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1. Introduction

A strictly stationary process {a,} (—« < ¢ < «) is one whose distributions
remain the same as time passes; that is, the multivariate distribution of the
random variables &y 4n, Tpgh, - -+, eo4n 18 independent of h. Here &y, &y, - - - , ¢, is
any finite set of parameter values. Throughout this paper we shall assume that
the expectation E|x| is finite, Kz, = 0 and limy—o E|zes — x,] = 0. Strictly
stationary processes satisfying these additional conditions will be called shortly
stationary. Moreover, random variables which are equal with probability 1 will
be treated here as identical.

Let [x,] denote the linear space spanned by all random variables
2, (—e <! < =) and closed with respect to the mean convergence. Of course,
[x,] becomes a Banach space under the norm ||2]| = E|z|. Moreover,

(1.1) x|l < lx + ¥l if 2 and y are independent

(see [8], p- 263). It is well known that to each stationary process {x, there
corresponds a unique one-parameter strongly continuous group {7} of linear
operators in [z,] preserving the probability distribution and such that z, = T2,
(see [1], chapter X1I, section 1). Conversely, each such group {7'.} in conjunction
with a random variable y with Ey = 0 defines a stationary process z, = Ty.

Let [x::t < a] be the subspace of [x,] spanned by all random variables x,
with ¢ < a. We say that a stationary process {x,} admits a prediction, if there
exists a linear operator A, from [x,] onto [x,: ¢ < 0] such that

(1) Aoz = a whenever z € [x,: t < 0],
(i1) if for every y € [x,: t < 0] the random variables a and y are independent,
then Aoz = 0,

(iii) for every ax € [x,] and y € [a,: ¢ < 0] the random variables x — A
and y are independent.

The random variable Aqx can be regarded as a linear prediction of z based
on the full past of the process {z,} up to time ¢t = 0. An optimality criterion is
given by (ii1). In what follows the operator A, will be called a predictor based on
the past of the process up to time ¢ = 0. The conditions (i), (ii), and (iii) deter-
mine the predictor A, uniquely.
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It should be noted that Gaussian stationary processes with zero mean always
admit a prediction. This follows from the fact that in this case the concepts of
independence and orthogonality are equivalent, and moreover, the square-mean
convergence and the mean convergence are equivalent. Therefore, the predictor
A, is simply the best linear least squares predictor, that is the orthogonal
projector from [x,] onto [x: ¢ < 0] (see [1], chapter XII, section 3). Sinee our
stationary processes need not have a finite variance, the problem of prediction
discussed in this paper is not contained in the Wiener-Kolmogorov theory of the
best linear least squares prediction for wide sense stationary processes. Moreover,
the Hilbert space method will be replaced here by a Banach space method.

Let {x;} be a stationary process admitting a prediction. The predictor A, and
the shift 7', induced by {r.} determine the predictor 4. based on the full past of
the process up to time { = a. Namely, setting

(1.2) Ay = T AT w

and taking into account that 7', prescrves the probability distribution, and
consequently, the independence, we obtain a linecar operator from [x,] onto
[x::t < a] satisfying the following conditions:

(1.3) A =2z whenever z €[x,:¢f < al;

(1.4) if for every y € [x::t < a] the random variables 2 and y are inde-
pendent, then A,z = 0;

(1.5) for every y € [z;: ¢t < a] and = € [x,] the random variables © — A,z
and y are independent.

A stationary process {z,} admitting a prediction is called deterministic, if
Aox = x for every z € [x.]. Further, a stationary process {x,} admitting a pre-
diction is called completely mondeterministic, if lim,,_. A = 0 for every
x € [x,].

The aim of this paper is to prove that any stationary process admitting a
prediction can be decomposed into a deterministic component and a completely
nondeterministic one. Moreover, we shall give a representation of completely
nondeterministic processes by integrals with respect to a stochastic measure.
These theorems are an analogue of the well-known Wold’s decomposition and
representation theorems in the linear least squares prediction theory (see [1],
chapter XII, and [4]). Related problems for stationary sequences were con-
sidered in [17].

It should be noted that, for a given x € [x], the prediction A,x furnishes the
best approximation of x in the norm || | by elements from the subspacc
[z.: t < a]. This fact is a simple consequence of (1.1) and (1.5).

We begin by proving some lemmas from which we deduce the decomposition
theorem.

LEmMa 1.1.  For a < b, the predictors satisfy the equation A, = A4y = AbvA..

Proor. Since A,z € [z,: t < b] for every a € [x,], we have, by (1.3), the
relation A,Ad.x = Aqz. Further, by (1.5), for every @ € [v] and y € [a,: t < a],
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the random variables « — 4,2 and y are independent. Hence, by (1.4), A,z —
A Az = 0, which completes the proof.
For any bounded semiclosed interval (a, b], we put

(1.6) A((a,b]) = Ay — Aa.

Moreover, we put A((—e, b]) = A4,.
Lemma 1.2, For every pawr Jy, Ja of intervals, the equation

(L.7) AWN)AWJ) = A1 N o)

holds. Moreover, for any system Iy, I», - - - | I, of disjoint intervals and yy, s, - -+ ,

Yn € [2:], the random variables A(I)y1, AI2)ys, - - , A(L)y. are independent.
Proor. Formula (1.7) is a simple consequence of lemma 1.1. Suppose that

I; = (a;, b;] where

(18) — 0 Sa1Sb1SGQSb2_<_"‘_<_an_<_bn.

