Suppose that f(t) 652, then it has necessarily the form

(3.1) f(t) = P(t)e - 2t1/2.
There are two possibilities: either f(t) is indecomposable or f(t) admits a

decomposition

(3.2) f(t) = fl(t)f2(t).
In the last mentioned case there are again two possibilities which are not
mutually exclusive. The function f(t) may have a normal factor say f,(t) =
exp (- r2t2/2), whereas the second factor has the form f2(t) = exp (-a2 2/2)P(t)
with ol + 2 = 02, or the functions fj(t) may both have the form (3.1); that is,
fi(t) = Pj(t) exp (-ort2/2) E 62, (j = 1, 2) where 0. + 0 = 02, P1(t)P2(t) = P(t).
Here and in the following, we assume that the polynomials Pi(t), P2(t), and P(t)
satisfy the conditions (i) and (ii).
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We consider first the case where f (t) is decomposable so that at least one of the
factors, say f2(t) of (3.2) has the form (3.1), and derive the following result.
THEOREM 1. Suppose that the characteristic function f (t) E 32 admits a non-

trivial decomposition; then its associated polynomial Q(x) has no real zeros.
Let p(x) and p2(x) be the frequency function of f (t) and f2(t) respectively;

it follows from (2.10) that

p(x) = Q(x) exp

(3.3) < p2(x) = Q2(x) exp 2

Here Q(x) and Q2(x) are nonnegative polynomials whose coefficients are deter-
mined by the zeros of f(t) and f2(t) respectively. Let Fl(x) be the distribution
function which corresponds to fi(t). We see from (3.2) and (3.3) that

(3.4)

p(x) = f p2(x- y) dFi(y) = > f Q2(x- y) exp [-
y

]dFi(y).

We give an indirect proof for the theorem and assume, therefore, tentatively
that Q(xo) = 0 for some real xo. In view of (3.3) and (3.4), one has

(3.5) Q2(xo- y) exp [-(Xo -2y) 2

dFi(y) = 0.

Since Q2(x) is a nonnegative polynomial, we see that Q2(xo -y) is a nonnegative
polynomial for all real y. The integral in (3.5) can therefore vanish only if
FI(y) is a purely discrete distribution whose discontinuity points are zeros of
Q2(xo- y). However, all factors of f(t) are absolutely continuous; this contra-
diction proves theorem 1.
COROLLARY. The characteristicfunctions

(3.6) h2k(t) = ( ) H2k(t)e _2/2
(a2k)

are indecomposable.
We differentiate (2.8) 2k-times and see that

(3.7) H2k(t)e-t2/2 = ) f eityy2ke-y2/2 dy,

and conclude from (2.6) that p2k(x) = (1/a2k)x2k exp (-x2/2) is the frequency
function of h2k(t) so that P2k(O) = 0. In view of theorem 1, h2k(t) is indecompos-
able.

In order to derive the converse to theorem 1, it is necessary to obtain an

explicit expression for the polynomial Q(x). We combine formulae (2.5) and
(2.1la) and obtain



406 F[FTH BERKELEY SYMPOSIUM: LUKACS~~~~~
2m []( )2vxk-2v,

(3.8) ~ Q(X) FNko-o -k! o v!(k - 2v)! ak-2-

It is then easy to verify that
mn [m (- 1)̂ 2- v _ X)21s(3-9) a2mQ(X) = E (-1v2 X2±+2(2,u + 2v)!o,2m-2A-2] (x)2

m-1 1 ( 1) 2 x)2j+l 1
+ (0_ l)v! )2,+2v+1(2,u + 2p + 1)!a2m-U-2M-1 a)+ 1

;&=0 J-0,I O'~~~~~Y (2At + 1)!
We introduce the polynomials

(3.10) Cm,k(Z) = k! E- [ ] Xk+2v(k + 2v)!z2m-k-2v.

