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1. Introduction

A strictly stationary process (x,' (-X < t < c) is one whose distributions
remain the same as time passes; that is, the multivariate distribution of the
random variables Xt1+h, Xt2+h, , xt.±+h is inidependent of h. Here ti, t2, * * *, t, is
any finite set of parameter values. Throughout this paper we shall assume that
the expectation Elxtl is finite, Ext = 0 and limh,o Elxt+h -Xtl = 0. Strictly
stationary processes satisfying these additional coniditions will be called shortly
stationary. Moreover, random variables which are equal with probability 1 will
be treated here as identical.

Let [x,] denote the liniear space spannied by all random variables
Xt (-oc < t < oc) and closed with respect to the mean convergence. Of course,
[x,] becomes a Banach space unider the norm 1jx1j = El'xI. MIoreover,
(1.1) lKMll < 1!x + Yfl if x and y are indepenideiit
(see [8], p. 263). It is well knowii that to each stationary process {xt} there
corresponds a unique one-parameter strongly continuous group f T,} of linear
operators in [xt] preserving the probability distribution and such that xt = Ttxo
(see [1], chapter XI, section 1). Conversely, each such group {T,} in conjunction
with a random variable y with Ey = 0 defines a stationary process xt = Tty.

Let [Xt: t < a] be the subspace of [xt] spanned by all random variables xt
with t < a. We say that a stationary process {Xtr admits a prediction, if therc
exists a linear operator Ao from [x,] onto [xt: t < 0] such that

(i) Aox = x whenever x e [xt: t < 0],
(ii) if for every y e [xt: t < 0] the random variables x and y are indepeindelnt,

then Aox = 0,
(iii) for every x E [x,] anid y E [xt: t < 0] the ranidom variables x - Aox

and y are independent.
The random variable Aox can be regarded as a linear prediction of x based

on the full past of the process {xt} up to time t = 0. An optimality criterion is
given by (iii). In what follows the operator Ao will be called a predictor based on
the past of the process up to time t = 0. The conditions (i), (ii), and (iii) deter-
mine the predictor Ao uniquely.
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It should be noted tllat Gaussian stationary processes with zero mean alwvays
admit a prediction. This follows from the fact that in this case the concepts of
independence and orthogonality are equivalent, and moreover, the square-mealn
convergence and the mean convergence are equivalent. Therefore, the predictor
Ao is simply the best linear least squares predictor, that is the orthogoinal
projector from [Xt] onto [x,: t < 0] (see [1], chapter XII, section 5). Sincee ouir
stationary processes need not have a finite variance, the problem of predictionl
discussed in this paper is not contained in the Wiener-Kolmogorov thlcory of the
best linear least squares prediction for wide sense stationary processes. Mloreover,
the Hilbert space method will be replaced here by a Banachl space method.

Let {xt} be a stationary process admitting a prediction. The predictor Ao and
the shift Ta induced by {x,} determine the predictor Aa based oni the full past of
the process up to time t = a. Namely, setting

(1.2) Aa = TuiAoT-a
and taking into account that Tt preser-ves the probability distr-ibution, anld
consequently, the independence, we obtaini a liniear operator from [x,] onito
[Xt: t < a] satisfying the followiing conditionis:
(1.3) AaX = X whenever x c [xt: t < a];
(1.4) if for every y E [x,: t < a] the random variables x and y are inde-

pendent, then AaX = 0;
(1.5) for every y e [xt: t < a] and x c [xt] the random variables x - AaX

and y are independent.
A stationary process {x,} admitting a prediction is called deterministic, if

Aox = x for every x e [xt]. Further, a stationary process {xIt admitting a pre-
diction is called completely nondeterministic, if limt- A,r = 0 for every
x c [X,].
The aim of this paper is to prove that any stationary process admitting a

prediction can be decomposed into a deterministic component and a completely
nondeterministic one. Moreover, we shall give a representation of completely
nondeterministic processes by integrals with respect to a stochastic measure.
These theorems are an analogue of the well-known Wold's decomposition and
representation theorems in the linear least squares prediction theory (see [l],
chapter XII, and [4]). Related problems for stationary sequences were con-
sidered in [17].

It should be noted that, for a given x E [x,], the prediction Aax furnishes the
best approximation of x in the norm 11 11 by elements from the subspace
[X,: t < a]. This fact is a simple consequence of (1.1) and (1.5).
We begin by proving some lemmas from which we deduce the decompositioii

theorem.
LEMMA 1.1. For a < b, the predictors satisfy the equation Aa = A aA b = A bA,.
PROOF. Since AaX G [Xt: t < b] for every x E[x], we have, by (1.3), the

relationi AbAax = AaX. Further, by (1.5), for every x C [X,] aidiy [X,: t < a],
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the ranIdom variables x - Abx and y are independent. Hence, by (1.4), A0x -
AaAbX= 0, which completes the proof.

For any bounded semiclosed interval (a, b], we put
(1.(i) A ((a, b]) = Ab- A_
AMoreover, we putt A((-oc, b]) = A b-
LEMMA 1.2. FoIr every pair J1, J2 of intervals, the equation

(1.7) A(J1)A(J2) = A(J1 n J2)
holds. Moreover, for any system 11, I2, * , I,, of di.sjoi7t intervals and yi, Y2, * *
yn e [xt], the random variables A (I,)yl, A (I2)y2, A (I,,)yn are independent.
PROOF. Formula (1.7) is a simple consequence of lemma 1.1. Suppose that

Ij = (aj, bj] where

(1.8) -°° < a, < bi < a2 < b2 < .< a, < bn.
1or every systeml tl, t2, *, t,, of real numbers we pult Zk = _'=+-1I tjA(Ij)y;,
(k = 1, 2, **, n-1). Firom (l.8) and lemma 1.1, we get the formula AbkZk = ()
Sinlce A (I*)yk e [.t: t . bij, we infer, by (1.5), that the random variables Zk
and A (Ik)Yk ar'e iindepenldeint. Consequently,

(1.9) Es'exp (i Y t,A(Ij)y;) = E exp (itkA(Ik)yA)E exp (i E tjA (Ij) yj)
j=kj=+

Henice, by inductioni, we get the equation
n \ 7

(1.10) E exp i Y tjA(Ij)yj ) = IIE exp (itjA(Ij) yj).j=l j=1

Tlhus, the multivariate characteristic function of the random variables A (Ij)yj
A (12)y2, , A (I,)y0 is e(quial to the product of their characteristic fulnctiolls'
Heince, we get the inidependenice of these ranidom variables which completes tlle
pr oof.
LEMAIA 1.3. There eaisis a linear operator A_x on [X1] commuting with the

operation1s T, such that for every x e [Xt], limt_O A tx = A_x.
1RIOOF. Given an element x c [x,] and a sequence to > tl > t2 > ... tendinlg

to --c, wve put Ij = (tj-,, tj] and zj = A(Ij)x, (j = 1, 2, * *.). By lemma 1.2.
the raiidom variables zi, z2, -- , zn and Atnx are indepenidenit. Since At,x =
1_% zj + Atj, and, consequently, by (1.1), h.= m zjll < HjAtoxlj, (n = 1, 2,

the series 5' zj converges in [x,] (see [I], p. 3:38). Hence, it follows tllat
1imiin Atnx = A_>x exists. It is clear that A-, is a linear operator. Further,
from (1.2) we get the formula TA0l = A1t+±0Tt which implies UA- = A_:T,.
'lhe lemma is thus proved.
We say that two processes {x} anid {x'} are independent, if the random

variables y' and y" are independent whenever y' G [xt'] and y" c [xt'].
Now we shall prove the decomposition theorem.
THIiEOREM 1.1. Each stationary process admitting a prediction is the sum of two

indlependent stationary processes admitting a prediction, one (leterministic and the
other comslpletely nondeterminlistic.
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PROOF. Let {xtx' be a stationiary process admitting a predictioni and let A,
be its predictors. The limit operator A-. defined by lemma 1.2. satisfies, in view
of lemma 1.1, the equation
(1.11) ~~~Aa,A_x = A-xAa,= A_x cco < a < oc).