For every system {, &5, - -+ | 1, of real numbers we put z, = X 7,11 AU )y,
(k=1,2,--+,n —1). From (1.8) and lemma 1.1, we get the formula A,z = 0,
Since A (In)yr € [t < bi], we infer, by (1.5), that the random variables z
and A (Ix)yx are independent. Consequently,

(1.9) Eexp (i .Zk LA (L)y,-) = It exp (itxA (Ix)ys) K exp (z . ﬁ:ﬂ ;A (Ij)yj>.
i=

Henee, by induction, we get the equation
(1.10) LI exp <’L 21 LA (I;-)]/;) = .Hl FEexp (@t;AU)y;).
i= i=

Thus, the multivariate characteristic function of the random variables A (1))
AI)ys, -+, A2)yx 1s equal to the product of their characteristic functionsf
Hence, we get the independence of these random variables which completes the
proof.

LeMMma 1.3, There eaists a linear operator A_,, on [x,] commuling with the
operations T, such that for every x € [z, lim—w Az = A_, 2.

Proor. Givenanelement z € [x,] and a sequence &, > {; > & > - -- tending
to —«, we put I; = (4, 4] and z; = A(I)z, (= 1,2, ---). By lemma 1.2,
the random variables zy, 2, -+, 2, and A,r arc independent. Since A,x =
o125 + Ay, and, consequently, by (L.1), [0 2] < lAgz], (0 = 1,2, -+,
the series 3 ;-;2z; converges in [x,] (see [1], p. 338). Hence, it follows that
lim,—. A; o = A_. 2 exists. It is clear that A_, i~ a linear operator. Further,
from (1.2) we get the formula 7,4, = A, T which implies T A_, = A_,T..
The lemma is thus proved.

We say that two processes {x/} and {a;'} are independent, if the random
variables 3’ and 3" are independent whenever ¢ € [z/] and ¥’ € [z!'].

Now we shall prove the decomposition theorem.

TuroreM 1.1.  Each stationary process admitting a prediction is the sum of two
independent stationary processes admitling a prediction, one deterministic and the
other completely nondeterministic.
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Proor. Let {x, be a stationary process admitting a prediction and let 4,
be its predictors. The limit operator A_, defined by lemma 1.2. satisfies, in view
of lemma 1.1, the equation

(1.11) AA_ . =A A, = A_,, (—o <a < x),
Consequently,
(1.12) 1—-4_)*=1-4_,

where 1 is the unit operator. Setting x; = A_,x,and 2/ = (1 — A_,)x,, we have
the formula z, = 2/ + z;’. Moreover,

[1;] = A*ﬁo[zt]) [‘Ll/l] = (1 - A*w)['“]y

1.13
1 (it 0] =A [zt <0], [0:t<0]=(1—A )zt <0l

By (iii) and (1.13), the processes {z;} and {2;’} are independent.

Further, T,z = z/ and T,xy = z;’. Thus both processes {x;} and {z;'} are
stationary. It is very easy to verify that A,, restricted to [z;] and [z/'], is a
predictor of {x;} and {x!’}, respectively. By (1.11) and (1.13), Aox = z for all
x € [x]. Consequently, the process {v;} ix deterministic. If y € [ai], then
by (1.11), (1.12), and (1.13), Ay = (A, — A_.)y, whence the relation
limy—— » Ay = 0 follows. Thus the process {x;’} is completely nondeterministic,
which completes the proof.

The next section will be devoted to the study of stochastic measures which
will be used in the representation of completely nondeterministic processes.

2. Stochastic measures

Throughout this section X will denote an arbitrary Banach space consisting of
random variables x with zero mean and with the norm |z = E|x|.

An X-valued stochastic measure M is a function defined on the ring R of all
bounded Borel subsets of the real line, having values in the space X, and such
that for disjoint sets Ky, K, -+, E, € R, the random variables M (¥,), M (L),
-+« , M(E,) are independent and M (U7, E;) = > 71 M(E,) for every sequence

E,, E,, - - - of disjoint sets in R whose union is also in R.
By (1.1), for any stochastic measure M we have the inequality
(2.1) IM(ED| < |M(E2)| if Ey CE.

Hence, and from general results concerning vector-valued measures ([2], lemma
4, p. 320 and lemma 5, p. 321), it follows that to every stochastic measure M
there corresponds a nonnegative Borel measure p on R such that

(2.2) p(E) < IM(E), (K €R)
and
(2.3) |[M(E)|| — 0 whenever the sets E are bounded in common and

w(l) — 0.
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We now proceed to the definition of integration of scalar functions with respect
to the stochastic measure M. An M-null set is a countable union of subsets of sets
E € R with M(E) = 0. Of course, this is the same as a u-null set. The term
M-almost everywhere refers to the complement of an M-null set, and is hence
synonymous with the term p-almost everywhere. A scalar valued function de-
fined on the real line is said to be simple if it is a finite linear combination of
indicators of sets in R.

If f is the simple function 37, ¢jxg, where Ei, E;, ---, E, € R, then the
integral of f over a set £ € R is defined by the equation

(2.4) L FW)M(du) = j; ;M(E N Ej).

A scalar valued function f is said to be integrable over the real line with respect
to M if there exists a sequence {f,} of simple functions convergent to f, M-almost
everywhere such that the sequence {fE, fo(w)M(du)} converges in the norm of
X for each increasing sequence E; C E, C --- of sets in R. The limit of this
sequence of integrals is defined to be the integral of f over the set E = Uj_, E,
with respect to M, in symbols

(2.5) [b @M@ = lim fE“fn(u)M(du).

This definition is a slight modification of a commonly used definition of inte-
gration with respect to a vector valued measure (see [2], p. 323) and coincides
with it if E € R. One can prove that the integral in question is an unambiguously
defined element of the space X.

By L(M) we shall denote the space of all real-valued functions integrable over
the real line with respect to the stochastic measure M. Obviously, L(M) is a
linear space. In the sequel we shall identify functions in L(M) equal M-almost
everywhere. We shall prove that L(M) is a Banach space under a suitably chosen
norm.