The Cm,k(Z) are polynomials of degree 2m - k and contain for k even (resp. odd)
only even (resp. odd) powers of z. We write Cm,k = Cm,k(o) and S(y) = E Cm,kYk-
Using this notation in (3.9) we get

(3.11) o2mQ(x) = E -m,k (-) = S (-)-

Now let f(t) be a function of (52 which is given by
2m

(3.12) f(t) = e-ff't2/2p(t) = e2t/2 ,(it.
V=0

According to (2.11) and (3.11), the corresponding frequency function p(x) is
given by

(3.13) p(x) = .-2m-l(27)-lI2e-x2/(2al)S (-)-

We wish to prove the following statement which is somewhat stronger than
the converse of theorem 1.
THEOREM 2. Suppose that f(t) E 02 and that the polynomial associated to f(t)

has no real zero. Then f(t) has a normal factor.
We note that the function f(t), given by (2.3), has a normal factor if and only if

it can be written in the form f(t) = no(t)fe(t) where ne(t) = exp [-o2(1 - 02)t2/2]
with 0 < 0 < 1, and where

2m
(3.14) fe(t) = exp (-a202t2/2) YE XI (it)

v=O

is a characteristic function. We can therefore establish the existence of a normal
factor of f(t) by showing that fe(t) is a characteristic function for some 0 E (0, 1).
This is the case if the function

(3.15) po(x) = f e-i-fe(t) dt

is real and nonnegative for all real x. It is easily seen (by replacing a by ea in
(3.13)) that
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2m X k

(3.16) pe(x) = (o0)-2m-1(27r)-l2 exp [-x2/2o202] E Cm,k(Ofa) ()
kc=O o

The function pe(x) is a frequency function if and only if
2m

(3.17) S k(Y)-O Cm,k(oa)yk
k=O

is nonnegative for all real y.
We note that p1(x) = p(x) and Si(y) = S(y). Since p(x) is the frequency

function of f(t), it follows from the assumption of theorem 2 that

(3.18) Si(y) = S(y) > 0
for all real y. Since Si(y) = Ccm,ky; is a polynomial of degree 2m, we con-
clude from (3.18) that

(3.19) Cm,2m > 0.

Let 77,(V = 1, 2, *, r; r < 2m) be the roots of Si(y) and assume that the root
7 has the multiplicity n, so that nEr , = 2m. We have then

r

(3.20) S(y) = Cm,2m II (y -v)n.
We select p > 0 so that 2p < min, IIm(mq,)1, and let Cj be the circle lz - qj < p
and G = Ui=1 Cj the union of these circles. Since the roots of a polynomial
are continuous functions of the coefficients, it is possible to find a 5 > 0 such
that the roots of the polynomial T(y) = Ek'o dky1 will also be located in the
region G, provided that the relations

(3.21) ICm,k - dkl < 5, (k = 1, 2, * , 2m)
are satisfied. We put dk = Cm,k(Oq); since the Cm,k(Z) are continuous functions
of z, it is possible to find an f > 0 which is so small that (3.21) is satisfied
as soon as 0 > 1 - e. Now let 01 be a real number such that 1 > 01 > 1 - e.
Then the polynomial F_'k0 Cm,k(0l10)yk has all its roots in the region G; therefore,
it has no real roots and does not change its sign. In view of (3.19), it is always
positive; hence, the polynomial

2m

(3.22) E Cm,k(01°a) 1 a > 0kc=O \0ioa

for all real x. This means that pol(x) is a frequency function and that f(t) has
the normal factor nei(t) so that the statement of theorem 2 is proven.
COROLLARY. The characteristic functions

(3.23) h2k-1.(t) =( ) H2k1(t) e-t2/2

are decomposable and have normal factors.
To prove the corollary, we must compute the polynomial associated to

h2k,.-(t) and show that it is always positive. We see from (2.5) and (2.7) that
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(3.24) h2k-l(t) = [(k - 1)! Et (k-1e222 + 1)!(j=o0( j)!(2j (it)21
so that o.2 = 1, m = k - 1, ?2j-1 = 0, whereas

(3.25) (m-j)!(2+ 1)!' (j = 0, 1, (k- 1)).