Consequently,

(1.12) (1-A_)2 = I A_,
where 1 is the unit operator. Setting xi = A-,x, and 4,' = (1 - ,_)x,, we have
the formula xt = xi' + xi". Moreover,

(1.13) [x4] = A-[x,], [x'] = (1A- )[],
[x: t < 0] = A_x[x,: t < 0], [4': t < 0] = (I- A-,)[xt: t < 0].

By (iii) and (1.13), the processes {x'} and {x"4 are inidepenidenit.
Further, Txox = xt and Ttzx = x'. Thus both processes {x},- and {'x'} are

stationary. It is very easy to verify that Ao, restricted to [x4] and [x4'], is a
predictor of {4x and {4x', respectively. By (1.11) and (1.13), Aox = x for all
x [4']. Consequenitly, the process {x4) is deterministic. If y E [x'], then,
by (1.11), (1.12), and (1.13), A,y = (A, - AiL)y, whenice the relation
limt- A ty = 0 follows. Thus the process .x"'} is completely nondeterministic,
which completes the proof.
The next section will be devoted to the study of stochastic measures which

wvill be used in the representation of completely nonideterminiistic processes.

2. Stochastic measures

Throughout this section X will denote an arbitrary Banach space conlsistinig of
random variables x with zero mean and with the norm llxll = Elxl.
An X-valued stochastic measure M is a function defined oni the rinig R of all

bounded Borel subsets of the real line, having values in the space X, anid such
that for disjoint sets El, E2, * .. , E,, c R, the random variables M(E1), M(E2),
* , M(E,,) are independent and M(U, 1 Ej) = I,=1 M(E)) for every se(luence
E1, E2, * of disjoint sets in R whose union is also in R.
By (1.1), for any stochastic measure M we have the inequality

(2.1) flM(E1) l < 11M(E2)11 if E1 C E2.
Hence, and from general results concerning vector-valued measures ([2], lemma
4, p. 320 and lemma 5, p. :321), it follow-s that to every stochastic measure 31
there corresponids a nioinnegative Borel measure yi on R such that

(2.2) 1,(E) < IIM(E)lI, (E c R)
and

(2.3) HIM(E)1 -*0 whenever the sets E are bounded in common and
y (E) -o0.



PREDICTION PROBLEMS 239

We now proceed to the definition of integration of scalar functions with respect
to the stochastic measure M. An M-null set is a countable union of subsets of sets
E E R with M(E) = 0. Of course, this is the same as a A-null set. The term
M-almost everywhere refers to the complement of an M-null set, and is hence
synonymous with the term iA-almost everywhere. A scalar valued function de-
fined on the real line is said to be simple if it is a finite linear combination of
indicators of sets in R.

If f is the simple function _=, CjXEi, Where E1, E2, E, En E R, then the
integral of f over a set E E R is defined by the equation

1^ ~~~~n
(2.4) f (u)M(du) = E cjM(E n Ej).

j=1

A scalar valued function f is said to be integrable over the real line with respect
to M if there exists a sequence {ff} of simple functions convergent to f, M-almost
everywhere such that the sequence {fE. f (u)M(du)} converges in the norm of
X for each increasing sequence E1 C E2 C ... of sets in R. The limit of this
sequence of integrals is defined to be the integral of f over the set E = Un= 1 En
with respect to M, in symbols

(2.5) ff (u)M(du) = lim fE f.(u)M(du).

This definition is a slight modification of a commonly used definition of inte-
gration with respect to a vector valued measure (see [2], p. 323) and coincides
with it if E E R. One can prove that the integral in question is an unambiguously
defined element of the space X.
By L(M) we shall denote the space of all real-valued functions integrable over

the real line with respect to the stochastic measure M. Obviously, L(M) is a
linear space. In the sequel we shall identify functions in L(M) equal M-almost
everywhere. We shall prove that L(M) is a Banach space under a suitably chosen
norm.
LEMMA 2.1. If fi, f2, * , f,, E L(M) and E1, E2, * , Et, are disjoint Borel

sets, then the random variables

(2.6) IE f1(U)M(dU), IE f,(it)M(du), ff*,|E (u)M(du)
are independent.

PROOF. For simple functions the result is clear. In the general case it follows
from the convergence theorem for independent random variables and the defi-
nition of the integral.
LEMMA 2.2. If Eo e R, f E L(M) and If(u)I > c > 0 on Eo, then

jIM(Eo)jI < 4c-'11f f (u)M(du)
PROOF. Put Mo(E) = f. f (u)M(du). Let F be a linear functional in X. De-

noting by V0 and V the variation of the scalar measures F(Mo(E)) and F(M(E)),
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respectively, -e have the formiula T0(L') = JE If(u)I V(du) for every set E e R
(see [2], p. 114). Consequently,

(2.7) V7o(Eo) 2 cV(Eo) 2 cIF(M(Eo))j.
Further, by lemma 5 in ([2], p. 97), wi-e have the inequality

(2.8) VTo(E() < 4 suip IF(M,,(E))I < 4IPF!i sup !lIo(E)I.
E. _ Fe oOF.EcEo

Since by (2.1) and lemma 2.1 supjEcEO,lM(jMo(E)l = JjMo(Eo)!', the inequalities
(2.7) and (2.8) imply cIF(M(Eo))j < 411Fl HIM,lo(Eo)II for all lineal functionals F.
Hence, we get the inequality
(2.9) IIM(Eo)Il = sup IF(M(Eo))l < 4c-'MiVo(Eo)j,PiFri = I

which completes the proof.
By [M] we shall denote the subspace of X spanned by all random variables

M(E), (E e R).
THEOREM 2.1. For every stochastic nicasure M the equation [M] =

{I% f (u)M(du) :f L(M)} holds. Moreover, cach clement of [M] is uniquely
representable as an integral frx f (u)M(du).
PROOF. The inclusion [M] D { f(u)M(du:f G L(M)} is evident. To

prove the converse inclusion it suffices to show that the linear manifold

.frx f (u)M(du):f c L(M)} is closed in X. Suppose that fl, f2, E. L(M)
and the sequence of integrals {ff fn(u)Ml(du)} converges in X. By (1.1) and
lemma 2.1, for any Borel set E we have the ine(quality

(2.10) fJ, (.fKu) - fr(u))M(du)|| < fI_ (fK(it) - f,(t))M(du)ll
Denoting by ,u the nonniegative measure satisfying (2.2) and (2.3) and setting
E,nm(c) - {u: fn(u) - fm(u)I 2 c} for any positive constant c, we have, by virtue
of lemma 2.2 and (2.10), the inequality