LemMma 2.1, If fi, fe, -+ , fo € L(M) and E\, E,, --- , E, are disjoint Borel
sets, then the random variables

@6 [ M@, [ peM@), - [ faMd)

are independent.

Proor. For simple functions the result is clear. In the general case it follows
from the convergence theorem for independent random variables and the defi-
nition of the integral.

Lemma 22. If E,€R, feL(M) and |f(u)| >c>0 on E, then

IME)| < 4| [, FM@w)}

Proor. Put My(E) = [5f(u)M(du). Let F be a linear functional in X. De-
noting by Vo and V the variation of the scalar measures F(M,(E)) and F(M(E)),
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respectively, we have the formula 174(L) = fE |f(w)|V (du) for every set E € R
(see [2], p. 114). Consequently,

(2.7) Vo(Eo) 2 c¢V(Eo) 2 c|F (M (o))
Further, by lemma 5 in ([2], p. 97), we have the inequality
(2.8) Vo(ly) < 4 ﬂlp |F(My(E))] < 4IF] \up T ()]

Since by (2.1) and ]emma 2.1 suprcr | Mo(E) (Eo)|l, the inequalities
(M (Ip))| < 4||F|| HMO(IL(,)]‘ for all linear functionals F.
Hence, we get the mequahty

(2.9) 1M (Eo) = sup, |F(M(Eo))| < e | Mo(En) ],

which completes the proof.

By [M] we shzall denote the subspace of X spanned by all random variables
M(E), (K € R).

TurorEM 2.1. For every stochastic measure M the equalion [M] =
{J=. f()M(dw):f € L(M)} holds. Morcover, cach clement of [M] is uniquely
representable as an integral [=,, f(w)M(duw).

Proor. The inclusion [M]D {[=, f(w)M(du:f € L(M)} is evident. To
prove the converse inclusion it suffices to show that the linear manifold
([, f@)M(du):f € L(M)} is closed in X. Suppose that fi, fo, -+ € L(M)
and the sequence of integrals {[=, f.(w)M(du)} converges in X. By (1.1) and
lemma 2.1, for any Borel set ¥ we have the inequality

@10) [, (00 = M@ < [[7, Gat0) = £00)M(@w)}

Denoting by u the nonnegative measure satixfying (2.2) and (2.3) and setting
Eum(c) = {u:|fa(u) — fm(u)| = ¢} for any positive constant ¢, we have, by virtue
of lemma 2.2 and (2.10), the inequality

@1)  w(E O\ Eanl@)) < [ME O Ennl@))] € 4] [7, () = fu@) M (@)

forall E € Rand n,m = 1,2, --- . Hence, it follows that the sequence {f.} is
fundamental in measure u on every set I¥ € R. Thus there is a p-measurable
function f such that lim,—,. f» = f in measure x on every set I/ € R. Passing, if
necessary, to a subsequence, we may assume that {f.} converges to f u-almost
everywhere, and consequently, M-almost everywhere. Further, for every Borel
set E we put N.(E) = [pfa@M(du), (n = 1,2, ---). Of course, N, is a
stochastic measure whose domain is the field of all Borel subsets of the real line.
Moreover, by (2.10), for each set E the sequence {N,(E)} is fundamental in X,
and consequently, converges to an element N(E) of X. By the generalized
Nikodgm theorem (see [2], p. 321), the set function N is a stochastic measure
defined on the field of all Borel subsets of the real line. Moreover, by Vitali-Hahn-
Saks theorem ([2], p. 158), lim—ye Na(E,) = 0 whenever lim,—« u(F,) = 0 and
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Ur=1 E. € R. Hence, and from the convergence theorem in ([2], p. 325), it
follows that the function f is M-integrable over every set E € R and

(2.12) NE) = lim [ f@M@) = [ 7M@)

Since by lemma 2.1 the integrals J; f(w)M (du) are independent for disjoint sets
E, E,, --- € R and the series > 7.1 fEn f@w)M(dw) is convergent in X to
N(Uz-1 E,), we infer that the function f is M-integrable over the whole line and
that the limit limy—e ffw fa@M(du) = [=, f(u)M(du). Thus the set
{[2. g(u)M(du): g € L(M)} is closed in X, which completes the proof of the
first statement.

The uniqueness of the integral representation for elements of [M] is a conse-
quence of lemma 2.2. Indeed, if ffw FWM(du) = f:’,, g(w)M(du) and E(c) =
{u: |f(w) — g(w)| > ¢}, (¢ > 0), then lemma 2.2 and a reasoning based on an
analogue of inequality (2.10) yield the formula M (I’ N E(c)) = 0 for all sets
E € R. Thus, the set {u:f(u) # g(w)} is an M-null set which completes the
proof.

As a consequence of theorem 2.1 we get the following corollary.

CoroLLARY. The space L(M) becomes a Banach space under the norm
[l = 11]=a f ()M (du)]|.

Let Ry be the class of all bounded, semiclosed intervals of the form (a, b]. An
X-valued function N defined on Ry is said to be a stochastic interval function if
the random variables N (I,), N(Iy), - - - , N(I,) are independent for every system
I, I, -- -, I, of disjoint intervals from R,, N(J, U J2) = N(J1) + N(J2) when-
ever J; and J, are disjoint with J; U J2 € Ry and lim.—;+ N((a, ¢]) = N((a, b])
for all intervals (a, b]. It is clear that each stochastic measure on R induces a
stochastic interval function on R, In the investigation of completely non-
deterministic processes the following extension theorem will be used.

TaHEOREM 2.2. If N is an X-valued stochastic interval function on R,, then
there is a unique X-valued stochastic measure M on R such that M(E) = N(E)
whenever £ € R,.

Proor. Setting N(U7-11I;) = X 7-1 N(I;) for disjoint intervals I, I, - - -,
I, € Ry, we extend the function N onto the ring R, consisting of all finite unions
of intervals from R,. We shall prove that N is countably additive on R,.