It follows immediately then from (3.10) that

Cr,2k-1l(Z) = 0, (k = 1, 2, ** ,rn),

(3.26) -
m()=L(1 z2m-2k-2,.2k (2)!mk) = v J 2k + 2v + 1

(2k)!(m - k)__-_____(3.26) Crn.2k(Z) = m!2k rn-I (-1)' (~ / 2(k = 0, 1,
We put

(3.27) am,l(z) = E (-1)' (v 12
(if) 2m +2v- 21+11

and see from (3.26) that

rC,2k-1(Z) = °, (k =1, 2, *** )
(3.28) m!2k

,2k8Z) = (2k)!(m - k)! am,.mk(z), (k= 0,,...1,i).
It is easily seen that the ar,z(z) satisfy the recurrence relation
(3.29) am,z(z) = Z2am.i,z-(z) -am,.-I(z), (l = 1, 2, , m),
while
(3.30) a.,o(z) =2z +1

Relation (3.29) and the initial condition (3.30) determine the functions am,,(z),
and therefore also the C.,2k(Z) uniquely.
We write a.,, = am,1(1) and note that a-= 1; it follows then from (3.11)

that the polynomial associated to h2k1l(t) is given by
m 2k

(3.31) Q(Y) S(y) m! I= (2k)!(m-k)!am,m-ky2k.

We put z = 1 in (3.29) and obtain a recurrence relation for am,,; using (3.30),
we see easily that

(3.32) am., = 211! [H (2m + 1 - 2j)], (1 = 0, 1, m..,m).

Therefore, S(y) is an even polynomial with positive coefficients and is therefore
positive for all y, so that the corollary is proven.
We combine theorem 1 and theorem 2 and obtain theorem 3.
THEOREM 3. A characteristic function f(t) E 02 is indecomposable if and only

if its associated polynomial has at least one real zero.
We consider next a characteristic function f(t) (which does not necessarily

belong to 52), and suppose that it has a factor f2(t) C (2 so that f(t) = f1(t)f2(t).
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The characteristic function f(t) has then an absolutely continuous distribution.
Let p(x) be the corresponding frequency function and denote the distribution
function of f1(t) by F1(x). According to (2.11), p(x) is then given by

(3.33) p(x) = A- Q2(x - y) exp [-(x - y)2/(2o7)] dFi(y)

where Q2 is the polynomial associated with f2. Therefore,

(3.34) p = A/ Q2(-y)e2/(2 2) dFi(y).

It follows that p(O) = 0 implies that Fl(x) is a discrete distribution which has
discontinuity points only at the zeros of Q2(X). If we assume that f2(t) is not
indecomposable, then, according to theorem 3, p(O) > 0, and we have obtained
the following result.
COROLLARY. Suppose that a characteristic function f(t) has a factor which is

not indecomposable and which belongs to @2. Then the frequency function p(x),
corresponding to f(t), satisfies the relation p(0) > 0.

This is a generalization of the well-known fact that a frequency function
which has a normal component cannot vanish for x = 0.

Let f(t) be a characteristic function of @52 and suppose that its associated
polynomial has no real zeros. According to theorem 2, f(t) has a normal factor.
The next theorem deals with the determination of the normal factor which
has maximal variance.
We consider a characteristic function f(t) = exp (- alt2/2)P(t) E 52 and as-