(2.11) ,u(E nETEnn(c)) < |IME n En77,(c))l < 4c- f (fu(u) -fm(u))M(d7t)

for all E e R and n, mn = 1, 2, * - . Heince, it follows that the se(luence f,n} is
fundamental in measure ,u on every set E E R. Thus there is a ,u-measurable
function f such that limn - fn = f in measure A oni every set E e R. Passing, if
necessary, to a subsequence, we may assume that ff} converges to f /A-almost
everywhere, and consequently, M-almost everywvhere. Further, for every Boirel
set E ec put Nn(E) = fEff(u)M(du), (n = 1, 2, * .). Of course, Nn is a
stochastic measure whose domain is the field of all Borel subsets of the real line.
Moreover, by (2.10), for each set E the sequence {Nn(E)} is fundamenital in X,
and consequently, converges to an element N(E) of X. By the generalized
Nikodfm theorem (see [2], p. 321), the set function N is a stochastic measure
defined on the field of all Borel subsets of the real line. Moreover, by Vitali-Hahin-
Saks theorem ([2], p. 158), lim,,X Nnl(E,) = 0 wvhenever limn- iA(E,,) = 0 ani(l
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Un'i En E R. Hence, and from the convergence theorem in ([2], p. 325), it
follows that the function f is M-integrable over every set E E R and

(2.12) N(E) = lim f fn(u)M(du) = fE ()
n-

Ef EuM(d)

Since by lemma 2.1 the integIals fE,.f(u)M(du) are inidependent for disjoint sets
El, E2, * E R and the series In= f,J (u)M(du) is convergent in X to
N(Un= En), we infer that the fuilction f is M-integrable over the whole line anid
that the limit limnln- f .i fn(u)M(du) = f. f(u)M(du). Thus the set

ffJ'. g(u)M(du): g e L(M)} is closed in X, which completes the proof of the
first statement.
The uniqueness of the integral representation for elements of [M] is a conise-

quence of lemma 2.2. Indeed, if f2T. f (u)M(du) = fJ. g(u)M(du) and E(c) =
{u: If(u) - g(u)I 2 c}, (c > 0), then lemma 2.2 and a reasoninig based on ani
analogue of inequality (2.10) yield the formula M(E (nE(c)) = 0 for all sets
E e R. 'lhus, the set {u: f(u) F$ g(u)} is an M-null set which completes the
pr oof.
As a consequence of theorem 2.1 we get the following corollary.
COROLLARY. The space L(M) becomes a Banach space under the norm

lf Ilo = 11 Jf2 f (u)M(du) 11.
Let Ro be the class of all bounded, semiclosed intervals of the form (a, b]. Ali

X-valued function N defined on Ro is said to be a stochastic interval function if
the random variables N(11), N(I2), X N(In) are independent for every system
I,, I2, - * *, In of disjoint intervals from Ro, N(J1 U J2) = N(J1) + N(J2) when-
ever J1 and J2 are disjoint with J1 U J2 E Ro and lim,-b+ N((a, c]) = N((a, b])
for all intervals (a, b]. It is clear that each stochastic measure on R induces a
stochastic interval function on Ro. In the investigation of completely non-
deterministic processes the following extension theorem will be used.
THEOREM 2.2. If N is an X-valued stochastic interval function on Ro, then

there is a unique X-valued stochastic measure M on R such that M(E) = N(E)
uwhenever E e RO.

PROOF. Setting N(U, I Ij) = Y_% N(Ij) for disjoinit initervals I, I2,
In E Ro, we extend the function N onito the ring R* consisting of all finite unions
of intervals from Ro. We shall prove that N is countably additive on R*.

First we note that, in view of (1.1), the inequality
(2.13) JIN(EI)lI <.IN(E2)l1 for E1 C E2
holds. Further, for any linear functional F in X we define a scalar-valued set
function NF(E) = F(N(E)) on R*. Of course, NF is finitely additive on R* and,
by (2.13), is bounded on every finite interval. Moreover, lim,-b+ NF((a, c]) =
NF((a, b]). Hence, it follows that NF is of bounded variation on every finite
interval (see [2], p. 97). Consequently, it is countably additive on R*. Let
E1, E2, * * * be a sequence of disjoint sets from R* with Un_ En e R*. By (2.13)
we have the inequality
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(2.14) E N(E,)i| <.N (NQJE_) (k = 1, 2,* * ).

Hence, and from the independence of N(E1), N(E2), , it follows that the
series Zn=l N(E ,) converges in X (see [1], p. 338). Sinice

(2.15) F ( N(E)) _ F(N(E,,)) = F (AT (0Ui))

for all liniear functionials F in X, we have the e(uatioii n N(E,,) =
N(Un'=1 EJ), which showvs that N is countably additive oii R*.

Further, if El, E2, . is an arbitiary sequence of disjoint sets from R* with
the union belonging to R, then, by (2.13), we have the irnequality

(2.16) .1 I=i|(I)fl, (k = 1, 2,
where I is an interval from Ro containiing all the sets El, E2, *-- . Hence, and
from the indepenidenice of N(Ei), N(E2), ... , we get the convergenice of the series
_n=1 N(E,,) in X (see [1], p. 338). Consequently, by Pr6kopa's extension

theorem ([15], theorem 3.2, p. 243 and section 7) there is a uni(lue random valuled
set function 31 on R such that 31(E) = N(E) wheniever h e R*, and for aiiy
sequence El, E2, - of disjoint sets from R with the uniioni in R, the random vari-
ables Ml(EI), 31(E2), arc independent and

(2.17) 31 U( EW,) = I(E,,)

where the series converges with probability ]. Since 3!(E) anld M(I\E) are
independent and 31(E) + M1(I\E) = N(I) whenever I e R* anid E C I, the
random variables 1M1(E)I, (E c R) have a finite expectation. Thus, by theoreii
5.2 in ([1], p. 339), the set function M(E) - ELI(E) is a stochastic measure oln
R whose restriction to R* coincides with N(E). Now, takinig into account the
uniqueness of the extension M, we infer that EM1(E) = 0. Hence, by simple
reasoning, we get the relation 31(E) e X for all E e R. Thus M3l is an X-valued
stochastic measure, which completes the proof.

3. Homogeneous stochastic measures

Let {T,} be a one-paiameter stronigly contimiuous group of operators in X
preserving the probability distribution. An N-valued stochastic measure .11 is
said to be {Tt1 -homogeneouts if for each set E G R the e(quation Tt.ll(1) =
31(E + t), (-x < t < x) holds. Here E + t denotes the set tu + t:ueEE'
It is clear that each N-valued {T',l-homogeneous stochastic measure l/ induces
aln X-valued homogeneous stochastic process {ytj wvith independent inicrements,
continiuous in the sense of meain convergenice anid such that

(3.1) 31((a, b]) = Yb - Y',, (a < b).
Conversely, by theorem 2.2, for any X-valued homogeneous stochastic process
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{yt} with indepelndeint values and continuous in the sense of meani convergence,
formula (3.1) uniquely determiines an X-valued {Tt}-homogeneous stochastic
measure 11.