First we note that, in view of (1.1), the inequality

(2.13) INE)| < INE)] for Ey C E»

holds. Further, for any linear functional F in X we define a scalar-valued set
function Ny(E) = F(N(E)) on R,. Of course, Nr is finitely additive on R, and,
by (2.13), is bounded on every finite interval. Moreover, lim.—s+ Nr((a, c]) =
Nr({(a, b]). Hence, it follows that Nr is of bounded variation on every finite
interval (see [2], p. 97). Consequently, it is countably additive on R,. Let
E,, E,, -- - be a sequence of disjoint sets from R, with U7-1 K, € R,. By (2.13)
we have the inequality
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k
2 N(E.)

| 0

N < U En>
n=1 n=1
Hence, and from the independence of N(E,), N(FE,), ---, it follows that the
series 3 n_1 N(E,) converges in X (see [1], p. 338). Since

(2.15) F < il N(Ia',,)) = ,gl FN(L)) =T (N < O ]a'”))

n= n=1

(214) < ’ (k = 1; 2; ot )

for all linear functionals ¥ in X, we have the equation Y »_, N(I,) =
N(U7-1 E,), which shows that N is countably additive on R,.

Further, if Ej, E, - -+ is an arbitrary sequence of disjoint sets from R, with
the union belonging to R, then, by (2.13), we have the inequality

©.16) H ¥ N(E)

n=

|
where I is an interval from R, containing all the sets I}, Ey, - -+ . Hence, and
from the independence of N (L), N(I), - - - , we get the convergence of the serieg
daaa NW,) in X (see [1], p. 338). Consequently, by Prékopa’s extension
theorem ([15], theorem 3.2, p. 243 and section 7) there is a unique random valued
set function A on R such that A/ (&) = N(£) whenever £ € R, and for any

sequence Fy, Es, - - - of disjoint sets from R with the union in R, the random vari-
ables M (E,), M(E,), - - - arc independent and
(2.17) M < U En> = > ML),

n=1 n=1

where the series converges with probability 1. Sinee M (IY) and M(I\E) are
independent and M (F) + M(I\E) = N(I) whenever I € R, and I C I, the
random variables [M (E)|, (E € R) have a finite expectation. Thus, by theorem
5.2 in ([1], p. 339), the set function M (¥) — KM (E) is a stochastic measure on
R whose restriction to R, coincides with N(Z). Now, taking into account the
uniqueness of the extension M, we infer that EM(FK) = 0. Hence, by simple
reasoning, we get the relation M (F) € X for all ¥ € R. Thus M is an X-valued
stochastic measure, which completes the proof.

3. Homogeneous stochastic measures

Let {T,} be a one-paramcter strongly continuous group of operators in X
preserving the probability distribution. An X-valued stochastic measure ./ ix
said to be {7} -homogeneous if for each =et I € R the equation 7'M (k) =
M(E + 1), (—= <t < ) holds. Here I¥ + ¢ denotes the set {u + t: uw € ).
It is clear that cach X-valued {7';}-homogeneous stochastic measure M induces
an X-valued homogeneous stochastic process {y, with independent increments,
continuous in the sense of mean convergence and such that

3.1 M((a, b)) = y» = Ya, (@ < b).

Conversely, by theorem 2.2, for any NX-valued homogeneous stochastic process
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{y:} with independent values and continuous in the sense of mean convergence,
formula (3.1) uniquely determines an X-valued {7T,}-homogeneous stochastic
measure M.

Let M be an X-valued {7.}-homogeneous stochastic measure. By the Lévy-
Khintchine representation of infinitely divisible distributions, the logarithm of
the characteristic function a(v, E) of M (E), (I € R) is given by the formula

¢ N — a1 Al ® i _ 'L’vu/ 1 + ’U,2
(3.2)  logh(y, E) = ic|Elp + |E| /_N (e 1= u2> s

where (7 is a bounded monotone nondecreasing continuous on the right function
with G(—) = 0, ¢ is a real constant, and |E| denotes the Lebesgue measure of
the set I/ (see [1], p. 419). Further,

dG(w),

(3.3) [M(E)|| = E|M(E)| = f L 1—'—1‘3;2—’“9’—‘)(10

(see [6], theorem 4.1, p. 274). One can casily prove that E|J (E)| is finite if and
only if [*, |u| dG(u) is finite. Moreover, KM (¥£) = 0 if and only if ¢ =
— ffw u dG(uw). Thus, by (3.2), h(v, E) is the characteristic function of M ()
for an X-valued {7'.}-homogeneous stochastic measure 3 if and only if

B N S S LAY e
(3.4) log h(v, £) = |L]/_=° <c 1 T+ 1+u2> v

where @ is a monotone nondecreasing continuous on the right function with
G(—») =0 and [~ |u| dG(u) < «. Moreover, formula (3.4) determines the
function G uniquely.

Trom (3.3) and (3.4) it follows that M (¥) = 0 if and only if |E| = 0 for any
measure M which is not identically equal to 0. Thus, for such measures the class
of M-null sets coincides with the class of all sets of Lebesgue measure 0.

In this section we shall give a complete description of the spaces L(M) for
{T,}-homogeneous stochastic measures M. Iirst of all, we shall quote the
definition of Orlicz spaces which are a natural generalization of the L»-spaces
(see [9], [11], and [14]).

Let ® be a monotone nondecreasing and continuous for v > 0 function vanish-
ing only at v = 0 and tending to « as u — «. Two such functions ® and ¥ are
called equivalent, in symbols & ~ ¥, if a,®(bu) < V() < a:®(bu) for all
u > 0 and for some positive constants a,, as, b;, and b,.