sume that its associated polynomial has no real zeros. Let
2m

(3.35) Se(y) = E Cm,k(0f)yk
k=O

be the polynomial defined by (3.17). The polynomial SI(y) has then no real
zeros and is positive for all real y. Denote by 0o the greatest lower bound of
all 0 for which Se(y) is nonnegative for all real y, and all 0 such that 0o < 0 < 1.
For every e > 0 there exists then a r such that o-E < r < Oo for which S,(y)
assumes a negative value for at least one real y. Since Se(y) is a continuous
function of y and 0, we see that Seo(y) is also a nonnegative polynomial. We show
next that So,(y) has at least one real zero. We give an indirect proof and assume,
therefore, that this is not the case. Then we can again construct circles Gj such
that the union G of these circles contains all zeros of Se,(y) in its interior and has
no points in common with the real axis. We conclude from the fact that the
roots of a polynomial are continuous functions of its coefficients that there
exists an e > 0 such that all roots of Se(y) are inside G, provided 10 - Gol < e.
But then Se(y) does not change its sign if 0o- e < 0 < O0; moreover, it is seen
from (3.10), (2.1), and (2.la) that Cm,2m(Z) = X2m > 0 is independent of z so that
Se(y) is a nonnegative polynomial if Oe(Oo - e, O0). This is in contradiction to
the definition of Oo so that we have shown that Se.(y) has at least one real zero.
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It follows then from (3.13), (3.16), and theorem 3 that po,(x) is the frequency
function of an indecomposable characteristic function f0o(t), and that f(t) =

na,(t).fo,(t) where

(3.36a) no,(t) exp [-a2(1 - 0o)t2/2]
while

(3.36b) fe.(t) = P(t) exp [-o20t2/2].
We still have to show that f(t) can have no normal factor whose variance

exceeds a2(l - 02o). We give again an indirect proof and assume that there exists
a positive a, less than 00, such that nO,(t) = exp [-a2(1 - a2)t2/2] is a factor
of f(t). Then f(t) = na(t)fa(t) where fa(t) = P(t) exp [-q2a2t2/2] is a character-
istic function. We choose an e > 0 such that a < 00- e < Oo; according to the
definition of 0o, there exists a Tr satisfying the inequality 0 - e < T < 0o for
which ST(y) assumes also negative values. Since fa(t) is a characteristic fuinction.
we see that

(3.37) fo(t) = fa(t) exp [- 2(T2 - a2)t2/2] = P(t) exp [-ar2T2t2/2]

is also a characteristic function. But this is impossible since the associated
polynomial ST(y) is not nonnegative. This contradiction shows that f(t) can
have. no normal factor n, (t) with a < Go. We formulate this result in the fol-
lowing manner.
THEOREM 4. Let f(t) = P(t) exp [-a2t2/2] be a characteristic function of the

class 52, and suppose that its associated polynomial has no real zeros. Then f(t)
is decomposable,

(3.38) f(t) = neo(t)fe.(t),
where

(3.39) fe,(t) = P(t) exp [-ar201t2/2]
is an indecomposable factor of f(t), while

(3.40) n0o(t) = exp [-.o2(1 - 02)t2/2]
is the normal component with maximal variance. Here 00 is defined in the preceding
discussion.
REMARK. We note that the decomposition of f(t) into a normal and an

indecomposable factor is unique. Suppose that this is not the case. Then there
exists an a 0 Do such that

(3.41) f(t) = foe(t)nso(t) = fa(t)na(t)
where na(t) = exp [-a2(1 - a2)t2/2], and where fa(t) and fo.(t) are indecom-
posable. Without loss of generality we may assume that a2 > o8. Then

(3.42) fa(t) = f6o(t) exp [-02t2(a2 - )/2]
is the product of two characteristic functions. This contradicts the assumption
that fa(t) is indecomposable so that the uniqueness of the decomposition (3.38)
is proven.
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Let fi(t) and f2(t) be two characteristic functions belonging to ®2, and suppose
that both are indecomposable. The function f(t) = f1(t)f2(t) belongs also to @2,
and its associated polynomial has, according to theorem 1, no real zero. We
conclude then from theorem 2 that f(t) has necessarily a normal factor. This
shows that a product of two indecomposable characteristic functions can have
a normal factor, even if none of its components admits a normal factor. A differ-
ent example of this phenomenon, not involving functions of ®2, was given by
R. A. Fisher and D. Dugu6 [3].