Let 11 be an X-valued {Tt}-homogeneous stochastic measure. By the Levy-
Khintchine representation of infinitely divisible distributionis, the logarithm of
the characteristic function h(v, E) of 3I(E), (E G R) is given by the formula

(3.2) log h(v, E) = ic[lEv + |E | (eivi - 1 - iv2 1 +2t dG(u),J~~\ 1~~+U ) U-2
where G is a bounided monotonie nonidecreasing cointinuous oII the right function
with G(-X0) = 0, c is a real constant, and E denotes the Lebesgue measure of
the set E (see [1], p. 419). Further,

(3.3) IjlI(E)fJ = EJ1I(E)j = - f 1- Reh(v, ) dv

(see [6], theorem 4.1, p. 274). Oine cain easily prove that Ej.Ml(E)l is finite if and
OIlly if JD jul dG(u) is finite. Moreover, EM(E) = 0 if and only if c =

-rf_' u dG(u). Thus, by (3.2), h(v, E) is the characteristic funiction of 3[(E)
for an X-valued {7TJ-homogeneous stochastic measure 11 if and only if

(3.4) log h(v, E) = Eij'u( -1- j+u3- + 12 ± U2 dG(u),1+ u12 1 2

where G is a monotone nonidecreasiing conitiinuous oni the right function with
G(-oo) = 0 and fJX Jul dG(u) < oo. Moreover, formula (3.4) determines the
function G uniquely.
From (3.3) and (3.4) it follows that 31(E) = 0 if and oinly if 1EJ = 0 for anly

measure 31 which is not identically equal to 0. Tlhus, for such measures the class
of 31-null sets coincides wvith the class of all sets of Lebesgue measure 0.

In this sectioni we shall give a complete description of the spaces L(.1) for
{T,} -homogeneous stochastic measures Jf. First of all, we shall quote the
definition of Orlicz spaces which are a natural generalization of the L'-spaces
(see [9], [11], and [14]).

Let 4 be a monotone nonldecreasing and continuous for u > 0 funietion vanish-
inig only at u = 0 and tending to co as u -x cc. Two such functions 4 and T are
called e(luivalent, in symbols 4- +, if a41(bj1u) < T(u) < a4(b.zu) for all
u > 0 and for some positive constants a,, a., bi, and b2.

Let A(b) be the class of all Lebesgue measurable funietionis f definied on the
real linie for which the integral fXx 4('f(u)J) du is finite. Moreover, we denote
by A*(s) the class of all functionsf such that af E A(b), a beinig a positive nuin-
ber, in general depending on f. The space A* (¢) is linear and A(4) is its convex
subset. In the space A*(4), a nonhomogeneous norm can be defined as follows:

(3.5) ILfW1 = inf f%c:f 4(c-11f(u)j) du < c}.
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The space A*(bP) becomes a complete linear metric space under this norm and is
called a generalized Orlicz space. If, in addition, the function 4) is convex, then
A*(4)) is called an Orlicz space. In this case, A*(4)) is a Banach space or, more pre-
cisely, a homogeneous norm equivalent to 11 11, can be introduced in A*(41). Of
course, two equivalent functions 4) and T define the same generalized Orlicz
spaces.
We say that the functioin 4 satisfies conditioni (*) if there is a positive colnstaiit

c such that

(3.6) u24)(v) < cv24)(u) for all v > it > 0

and

(3.7) lim 4)(u) = 0.
u-O+ u

It is clear that the equivalence relation preserves conditioni (*). It is very easy
to verify that the functions uP (1 < p < 2), (1 + u) log (1 + u) - u, and

(3.8) b( ) {u9 if 0 < u <1

satisfy conditionl (*).
In the sequel the stochastic measure identically equal to 0 will be called trivial.

The following theorem gives a complete description of the spaces L(M) for
nontrivial {Tt}-homogeneous stochastic measures M1.
THEOREM 3.1. For every nontrivial {T,}-homogeneous stochastic measure -11

there exists a convex function 4) satisfying condition (*) such that L(M) = A*(4)),
and consequently, L (M) is an Orlicz space. Conversely, to every convex function 4)

satisfying condition (*) there corresponds a nontrivial {7T't-homogeneous stochastic
measure M1 such that L(M) = A*(4)). Moreover, if G is the Levy-Khintchinefunction
corresponding to M, then

(3.9) 4)(u) - u f| min (u, 1vL-')(1 + v2) dG(v).

PROOF. First we note that, without loss of generality, we may restrict
ourselves to symmetrically distributed stochastic measures. In fact, given
an arbitrary {1'}-homogeneous stochastic measure Mk, we put Mo(E) =
M(E) - MI'(E), (E e R), where Ml' and M are independenltly and identically
distributed. It is easy to verify that Mllo is a symmetrically distributed {TJ-
homogeneous stochastic measure aiid L(.llo) = L(3M).

Let M1 be a nonitrivial symmetrically distributed {T,' -homogenieous stochastic
measure and G its LUvy-Khintchine function. P'ut

(3.10) H(v) = f (1-cos vu) u+ u dG(u).

From (3.4) it follows that the characteristic function h(v,f) of the integral

f_ f(u)M(du), (f e L(M1)) is giveII by the forlmula



PREDICTION PROBLEMS 245

(3.11) h(v, f) = exp (- j H(vIf (u) |) du).

Moreover, by theorem 4.1 in ([6], p. 274),

(3.12) lif llo = f f(u))M(dnt) 2=- - h(v, f) dv.

Setting

(3.13) 'I(u) =u (full 1 C-COS TV (d) I + v2 dG(v),1172 ~~~lvi
we obtain a monotone nondecreasing continuous function for u> 0 vanishing at
the origin only and tending to oo as u -- oo. One can prove the existence of a
positive constant c such that the inequality

(3.14) y-1 cos dv < cx-1 x CosV d?V

is true for all y > x > 0. Hence, and from (3.13), we get the inequality v-2 (v) <
cu-2T(u) for all v > it > 0. Consequently, the functioni T satisfies inequality
(3.6). Moreover, by (3.1:3), lim.-o+ T(u)/u = 0. Thus the function '1 satisfies
condition (*).
Now we shall prove the equation L(M) = A*(w). Given a positive number a

and a function f c L(M), we put m(a,f) = mino.<<a h(v,f). Taking into ac-
count (3.1 1) and (3.12), we get the inequality

(3.15) flfIlo 2 .ja I h(v,f) (Iv > 2m(a,f) f v_ f H(vlf(u)!) du dv

2m(a, f) T (alf (it) I) df.iraJ

Consequently, f e A*(w). Moreover, by (3.5),

(3.16) Ilf!II* < a-' whenever lIfflo . 2m(afira2
Since the mean convergence implies the convergence in probability, we infer that
limn, m(a,f) = 1 for every a > 0 whenever limn- I1fnIIo = 0. Consequently,
by (3.16), the convergence in the norm 11 llo implies the convergence in the norm
11 II* in L(M). Further, from (3.11) and (3.12), by a simple computation, we
get the inequality