Let A(®) be the class of all Lebesgue measurable functions f defined on the
real line for which the integral [, ®(|f(w)]) du is finite. Moreover, we denote
by A*(®) the class of all funetions f such that af € A(®), a being a positive num-
ber, in general depending on f. The space A*(®) is linear and A(®) is its convex
subset. In the space A*(®), a nonhomogeneous norm can be defined as follows:

dG (),

(3.5) IIf]le = inf {c:/_i & f(w)]) du < c}-
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The space A*(®) becomes a complete linear metric space under this norm and is
called a generalized Orlicz space. If, in addition, the function & is convex, then
A*(®) is called an Orlicz space. In this case, A*(®) is a Banach space or, more pre-

cisely, a homogeneous norm equivalent to || ||+ can be introduced in A*(®). Of
course, two equivalent functions ® and ¥ define the same generalized Orlicz
spaces.

We say that the function & satisfies condition (*) if there is a positive constant
¢ such that

(3.6) wd(v) < cvd(u) forall v>u>0
and
3.7 lim ®W) _ 0.

u—04+ U

It is clear that the equivalence relation preserves condition (). It is very easy
to verify that the functions u* (1 < p < 2), (1 4+ w) log (1 + u) — u, and

(3.8) B(u) = {22 if 0<u<l1

u—1 if u>1
satisfy condition (*).

In the sequel the stochastic measure identically equal to 0 will be called trivial.
The following theorem gives a complete deseription of the spaces L(3) for
nontrivial {7',}-homogeneous stochastic measures }.

THEOREM 3.1. For every nontrivial {T.)-homogeneous stochastic measure M
there exists a convex function ® satisfying condition (*) such that L(M) = A*(®),
and consequently, L(M) is an Orlicz space. Conversely, to every convex function &
satisfying condition (*) there corresponds a nontrivial {1';}-homogeneous stochastic
measure M such that L(M) = A*(®). M oreover, if G is the Lévy-Khintchine function
corresponding to M, then

(3.9) um~uﬁ:mmwmkm1+wmww

Proor. First we note that, without loss of generality, we may restrict
ourselves to symmetrically distributed stochastic measures. In fact, given
an arbitrary {T.}-homogeneous stochastic measure M, we put MyE) =
M(E) — M'(E), (E € R), where M’ and M are independently and identically
distributed. It is easy to verify that 3, is a symmetrically distributed {7';}-
homogeneous stochastic measure and L(M,) = L(3).

Let M be a nontrivial symmetrically distributed {7 -homogeneous stochastic
measure and G its Lévy-Khintchine function. Put

(3.10) H@:/wu—mmﬂ+wwm.

— u?
From (3.4) it follows that the characteristic function h(v, f) of the integral
f_: fW)M(dw), (f € L(M)) is given by the formula
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(3.11) 1) = e (= [ HOI ) du):
Moreover, by theorem 4.1 in ([6], p. 274),

(3.12) W%=U:fwM@0=§L1:%@Dw

Setting ’

(3.13) Ww=u/ U'l‘@”my+“m@,
—= \Jo w? o]

we obtain a monotone nondecreasing continuous function for 4 > 0 vanishing at
the origin only and tending to « as u — . One can prove the existence of a
positive constant ¢ such that the inequality

Y1 — cosw 1 — cosw
-1 - ™ < —1 Pt N
(3.19) Y L i dw < cx L " dw

is true for all y > x > 0. Hence, and from (3.13), we get the inequality v—2¥ () <
cu~2¥(u) for all v > u > 0. Consequently, the function ¥ satisfies inequality
(3.6). Moreover, by (3.13), limy—o+ ¥(u)/u = 0. Thus the function ¥ satisfies
condition (x).

Now we shall prove the equation L(A3) = A*(¥). Given a positive number a
and a function f € L(M), we put m(a, f) = ming<,<q h(v, f). Taking into ac-
count (3.11) and (3.12), we get the inequality

@315 [fll zg/a L= k@) 4 » 2@ )) / 2 /“ Hlf@w)]) du do
T Jo v T Jo —

= 2__m§:l,f) fj Y(al|f (u)]) du.

Consequently, f € A*(¥). Moreover, by (3.5),
(3.16) Iflle < a? whenever |f]lo < gln;(g;—f)-

Since the mean convergence implies the convergence in probability, we infer that
limp—» m(a, f.) = 1 for every a > 0 whenever limy,—« [|f:/lo = 0. Consequently,
by (3.16), the convergence in the norm || ||, implies the convergence in the norm
I |l in L(M). Further, from (3.11) and (3.12), by a simple computation, we
get the inequality

(3.17) e < 1—2r La #’L) dv + 1.%; < %ﬁa v2 /_ﬁ H®|f(w)]) du dv

0

4 W(alf (W)|) du + ;4(;

2
+o< =

wTa T Ta J—

which, by (3.5), implies the relation

(3.18) 17l < 21713 + 2 if e



246 FIFTH BERKELEY SYMPOSITUM: TRBANIK

Thus both norms || Iy and ! [y are equivalent in L(1/), and consequently,
L(M) is complete in the norm || |¢.

From condition (*) we get for all w > 0 the inequality ¥(2u) < 4¢¥(u), that
is, the As,-condition for ¥. Consequently, the set of simple functions vanishing
outside a finite interval is dense in the space A*(¥) (see [11], theorems 3.5 and
3.52, p. 155 and theorem 3.53, p. 156). Since all simple functions vanishing out-
side a finite interval are M-integrable, the set L(1/) is dense in A*(¥). Conse-
quently, L(M) = A*(¥) because of completeness of L(1/) in the norm || |ls.
Further, the norm || [l equivalent to || ||¢ is homogeneous. Thus, by the
Mazur-Orlicz theorem ([14], theorem 6, p. 119; see also [13], theorem 2.3, pp.
110-111), the function ¥ is equivalent to a monotone nondeercasing continuous
convex function ®. Of course, the function ® also satisfies condition (%), and
L(21) is the Orlicz space A*(®). Morcover, from (3.13), by standard arguments,
we obtain (3.9).