In conclusion, we indicate a method which permits the numerical determina-
tion of the maximal normal component of a characteristic function f(t) E 52; this
amounts to the computation of the constant Oo. We have seen that the function
S&e(y) is a nonnegative polynomial which assumes the value zero for some real
value y* of the variable y. Since S86(y) is nonnegative, it must have a minimum
at y = y* so that So,(y*) as well as So.(y*) are zero. To find 0o we consider the
polynomial (in y) Se(y) and determine a value of the parameter 0 for which
Se(y) and So(y) have a common zero. One forms, therefore, the resultant R(0)
of Se(y), and So(y), which is a polynomial in 0. In view of theorem 4, the poly-
nomial R(0) has exactly one root in the interval (0, 1) which leads to a minimum
of se(y), and this is the desired value 00.
We illustrate this procedure by two examples.
EXAMPLE 1. The function h2(t) = (1 - t2) exp (- 2/2) is, according to the

corollary to theorem 1, an indecomposable characteristic function. We consider
the function

(3.43) f(t) = [h2(I )] = -£2 + 4) et212 E 62

We then have m = 2,o2 = 1,XO = X2 = 1,X4 = 1/4,X1 = X3 = 0, and see easily
that c2,0 = 04- 02 + 3/4, c2,2 = 02 - 3/2, c2,4 = 1/4, whereas c2,1 = c2,3 = 0 SO
that

(3.44) Se(y) = (04 _ 02 + I + (02 3) y2 + ly4,

and

(3.45) So(y) = (202 - 3)y + y3.
An elementary computation shows that
(3.46) R(0) = 4-2(404 - 402 + 3)(402 - 3)2
The only positive real root of R(0) is 0o = 3/4. We see, therefore, that f(t)
admits, in addition to the representation (3.43) as the product of two inde-
composable factors, the decomposition

(3.47) f(t) = [ -t2 + t) e-3t2/8] [et2/S]

The factor (1 - t2 + t2/4) exp (-3t2/8) is indecomposable while exp (- t2/8) is
the normal component of f(t) which has maximal variance. This example was
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given by D. Dugu6 [1] in connection with the problem of "deflation" (see
also [4]).
EXAMPLE 2. The function h2k_l(t), given by formula (2.7), has according to

the corollary to theorem 2, a normal factor. We wish to determine the maximal
normal factor of h5(t) = [t4 -lOt2 + 15/15] exp (- t2/2). As in the previous
example, we have m = 2, a2 = 1, and see from (3.26) and (3.28) that

(3.48) c2,0(0) = 04 - .02 + 1, =22=202 - ,2 24 = s

Therefore,

(3.49) Se(y) = zzy4 + (02 2 - 2 2 + (04 - 202 + l)
and
(3.50) ~S9(y) = 4 y3 + (102 - -) y.

A simple computation shows that the resultant R(0) of these two polynomials is

(3.51) R(0) = C(1504- 1002 + 3)(504 - 1002 + 3)2

where C is a real constant. The first factor of R(0) has no real roots; the second
factor has the roots 4tV1 i4 2/vi1 so that 80 = 1 - /10/5 is the only root of
R(0) which is in the interval (0, 1). The maximal normal factor of h2(t) is there-
fore exp [t2/V1O].
Theorem 4 permits the factorization of every decomposable characteristic

function of q2 into a normal component with maximal variance and an indecom-
posable factor belonging to 92. We still have to indicate a method which permits
us to ascertain whether a characteristic function f(t) = P(t) exp (-o2t2/2) eS2
admits a decomposition of the form