(3.17) Hlflo < 2 ja 1 -h(v,f) dv + < 2 ja v-2 H(v If(u)) du dv

+ 4- < 2
T (a If(u)!) du +

4

which, by (3.5), implies the relation

(3.18) IlfIo .< - If +l±ifil
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Thus both norms l aloaid 1! arc equiivalet in L(.1[), and coniSC(luently,
L(M) is complete in the norm fli,.
From condition (*) we get for all u > 0 the inequality '(2u) < 4cI(u), that

is, the A2-condition for 'I'. Consequenitly, the set of simple funcetions vanishing
outside a finite initerval is dense in the space A*(4) (see [11], theorems 3.5 and
.3.52, p. isa and theorem :,.,:, p. 15(i). Siinee all simple funetions vanishing out-
side a finite initerval are Ml-initegrable, the set L(.l) is dense in A*(4F). Conse-
(luently, L(M) = A*(,F) because of completeiiess of L(.1M) ini the norm || lII.
Further, the niormi i e(luivalent to 1 , is homogeneous. Thus, by the
Mazur-Orlicz theorem ([14], theorem 6, p. 119; see also [13], theorem 2.3, pp.
I10-111), the functioni * is e(uivalent to a monotonie noniderclasing continuous
convex function 4. Of course, the funietion + also satisfies condition (*), and
L(3l) is the Orlicz space A*(4). AMorcover, from (3.13), by standard arguments,
we obtain (:3.9).
Now suppose that b is a moniotone nondecreasing coiivex conitinluoUs funlctioln

satisfying condition (*) and tending to xas u -x o. Theni the function Qo(I) =
4(u)/ut is monotone nondecreasinig and continuous for u > 0. MNoreover, by
condition (*), Qo(0) = 0 and (Qo(v)lv) < c(Qo(u)/u) whenever v > it > 0. Con-
se(quently, by theorem 2.7 in ([12], p. 333), there exists a concave nondecieasinig
continuous function Q with Q(0) = 0 equivalent to Qo. Let q be the right-sided
derivative of Q. Since Q(u) > uq(u), we have the formula lim.-o+ uq(u) = 0.
MWoreover, q(ui) tends to a finiite limit as it x. Hence, it folloNvs that both
integrals

2 r(3.19) f 1 U+ lq(ut) and f +-4 (dq(u)
are finite. Put

(3.20) a lim q(Qi), b , 1 +l2 d()

and

{32)a±+bh- f| -tru q(2i) if v > 0

+ 2 - -., (1(U(11) if v < 0.

The functioin G is bounded monotonie iionidecerasiiig anid G(-0) = 0. Mforeover,
the finiteness of JoX (?t/I + ub2) (dq(u) implies the existenice of the absolute
momenit J-x. lutl dG(u). Coiisequently, G is a L6vy-Khintchinie functioln for a
nonitrivial {Ttl-homogenieous stochastic measure .1l. Byv simple conmputations
w-e get the formula

(:3.22) u f miii (II, jvj ')(l + v2) (dG(v) = uq(i) -+(t),
which, by (:3.9), gives the eqjuation L(.l!) = A*(F). The theorem is tlhus proved.

It should be noted that the function D define(l by (3.8) correspoid.,s to Poisson
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stochastic measures. Moreover, it corresponids to stochastic measures for wvhich
both initegrals J.o. it2 dG(u) and fz% dG(u)/jul are finite. Further, the function
4(u) = uP, (1 < p < 2) corresponids to a stable stochastic measure with ex-
ponenit p.

4. Completely nondeterministic processes

Throuiglhout this sectioin {x,}- will deniote a completely nioindetermiiiistic
pr)ocess. The process, idenitically c(Jual to 0, is ol)viously completely iiol(letermill-
istic. It will be called trivial.
The predictors 'A,}- of {x4 definie the family A (I)'- (I e R,) of operators in

[.x,] by means of formula (1.6). Taakin1g into account the defiliition (1.2), we have
the equation
(4.1) T,A (I) = A(I + t)TY.
Mloreover, by (1.1) aind lemma 1.2, for any x e [x,],
(4.2) J!A(I)xj! < ||A(J)x| whellevel I C J.
Since for t < 0, xo = A((t, 0])x,o + A,xo anid limt- At.xo = 0, we lhave the
relation xo e [A(I)x: I G Ro, x G [x,]]. Consequently,
(4.3) [Xt] = [A (I)x: I Ro, xx [xj].
LEMM.A4.1. Let F be a linear fntctional in [Xt], g a scalar continuots funlction

with g!(0) #- 0, and y an clement of [Xt]. Iffor all I, J E Ro contained in the interval
(0, a] the equation

(4.4) F(A(I) f a

(t)T,A(,J)J (It) =O
hol(ds, then F(A ((O, a])!i) = 0.

PROOF. AW-e niote that the initegral in (4.4) is takeii in the senise of Bochnier
(see [5], p. 78). Given e > 0, there exists, in virtue of (1.6) alnd (4.1), a decomi-
positioni of the initerval (0, a] inlto disjoint initervals I1, I2 * * , I, belolngilng to
Ro such that
(4.5) imiax JIA(1j)yIl < e.

1\loreover, we may assume that the length of these initervals is so small that
lIjl + h < a (j = 1, 2, .*. , n), where h is a positive iiumber less thani a. l'ut
Jj = (aj- h, bj + h] n (0, a] if Ij = (aj, b1j]. Since, by (1.7) anid (4.1),
A (Ij)'T,A(.Jj) = 0 whenever Itl > lIjl + hi, w-c have the formultila

(4 6) A (Ij) I1jI+h<t.<a q(t) TtA (.Jf)y (It = 0.

Coiise(lueiltly,

(4.7) A (I) faa (t)T,A (Jj)! (It = A (Ij) f, g(t) T,A (.j)y (it

+ *-1 (Ij) fl, <1tj <!,-I -h (J(t) TA(Jj)! (it.
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Further, by (1.7) and (4.1), A(Ij)T,A((0, a]\Jj) = 0 vhenever Itl < h, anid
consequently,

(4.8) A (Ij) f h g(t) T,A ((O, a])y dt = A (Ij) fh g(t) TYA (JD)y dt,

w-hich together with (4.7) implies the formula

(4.9) A ((0, a]) f g(t) T,A ((0, a])y dt = A (1j) g(t)TA (Jj)y dt

[a ,, f

A(Ij) g(t)TtA(Jj)y dt - : A(Ij) I g(t)TtA(Jj)y dt.
j=1 J-a j=1 h<tl <!Irl+h

Henice and from (4.4) we get the equation

(4.10) F(A((O, a]) f q(t)T,A((O, a])y dt)

= - FF(A (Ij) f g(t) T1A (Jj)y dt)-j= 1 h11<jIjj<i+h
But, in view of (4.2) and (4.5),

(4.11) J|A(Ij) fh[<[+ q(t)TtA(Jj)y dt!
< fh<tj<IjI+h g(t)||A(Ii n (Jj + t))yll dt < eqjIjj

where q = maxltl<a lg(t) 1. Consequently,

(4.12) JF(A((°, a]) fhh g(t)TiA((0, a])y dt) < eqaJIF11.
Since E cani be chosen arbitrarily small, the last inequality implies

(4.13) F(A ((o, a]) fhh g(t) T,A ((0, a])y dt) = 0

for all positive numbers h less than a. Henice, dividing by 2h anid passinig to the
limit as h -* 0, we obtain, in view of the assumption g(0) 5$ 0, the equation
F(A((0, a])y) = 0, which completes the proof.
LEMMA 4.2. Suppose that the process {x} is nontrivial. The stochastic interval

function Mo, defined on R0 by the formula

(4.14) Mo((a, b]) = A((a, b]) e-'Ttxo dt,

can be extended to an [xi]-valued stochastic meastre otn R. T'he class of M0v-nill sets
coincides w-ith the class of Lebesgue null sets. Mlloreover, for anty interval I e Ro, the
equation

(4.15) [Mo(J):J e R0, J C I] = A (I) [x,]
holds, and for E E R, f e L(Mo),

(4.1 A (I) fEf
n

= iEc' f ( 1t)-Mo(du)
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PROOF. Since Aoxo = xo, for all numbers c less than a, wve have the equation

(4.17) A((a, b]) [a e-ttxo dt = 0.