Now suppose that ® is a monotone nondecreasing convex continuous funetion
satisfying condition (*) and tending to « as u — . Then the funetion Qy(u) =
®(u)/u is monotone nondecreasing and continuous for » > 0. Moreover, by
condition (x), Qo(0) = 0 and (Qo(v)/v) < c(Qo(u)/u) whenever v > u > 0. Con-
sequently, by theorem 2.7 in ([12], p. 333), there exists a concave nondecreasing
continuous function @ with Q(0) = 0 equivalent to Q.. Let ¢ be the right-sided
derivative of Q. Since Q(u) > ug(u), we have the formula lim,—o+ ug(u) = 0.
Moreover, ¢(u) tends to a finite limit as © — <. Hence, it follows that both
integrals

0 2 L)
(3.19) / 1—17;(1(](10 and / ﬁ??; dq(u)

0 ? 0 2
are finite. Put

T

3.2 = 1 SR
(3.20) a 11211 q(u), b i [) i1 ”2({(/(11),
and

[T i
a+b—13 /;_l T4 dqg(w) f v >0,
(3.21) G) =

AT .
b+ 3 /{vl 4 dq(u) if v <O

The function ¢ is bounded monotone nondecreasing and G(—o) = 0. Moreover,
the finiteness of fo” (u/1 4+ u?) dq(u) implies the existence of the absolute
moment [*, [u| dG (). Consequently, G is a Lévy-Khintchine function for a
nontrivial {7'.}-homogeneous stochastic measure . By simple computations
we get the formula

(3.22) u fjw min (i, [o]7) (1 + v2) dG(v) = ug(u) ~ &),

which, by (3.9), gives the equation L(M) = A*(®). The theorem is thus proved.
It should be noted that the function @ defined by (3.8) corresponds to Poisson
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stochastic measures. Moreover, it corresponds to stochastic measures for which
both integrals fi" « U2 dG(w) and 2, dG(u)/|u| are finite. Further, the function
®(u) = u*, (1 < p < 2) corresponds to a stable stochastic measure with ex-
ponent p.

4. Completely nondeterministic processes

Throughout this section {r,} will denote a completely nondeterministic
process. The process, identically equal to 0, is obviously completely nondetermin-
istic. It will be called trivial.

The predictors {4/} of {x,} define the family {A(I)} (I € Ry) of operators in
[x/] by means of formula (1.6). Taking into account the definition (1.2), we have
the equation

(+.1) TAI) = A(I + 0T,
Moreover, by (1.1) and lemma 1.2, for any x € [x,],
(4.2) Al < [|AW)]] whenever I CJ.

Since for t < 0, xo = A((t, 0])xy + Awry and limy_o Ay = 0, we have the
relation vy € [A([)x: I € Ry, x € [x,]]. Consequently,
(4.3) [z] =[ADx: I € Ry, z € [x]].

LemMa 4.1.  Let F be a linear functional in [X,], ¢ a scalar conttnuous funclion
with g(0) # 0, and y an element of [x/]. If for all I, J € Ry contained in the interval
(0, a] the equation

(4.4) P(aw [* 90T Ay i) =0
holds, then F(A((0, a])y) = 0.

Proor. We note that the integral in (4.4) is taken in the sense of Bochner
(see [5], p. 78). Given ¢ > 0, there exists, in virtue of (1.6) and (4.1), a decom-

position of the interval (0, ¢] into disjoint intervals I, I, - - -, I, belonging to
R, such that
(4.5) max ||AT)yl < e

1<j<n

Moreover, we may assume that the length of these intervals is so small that
;] +h<a(j=1,2 ---,n), where h is a positive number less than a. Put
Ji=(a; — hb; 4+ Al N (©,a] if I, = (a,,b;]. Since, by (1.7) and (4.1),
A )NTAW;) = 0 whenever |t] > |T,] + h, we have the formula

(+6) AT 4/I.Iil+lt<it] <a yOT A )y dt = 0.
Counsequently,
a h
W7 A f_ag(l)TtA )y dt = A(I) f_hg(z)mt )y dt
AL [y OTAC )y dt
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Further, by (1.7) and (4.1), AI,)T.A((0, a]\J;) = 0 whenever |{| < h, and
consequently,

h
48 A ['e0ra aydt = ATy [, 00T Ay,
which together with (4.7) implies the formula

h

h n
(+9)  A(©,a]) /_h gOT A0, aydt = 3 ALY | | gOT.AJ )y dt

= > A() / gOT Ay dt — Z A(Ij) gOT.A(J )y dt.
=1 —a i=1 h<lt| <IIil+h
Hence and from (4.4) we get the equation
3
(4.10) F<A((0, al) f_h g TA((0, a])y dt)
= -2 F<A (I,) g T A )y dt)'
i=1 R<|tl <ITi+h

But, in view of (4.2) and (4.5),
@1 [ad) qOTAU )y dt|

h<|tl <Iii+h

gOIAU; N 5+ 1)yl dt < eqll|

<
= Jh<l LIl 4R
where ¢ = maxy; <4 |9(f)|. Consequently,

h
(4.12) IF(40, a]) [, 90T (O, ay at)| < eqal F].
Since ¢ can be chosen arbitrarily small, the last inequality implies
h
(4.13) #(4(0, D [, 604, ayt) = 0

for all positive numbers & less than a. Hence, dividing by 2k and passing to the
limit as A — 0, we obtain, in view of the assumption g(0) # 0, the equation
F(A((0, a])y) = 0, which completes the proof.