(3.52) f(t) = fl(t)f2(t)
where fj(t) = Pj(t) exp (-at2j2/2) e 92, (i = 1, 2) and where PI(t) and P2(t) are
polynomials such that Pl(t)P2(t) = P(t), Pj(t) # 1, P1(0) = P2(0) = 1 while
a2f + o22 = U2. The polynomial PI(t) is determined by certain (symmetrically
located) pairs of zeros of P(t) while P2(t) depends on the remaining zeros of P(t).
If P(t) has multiple zeros, then P1(t) and P2(t) may have some zeros in common.
Let t, = a, + ib, and -f = -a, + ib,, (v = 1, 2, * * *, m) be the zeros of P(t)
where the P, need not be different. We consider now a partition of the zeros of
P(t) into two groups and investigate whether this partition can yield a decom-
position of f(t) of the form (3.52). Let P,t1, (v = 1, - * * , k) and $,,2, (J, = 1, * * ,
m - k) be this partition and suppose that the polynomials Pi(t) and P2(t) are
determined by the zeros of the first and second group respectively so that

P2(t) = l (1I2)(+ 2)

3.53) P2(t) = 1-¢)( + f-)
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are polynomials of degree 2k and 2m - 2k respectively. Let a,,, = Re t,.l,
( = 1, k,) and a,2 =Re ¢,,2, ( = 1, - , m-k) and form

2 -2(3.54) l= E a,1j
J-1

and
k

2 -2(3.55) =7 E a,,2

The functions f.j(t) = Pj(t) exp (-a2t2/2), (j = 1, 2) satisfy the condition (2.16)
and are therefore characteristic functions of 92. If a 2+ a < a2, then we choose
a2 2 a82, c2 > a2 so that a2, + a2 = .2 and obtain a decomposition of the form
(3.52). If, however, a + 2 > a2, then one has to continue the investigation in
order to arrive at a decision. According to theorem 4, it is possible to decompose
each of the functions fi(t) and f2(t) into an indecomposable factor and a normal
component with maximal variance. Let

(3.56) g,(t) = Pj(t) exp (-T2t2/2), (j = 1, 2)
be the indecomposable component in this factorization of fj(t). Clearly T72 <a2,
(j = 1, 2). If 22+ T-< a2, then one can obtain a decomposition of the form
(3.52); if, however, rT + T2> a2, then a decomposition of the form (3.52) in-
volving the partition of the zeros of P(t) into the two groups rij, * k,P and P1,2,

.*, t-k,2 is impossible.
As an illustration we give two examples.
EXAMPLE 3. We see from example 1 that fi(t) = (1 (t2/2))2 exp (-3t2/8) and

f2(t) = (1 - t2)2 exp (-6t2/8) are indecomposable functions of 92. We consider
f(t) = fi(t)f2(t) = (1 - t2/2)2(1 - t2)2 exp (-r2t2/2) where r2 = 9. It is easily
seen that for a2 = 3a the function

(3.57) g(t) = (1 - t2/2)(1-t2) exp (-a2t2/2) E 92;

however, f(t) #. [g(t)]2. We use the procedure of theorem 4 to determine the de-
composition of g(t) into an indecomposable factor and a normal factor with
maximal variance. After a somewhat tedious elementary computation we get

(3.58) R(0) = -1 (904 - 902 + 6)(1#04- 3602 + 24).

The only real root of the equation R(0) = 0 which satisfies the conditions of the
theorem is 0 = (24 - 4V30)/3; therefore 02oa2 = 12 - 2A/30. We see then that

T2/(2002a2) = 9/(8062a2) = 3(6 + V/30)/32 > 1 so that a decomposition of the
form f(t) = h1(t)h2(t) with hj(t) = (1 - (t2/2) (1 - t2) exp (p2t2/2)) is possible.
The method used in this example can also be used to show that the decomposi-

tion of the functions of 92 into indecomposable factors is in general not unique.
EXAMPLE 4. Let fa(t) = (1 - t2/2)2 exp (-3t2/8) and

(3.59) fb(t) = [1 - 2t2/(2b2)]2 exp [-3t2/(8b2)]
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with b2 = 7 + 4V'3 be two indecomposable functions of 92 and put f(t) =
fa(t)fb(t). It can then be shown that f(t) = [g(t)]2 where

(3.60) g(t) = ( - ) (1 - t2 exp [-3(2-3\/)t2] G 92

and where g(t) is indecomposable.
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