Consequently,
(4.18) Mlo((a, b]) = A((a, b]) | c-T7,X.0 dt, (c < a)

Hence, in particular, it follows that M0o(J1 U J2) = 310(JI) + 1110(J2) for disjoint
intervals J1, J2 with the union in Ro. Moreover, by lemma 1.2, the random
variables MO(I), MO(I2), * , Mo(In) are independent whenever II, 12, ... , In,
are disjoint. Further, from (1.2) and (1.6), the relation limn1,b+ Mo((a, c]) =
Mo((a, b]) follows. Thus Mo is really a stochastic interval function on Ro. By
theorem 2.2, it can be extended to an [xt]-valued stochastic measure Mo on R.
Moreover, this extension is unique. From (4.1) and (4.18), we get the equations
A (I)M0(J) = Mo(I n J), T,Mo(I) = e'Mo(I + t) for all I, J E Ro. Hence,
taking into account the uniqueness of the extension of MO onto R, we obtain the
equations

(4.19) A(I)M0(E) = Mo(I n E), T,Mo(E) = e'Mo(E + t),
(I eRo, E ER).

As a consequence of the first equation, we get formula (4.16) for simple functions.
The general case can be obtained by an approximation of M0-integrable functions
by simple ones.
Now we shall prove the relation

(4.20) A((a, b]) f e-tetx dt e [ATo] for all x e [x,:t < 0] and a < b.

First we observe that the set of elements x satisfying (4.20) is a subspace of the
space [xi]. If h < 0, then by (4.18),

(4.21) A ((a, b]) f e-'TtThxo dt = ehA ((a, b]) fa+h e-'Ttxo dt = ellfo((a, b]),

and consequently, all elements Thfxo with h < 0 satisfy (4.20). Thus all elements
x C [xt:t < 0] satisfy (4.20).
The inclusion [lIo(J): J E Ro, J C I] C A (I) [x,] is obvious. By the second

equation (4.19), it suffices to prove the converse inclusion for intervals I of the
form (0, a]. Suppose that there is an element y in A ((0, a]) [xt] which does not
belong to [Mo(J): J E Ro, J C (0, a]]. There exists then a linear functional F
on [x] vanishing on [Mo(J): J E Ro, J C (0, a]], and such that F(y) = 1.
Given two intervals I, J C Ro contained in (0, a], we put

(4.22) z(I, J) = eaA (I) fo e-ITtT_aA (J)y dt.

Since T_aA(J)y e [xS: t < 0], we have, by (4.19) and (4.20), the relation

(4.23) z(I, J) C [Mo(U): U c Ro, U C (0, a]].
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(4.24) F(z(I, J)) = 0.

Further, from the equation A ((O, a]) T,A (.J) = 0 for t > a we get the formula

(4.25) z(I, J) = A(I) J c-'T,A (J),y dt.

Hence, by (4.24) anid lemma 4.1, we get the e(quation Fl+(A ((0, a])y) = 0. But
A ((O, a])y = y, and consequently, F(y) = 0, which contiadicts the equation
F(y) = 1. Formula (4.15) is thus proved.
By (4.3) and (4.15), the stochastic measure 31o is not identically equal to 0.

Consequently, the nonnegative measure go associated with Mo and satisfying
conditions (2.2) and (2.3) does not vanish identically. From (4.19) it follows that
the class of Mo-null sets, and consequently, gO-null sets is invariant under trans-
lations. Thus, it coincides with the class of Lebesgue null sets (see [3], chapter
IV, section 5) which completes the proof of the lemma.
THEOREM 4.1. For each completely nondeteriministic process {XSt} there exists

an [x,]-valued {Tt}-homoyeneous stochastic measure 11 such that for any interval
I Ro,
(4.26) [31I(J): J e Ro, J C I] = A(I)[x,].
PROOF. For a trivial process {xt} the trivial measure 31 satisfies the assertion

of the theorem. Suppose that the process {xt} is nontrivial. First we shall prove
that there exists an element yo belonging to A ((O, 1]) [x,] such that

(4.27) A ((O, 1]) f-1 YT1yo dt F# 0.

Contrary to this, let us suppose that A ((O, 1]) f|_YTz (It = 0 for all z E

A((O, 1]) [xt]. Given an element y $d 0 in A((O, 1]) [x,], there is a liiear functional
F on [x,] with F(y) = 1. Since for any interval J e Ro anid containied in (0, 1],

A((O, 1]) f-1 TtA(J)y dt = 0, we have, by (1 7), A (I) f|1 T,A (J)y (it = 0 for

all intervals I e Ro and contained in (0, I]. Hence, by lenmma 4.1, F(A((O, 1])y)
= 0, which, in view of the formula A ((O, I])y = y, contradicts the eqiuation
F(y) = 1. Thus (4.27) holds for an elemenit yo in A((O, I]) [xt].
Put

(4.28) 31l((a, b]) = A ((a, b]) b- 7Y'to (it.

Taking into account the formula A ((O, 1])yo = yo, we get the eqiuation

(4.29) 31((a, b]) = A ((a, b]) fd"yo (it

for d > b and c < a - 1. Hence, it follows that JM(J1 U J2) = M11(11) + [.1(J2)
for disjoint iiitervals JI, .12 with J1 U J2 e Ro. MIoreover,
(4.30) A(I)31(J) = 1l(1 n J)

for all I, J E Ro. The relationi liMc-b+ M1((a, c]) = 3!((a, b]) is evideent. Conse-
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queintly, by lemma 1.2, M1 is a stochastic iinterval funietioni onl Ro. By tlheoremi 2.2,
it can be extended to a stochastic measure Al on R, anid this extension is uli(lue.
By (4.1) and (4.28), T,A(I) = JI (I + t) for I e Ro. Taking into account the
uiniqueness of the extension we lhave the formula TIAI(A') = M1I(E + t) for all
E e R. Thus, the stoclhastic measure .1I is {'T , -homogeneous. Fuirtlher, from
(4.30), we get the inclusion
(4.31) [31(J): J e Ro, J C I] C A(I)[xt].
Let f10 be the stochastic measure definled by formula (4.14). From formulas
(4.15), (4.16), (4.30), (4.31), anid theorem 2.1, we get tlhe existence of a fuilctioi
f E L(Mo) satisfying the e(quationi

(4.82) .11 () =JI g(u)310(dii)

for all A' e R. Sinice by (4.27) 3! ((O,1])I # 0, the class of 31-null sets is tlle class of
sets of Lebesgue measure zero, anid conise(fuently, coinci(des with the class of
3llo-niull sets. Th'luis, the funictioni g differs fromii 0 almost everywhere Awith respect
to both measures 31 anid 3I,. From (4.32) we get the formula

(4.338) f f(n ) 1J (di ) = Jf(i)y(u)3(1I)0(du)
for all sets E E R anid all simple functions f. Let {f,} be a se(luenlce of simple
fuinctions suclh that If,,(u)l < ly(u) -1 andlimid f() = g(u)-1 MlO-alnost
everywhere. Tlheni, by the tlheorem ont dominiated conivergeince (see [2], p. 8328)
anid for-mula (4.833), wN-e lhave the relatioin

(4.34) II((I) = limi f| f,(ti) g(u)31,(du) c [31(J) :J E Ro, J C I],

wh-Iiel, togetlhervwith (4.15) anld (4.81), implies (4.26). lThe theorem is tlhus
pi1oved.
Now w-e slhall proN,e a represenitationi tlheoirem for imooitiivial completely nlonl-

deterministic processes.
THEORlEM 4.2. Let fx) tIc a nontriuial comiplctlcy iondleternministic procC8s.