LEMMA 4.2. Suppose that the process {x} ts nontrivial. The stochastic interval
function My, defined on R, by the formula

(4.14) Mil(a, b)) = A((@, b)) [" e Tiudt,

can be extended to an [x,]-valued stochastic measure on R. The class of My-null sets
coincides with the class of Lebesgue null sets. Moreover, for any interval I € Ry, the
equation

(4.15) [Mo(J):J € Ry, J CI] = AD)[z]
holds, and for E € R, f € L(M,),

(4.16) A(I) /;ff(u)J[O(du) = flmlf(u)J[u((lu).
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Proor. Since A¢ry, = 2y, for all numbers ¢ less than a, we have the equation

(4.17) A((@, b)) [* et Tandt = 0.
Consequently,
(4.18) Mo((a, b)) = A((a, b)) f ® e~ T o dl, (c <a)

Hence, in particular, it follows that Mo(J; U Jo) = Mo(J1) + M(J2) for disjoint
intervals Ji, J; with the union in R,. Moreover, by lemma 1.2, the random
variables M(I,), M(I2), - -+, Mo(I.) are independent whenever Iy, Io, ---, I,
are disjoint. Further, from (1.2) and (1.6), the relation limg—y4 Mo((a, c]) =
Mo((a, b]) follows. Thus M, is really a stochastic interval function on R,. By
theorem 2.2, it can be extended to an [z.]-valued stochastic measure M, on R.
Moreover, this extension is unique. From (4.1) and (4.18), we get the equations
ADMy(J) = MyI N J), TM(I) = eMo(I +t) for all I, J € R,. Hence,
taking into account the uniqueness of the extension of M, onto R, we obtain the
equations

(4.19) A(DMN(E) = M(I N E), T My(E) = e'Mo(E + 0),

(I eRy, E €R).
As a consequence of the first equation, we get formula (4.16) for simple functions.
The general case can be obtained by an approximation of M-integrable functions

by simple ones.
Now we shall prove the relation

(4200  A((a, b)) [ T dt € [M] forall z €[zt <0] and a<b.

First we observe that the set of elements x satisfying (4.20) is a subspace of the
space [z.]. If h < 0, then by (4.18),

“21)  A((a, b)) j' * =T Twzo dt = ¢*A((a, b]) f T dt = eMof(a, b)),

and consequently, all elements 720 with A < 0 satisfy (4.20). Thus all elements
x € [zt < 0] satisfy (4.20).

The inclusion [My(J):J € Ry, J C Il C A(I)[z.] is obvious. By the second
equation (4.19), it suffices to prove the converse inclusion for intervals I of the
form (0, a]. Suppose that there is an element y in A((0, a]) [«.] which does not
belong to [My(J):J € Ry, J C (0, a]]. There exists then a linear functional ¥
on [z, vanishing on [M,(J):J € Ry, J C (0, a]], and such that F(y) = 1.
Given two intervals I, J € R, contained in (0, a], we put

(4.22) 2, J) = esA(]) [) T T_ Ay dt.

Since T_.A(J)y € [x.: t < 0], we have, by (4.19) and (4.20), the relation
(4.23) 2(I,J) € [My(U): U € Ry, U C (0, a]].
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Thus

(4.24) F((I,J)) = 0.

Further, from the equation A((0, a])7,A(J) = 0 for t > a we get the formula
(4.25) «(I,7) = A(D) f_“a T Ay dt.

Hence, by (4.24) and lemma 4.1, we get the equation F(4((0, a])y) = 0. But
A((0, a]l)y = y, and consequently, F(y) = 0, which contradicts the equation
F(y) = 1. Formula (4.15) is thus proved.

By (4.3) and (4.15), the stochastic measure 1/, is not identically equal to 0.
Consequently, the nonnegative measure g, associated with M, and satisfying
conditions (2.2) and (2.3) does not vanish identically. From (4.19) it follows that
the class of M-null sets, and consequently, u-null sets is invariant under trans-
lations. Thus, it coincides with the class of Lebesgue null sets (see [3], chapter
1V, section 5) which completes the proof of the lemma.

THEOREM 4.1. For each completely nondeterministic process {x,; there exisis
an [z]-valued {T.)-homogeneous stochastic measure M such that for any interval
Ie Ro,

(4.26) [M(J):J €Ry, J CI] =AD)[xd].

Proor. For a trivial process {x,} the trivial measure 1/ satisfies the assertion
of the theorem. Suppose that the process {x,} is nontrivial. First we shall prove
that there exists an element 3, belonging to A ((0, 1]) [«.] such that

(4.27) 4(0,1) [ Tt = 0.

Contrary to this, let us suppose that A((0, 1]) f_ll Tz dt =0 for all z €

A((0,1]) [2.]. Given an element y > 0 in A((0, 1]) [x], there is a linear functional
F on [z,] with F(y) = 1. Since for any interval J € Ry and contained in (0, 1],

A((0, 1]) [_‘1 T.A(J)y dt = 0, we have, by (1.7), A(I) [_11 TAW )y dt = 0 for
all intervals I € R, and contained in (0, 1]. Hence, by lemma 4.1, F(A((0, 1])y)
= 0, which, in view of the formula A((0, 1])y = y, contradicts the equation
F(y) = 1. Thus (4.27) holds for an element yo in A((0, 1]) [x].

Put

(4.28) M((a, b]) = A((a, b]) j " Tt
Taking into account the formula 4 ((0, 1)y = yo, We get the equation
(4.29) M((a, b)) = A((a, b]) [ Tuyo e

for d > b and ¢ < a — 1. Hence, it follows that M (J, U J2) = M(J1) + M (J>2)
for disjoint intervals J3, J. with Jy U J2 € Ro. Moreover,

(4.30) AMMJT) =MINJ)
for all I, J € Rq. The relation lime—s+ M ((a, c]) = M((a, b]) is evident. Conse-
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quently, by lemma 1.2, A/ ix a stochastic interval function on Ry. By theorem 2.2,
it can be extended to a stochastic measure 3 on R, and this extension is unique.
By (4.1) and (4.28), T M) = M({I + {) for I € R,. Taking into account the
uniqueness of the extension we have the formula 7 .M (I) = M(F + ¢) for all
I € R. Thus, the stochastic measure A is {7} -homogencous. I'urther, from
(4.30), we get the inclusion

(4.31) [(M):J Ry, J CI]CAU)[xd].