Y'hen there exist ani. [xj]-valhed nontrivial {T ',) -homoyencous stochastic mcasurc .11
anid a futnction f belontyging to the Orlicz space L(.ll) such that

(4.835) [31(J): J cR(,, J C (-O, 0]] = [x:t < 0]
and

(4.36) xi = fJf( -t)1(lu).
Conversely if JI is a nontrivial T'J -hotnogeneous stochlastic mieasure andf e L(A]),
then the process (4.36) is nontrivial and completely nondetermninistic, provided equa-
tion (4.35) holds.

PROOF. Given a nontrivial completely nondetermiinistic process -lx,}, tlelrc
exists, b)y theorem 4.1, a nontrivial [xt]-valued {T',I-homogeneous stochastic
measure I1 satisfying coni(litioni (4.85). Hence, by tlheorem 2.1, wve get tlle
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existence of a function f E L((M) such that xo = f% f (u)M (du). C'oiisequtenitly,
by the translation property of {T,' -homogeneous measures,

(4.37) Xt = Ttxo = f f (u - t)M(du).
Now suppose that M is a nontrivial {Tt}-homogeneous stochastic measure,

that f E L(M), and that the process {xt} defined by (4.36) satisfies condition
(4.35). Then, of course, [x,] = [Ml] and, by theorem 2.1, each elemenlt x E [xt]
has an integral representation x = fr2 g(u)M(du) where g E L(M). P'ut

(4.38) Aox = f| q(u)M(du).

By (4.35) the linear operator Ao transforms [x,] onto [xt: t < 0]. Further, the
conditions (i) and (iii) for predictors are obvious. In order to prove (ii), suppose
that x e [xt] and for every y E [xt: t < 0] the random variables x anid y are
independent. Hence, in particular, it follows that the random variables x and
Aox are independent. Since x - Aox and Aox are also independent, we infer by
simple reasoninig that Aox is a constant random variable; hence, Aox = 0. Thus,
condition (ii) is also fulfilled, and consequently, Ao is the predictor for {x} based
on the past up to time t = 0. Finally, Aix = fX g(u)M(du), which implies
limt- Atx = 0. Thus the process {xt} is completely nondeterministic. Obvi-
ously, it is also nontrivial, which completes the proof of the theorem.

5. Some concluding remarks

A {T,}-homogeneous stochastic measure Ml will be called a IlWiener stochastic
measure if all the random variables M(E)(E e R) are Gaussian. Of course, a
Wiener stochastic measure is induced by a Wiener process. Moreover, a
stochastic measure corresponding to a Gaussian completely nondeterministic
process is a Wiener stochastic measure. From the Skitovich results ([16], theorem
1, p. 362), it follows that if A1 is a nontrivial {T,}-homogeneous stochastic
measure and fJf (u)M(du), Ja g(u)M(du) are independent, where f and g are
continuous functions in a closed interval [a, b] such that fg does not vaniish
identically, and at least one of the integrals

(5.1) |b (U) 6du or Jb 2(u) dtt
Ja g(u) f2(u)

exists, then Al is a Wienel stochastic measure. 1t. G. Laha and E. Lukacs showed
([7], p. 312) that for stochastic measures with a finite variance the assumption
concerning the existence of integrals (5.1) can be removed. In the sequel we shall
use the following generalization of mentioned results.
THEOREM 5.1. Let M be a nontrivial {Tt}-homogeneous stochastic measure and

f, g E L(M). If fg does not vanish 3l-almost everywhere and JfO: f(u)lIM(du),
f. g(u)AI(du) are indepcndent, then Al is a Wiener stochastic measure.
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PROOF. By Cram6r's decomposition theorem (see [8], p. 271), it suffices to
prove the theorem for symmetrically distributed stochastic measures M. Let G
be the L6vy-Khintchine function corresponding to M. Put

(5.2) H(v) C(1-cos vu) 1 +2 dG(u).

Then the characteristic function of the integral f.. f(u)M(du) is given by
formula (3.11). Consequently, the independence of the integrals fJ f (u)M(du)
and f'.. g(u)M(du) implies the equation

(5.3) f H(uf (t) + vg(t)) dt = f H(uf (t)) dt + f H(vg(t)) dt

for all u and v. Setting
(5.4) Q(u, v) = 2H(u) + 2H(v) -H(u + v) - H(u - v)

= 2 (1 - cos ux)(I - cos vx) 1 +2 dG(x),
we get the inequality

(5.5) Q(u, v) > 0

for all u and v. Further, from (5.3) we obtain the equation

(5.6) f Q(uf (t), vg(t)) dt = 0

for all u and v. Consequently, by (5.5), for every u and v the equation
Q(uf (t), vg(t)) = 0 holds almost everywhere. Since fg $4 0 on a set of positive
Lebesgue measure, and H is a continuous function, we infer that Q(u, v) = 0 for
all u and v. Thus, by (5.4), the function H satisfies the equation

(5.7) H(u + v) + H(u - v) = 2H(u) + 2H(v).

The same arguments as in the case of Cauchy functional equation show that the
functions H(u) = CU2, where c is a constant, are the only continuous solutions
of this equation. Hence, and from (3.11), it follows that the random variables
M(E), (E E R) are Gaussian which completes the proof.
THEOREM 5.2. Let M1 and M2 be {T,}-homogeneous stochastic measures and

(5.8) [M1] C [M2]-

If AM2 is not a Wiener stochastic measure, then there are real constants c and a such
that M1(E) = cM2(E + a) for all sets E E R.

PROOF. If the stochastic measure M12 is trivial, then the assertion is obvious.
Suppose that M2 is nontrivial. By (5.8) and theorem 2.1, for any set E e R
there exists exactly one function fE e L(M2) such that

(5.9) MW(E) = f fE(u)M2(du).

Since the random variables f% fE,(u)M112(du), f-. fE2(u)M2(du) are independent
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for disjoint sets El, E2 and M12 is not a Wiener stoclhastic mcasure, wvce have, by
theorem 5.1, the equation

(5.10) fEJfEl = 0 whenever E1 n E2 = 0-
Moreover, by the uniqueness of the integral representation,

(5.11) fE1 + fE2 = fElIUE2 if El n F2 = 0.

Put S(E) = nu: f(it) #D 0>. The set S(E) is defined up to an M12-Iiull set, and
consequently, up to a Lebesgue null set. In wvhat follows two sets are treated as
identical if their symmetric difference is a Lebesgue nutll set. From (5.10) and
(5.11) we get the equations
(5.12) S(El) n S(E2) = 0, S(EI) U S8(E2) = S(E, U E-2)
for disjoint sets E1 and E2. Further, by (5..10) anid (5.11), fE = fF on S(E) whell-
ever E C F. Thus formula (5.9) can hbe ritten in the form

(5.13) M1i(E) = fS(E) f (U)1'2(dII),
where the function f does not depend oI LF and iS M12-initegrable over every set
S(E), (E e R). Moreover, for any number t wve have the e(quiation

(.5.14) |s(E)f(U),U2(du)= il3l(E) = T,3fi1(E - t)

=S(-! Jf(al)7t.M2(dt) = JS(Eg-1)+t f((-1)M2(du)
Hence, by the uni(lueniess of the integral representationi, we obtain the formutila

(5.15) S (E) = S(E - t) + t.

Moreover, f(u) = f(1- t) 112-almost everyw\here on S(E), (E e R). Conise-
(luently, the function f is constant .lI2-almost everywhere anid, by (5.13),
(5.16) -11I1(E) = CM112(8(E)), (E, eR),
where c is a constant. If c = 0, then the assertion is obvious. Suppose that 31 is
nontrivial. Then, by formula (3.4), we have the equationi = co,IS(l)j, (EF R),
w-here c0 is a positive constant. 1 or any simple function g I= ajxli, (IE,f R),
we put

n
(.5.17) Uq = a( EXS(i).

j=1

By (5.12) and (5.15), the transformation U is linear in the space of simple
functionis, transformss indicators inito indicators, commutes with the traiislationis,
aind satisfies the e(Iuationi
(5.18) (I (I)(UU2) = 0 if glf2= 0.

Since f I(Ug)(u)J dit = C0 I f% ly(i)l (ldt, the transformation U caln be ex-
tended to a linecar operator in the L-space over the ieal line commtmting wvitlh
the translationis. Consequently, there is a fiiiite measurle A on the field of Bor-el
subsets of the real line sueh that
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(r5. 19) (U9) (v) = P g(v - )Mtl(du)

(see [3], theorein 21.2.3, p. 568). Siince U transforms indicators inlto indicators,
the measure ,u is nonneegative. Settiln,g I,, = [-n, n], we liave, by (3.18) anid
(3.1I9),
(5.20) |

xiix - 'u)xI,,\r,(. - v)M(d11),(dv) = 0

almost everyw-here. Consequently, the e(luation

(3.21 ) xI(d - ?u)xfr\I(X - v) = 0

holds for almost every x anid A X ,u-almost every pair u, v. 13ut the left-hanld side
of (3.21) is e(ual to 1 for all n > 1 + lu - vl anld all numbers x satisfying the
ine(juality 1 + v < x < I + u if u > v and the iiie(juality t - 1 < x < V- 1
if v > u. Thus the product measure ,u X A is concentrated at tlle diagonal u = v,
anid coiise(lueintly, the measure , is coniceitrated at a sinigle point. Hence, and
from (3.19), we get the forimula

(3.22) XS(E) UXEL = XE+a, (E e R),

where a is a constait. 'Thus S(E) = ' + a, which together Awith (5.16) implies
the assertion of the theorem.
A stationary process {x,} is said to be indeconmposable if for every decompo-

sition xo = yo + zo, (yo, z, e [x,]), for which the processes {T',yo} and {T,zl} are
indepenidenit anid conipletely nondeterministic, at least one componelnt yo or zo
vaniishes.
TrHEO REXI 5..3. Statio()nary proccsscs admitting a prediction arc indecomposable.
PRIOOF. For Gaussian processes the result is wvell-known (see [4], theorem 3,

p. 177). Suppose that the process {x,' is n1ot Gaussiani and set yt = T1yo, Zt = T,zo.
Sinice the subspace [x,: t < a] is conitainied in the direct sum of subspaces
[!,: t < a] anid [z,: t < a] aind the processes {ljt, -I,' are indepenidenlt anid
completely nondeterministic, we lhave the relatio, na [.r,: t < a] = {O,. Conse-
(lucntly, the process {x,) is also completely nondeterminiistic. Let A, M1, and j12
be -{Tt}-homogeneous stochastic measures induced by -Xt}, {yt}, and {Zt4, re-
spectively. Of course, AI is niot a Wiener stochastic measure and [31] D [3I,]
anid [i!] D [1I2]. Thus, by theorem 3.2, either [-l/I] = [-l/] or [31lJ] {0),
(j = 1, 2). By the inidependenice of {yj, anid {z, we have the e(quation [.I1/] n
[112] = 0}. ConISe(queCntly, Cithlel' [!,[]] = 0} 01' [3I2] = {0w,which implies
that at least one componienit, yo or z0,, vantishes. 'I'le theorem is thus proved.

'T'he following theorem gives a clharacterizationi of Gaussian completely iioi-
determiiniistic processes.
THEOREM 5.4. A nontrivial completely nondeterministic process {x,} is Gaussian

if and only if for every y c [x,] the process {T,ty} admits a prediction.
1PROOF. The necessity of the cond(itioni is obvious. In order to prove the

sufficienciy of this conidition, consider thie integral represenltationi of {2 in terms
of a iloimtrivial 'J','-homogeneous stochastic measure Af. By tlheorem 8.1, L(1l)
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is an Orlicz space A*(b) defined by a convex function D satisfying condition (*).
Put g(u) = e-u if u > 0, and g(u) = 0 if u < 0. Since, by (3.7),

(5.23) f b(g(u)) du = f (7 du < c,

the function y belongs to L(M) and, coInse(queIntly, the elemelnt

(5.24) Yo = f g(u)M(du) = f e-u1(du)

belongs to [xt]. Ptu yt = Ttyo. By the assumption, the process {ly, admits a
prediction. Further, for any a < b, we have the formula

(5.25) e-aya - e-byb = fb e-uM(du).
First we shall prove that the process yt is nondeterministic. Suppose the

contrary. Then y, E [yt: t < 0], and consequently, there is a sequence zn =
i Cjnyti, (t; < 0) convergent to yl. Thus, by (5.25),

r2
(5.26) Jc-113(dit) = e-ly -c-2T,1Jy = lim (e-lz -e-1T,zn)

= lim Y_ cj,, exp (tj 1) f e"Al (du),
n- j=1

which showvs that

(5.27) f,2c-t.lM(du) c [AIl(J): J e Ro, J C (-cc, 1]].

On the other hand, the ranidom variable f|2 c-'.1(dui) and eaclh raiadom variable
from [M(J): J R(,, J C (-oc, 1]] are inidependenit. TIIus, f|,9 -r l (dJu) = 0.
Since the stochastic measure .1/ is nonitrivial, the last e(quiation conitradicts the
uniqueness of the initegral represenitationi. Thus, the process -'!Y' is nonde-
terministic.
By the decoinpositioil theorem 1.1, y, = yjt + yt" w-lhere the processes {y}

and {y"'} are independent, {y,'} is deterministic, and {y'" is completely non-
deterministic. Moreover, yt = T,yo, yt' = T,y0', and the component {y'} does
not vanish.

First, let us assume that the componieiit .,'y" also does niot vanish. Since
y', y"' e [X,], we have the iiitegial representationi

(5.28) J(',= f y'(it) l (dII), ,' = I f "(u)m(do)

where g', g" belong to L(M) and do not vanish almost everywvhere. Moreover,

(5.29) y' = | g'(u - t)M(du) and y"' = J g"(u - t).(du).

It is clear that there are two numbers t1 and t2 such that the product
g'(u- 4)y"(U - t2) does not vanish almost everyw\here. Since yt', and y,' are
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independent, we infer, in view of theorem 5.1, that Al is a Wiener stochastic
measure, and consequently, {xt} is a Gaussian process.

Finally, suppose that the deterministic component vanishes; then {yj is
a completely nondeterministic process. By the representation theorem 4.2,
there is then a nontrivial {T,}-homogeneous stochastic measure Al' such that
[M'] C [Al] and

(5.30) Yt = f f(u- t).M'(du),
where f e L (AP). Suppose that lI is ilot a Wienier stochastic measure. Tlheni, by
theorem 5.2, J'(E) = cA(E + a) where c $ 0 because the process -{yt} is
nonitrivial. Consequenitly, by (5.29),

(5.31) Yo = C |_ f (u - a)M(du),
which, by the uniiqueness of the integral represenitationi, conitradicts (5.24). Thus,
M is a Wiener stochastic measure, and consequenitly, {X,' is a Gaussian process,
which completes the proof.
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