Let M, be the stochastic measure defined by formula (4.14). From formulas
(4.15), (4.16), (4.30), (4£.31), and theorem 2.1, we get the existence of a function
g € L(M,) satisfying the cquation

(4.32) M(E) = f1 () Mo(du)

V)

forall I/ € R. Since by (4.27) 3 ((0, 1]) # 0, the claxs of M/-null sets is the class of
sets of Lebesgue measure zero, and consequently, coincides with the class of
Menull sets. Thus, the function ¢ differs from 0 almost everywhere with respect
to both measures 7 and M,. I'rom (4.32) we get the formula

(4.33) '/;If(u)M (du) = /1 T () g(u) M o(dw)

for all sets I/ € R and all simple functions f. Let {f,} be a sequence of simple
functions such that |f.(w)| < |g(w)|™t and limu—e f(u) = g()~! My-almost
everywhere. Then, by the theorem on dominated convergence (see [2], p. 328)
and formula (4.33), we have the relation

(4.34) My(I) = Iim j;f,l(u)g(u)ﬂlu((h() e[M(J):J e Rq, J CI],

which, together with (4.15) and (4.31), implies (4.26). The theorem is thus
proved.

Now we shall prove a representation theorem for nontrivial completely non-
deterministic processes.

Taeorem 4.2, Let {v,) le a nontrivial completely nondeterministic process.
Then there exist an [z J-valued nontrivial {1} -homogenecous stochastic measure M
and a function f belonging lo the Orlicz space L(MM) such that

(4.35) d1(J):J €Ry, J C (—=,0]] = [t 0]
and
(4.36) x, = /_txf(u, — )M (du).

Conversely, if M is a nontrivial {1} -homogenecus stochastic measure and f € L(M),
then the process (4.36) is nontrivial and completely nondeterministic, provided equa-
tion (4.35) holds.

Proor. Given a nountrivial completely nondeterministic process {x,}, there
exists, by theorem 4.1, a nontrivial {«,]-valued {7'}-homogenecous stochastic
measure A satisfying condition (4.33). Hence, by theoremm 2.1, we get the
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existence of a function f € L(M) such that xy = f 0 f(w)M(du). Consequently,
by the translation property of {T}-homogeneous measures,

(4.37) 2= Tao= [ flu— M@

Now suppose that M is a nontrivial {T,}-homogeneous stochastic measure,
that f € L(M), and that the process {x;} defined by (4.36) satisfies condition
(4.35). Then, of course, [x;] = [M] and, by theorem 2.1, each element z € [z,]
has an integral representation z = [*, g(u)M (du) where g € L(M). Put

(4.38) Aoz = f_"‘ g(w) M (du).

By (4.35) the linear operator A, transforms [x.] onto [z.: ¢ < 0]. Further, the
conditions (i) and (iii) for predictors are obvious. In order to prove (ii), suppose
that = € [z,] and for every y € [z;:t < 0] the random variables x and y are
independent. Hence, in particular, it follows that the random variables x and
Aoz are independent. Since x — Aoxr and Aoz are also independent, we infer by
simple reasoning that Az is a constant random variable; hence, Agz = 0. Thus,
condition (ii) is also fulfilled, and consequently, 4, is the predictor for {z.} based
on the past up to time ¢ = 0. Finally, Axx = f‘_,, g(w)M (du), which implies
limi,—» Ax = 0. Thus the process {zr,} is completely nondeterministic. Obvi-
ously, it is also nontrivial, which completes the proof of the theorem.

5. Some concluding remarks

A {T.}-homogeneous stochastic measure M will be called a W<iener stochastic
measure if all the random variables M (E)(E € R) are Gaussian. Of course, a
Wiener stochastic measure is induced by a Wiener process. Moreover, a
stochastic measure corresponding to a Gaussian completely nondeterministic
process is a Wiener stochastic measure. From the Skitovich results ([16], theorem
1, p. 362), it follows that if M is a nontrivial {7T}-homogeneous stochastic
measure and [2 f(w)M (du), [? g(u)M (du) are independent, where f and g are
continuous functions in a closed interval [a, b] such that fg does not vanish
identically, and at least one of the integrals

b b oo
f*(w) g*(w)
“du  or g2 du
a 9%(w) « fHu)
exists, then M is a Wiener stochastic measure. R. G. Laha and E. Lukacs showed
([7], p. 312) that for stochastic measures with a finite variance the assumption
concerning the existence of integrals (5.1) can be removed. In the sequel we shall

use the following generalization of mentioned results.
TrEOREM 5.1.  Let M be a nonirivial {T}-homogeneous stochastic measure and

f, 9 € LIM). If fg does not vanish M-almost everywhere and ff o S W) M (du),
ff,, g(w)M (du) are independent, then M is a Wiener stochastic measure.

(5.1)
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Proor. By Cramér’s decomposition theorem (see [8], p. 271), it suffices to
prove the theorem for symmetrically distributed stochastic measures M. Let G
be the Lévy-Khintchine function corresponding to M. Put

(5.2) H@) = /: (1 — cos vu) 1+ w? dG(u).

_ u?
Then the characteristic function of the integral f;”,, f(w)M (du) is given by
formula (3.11). Consequently, the independence of the integrals (=, f(w)M (du)

and [~ g(u)M (du) implies the equation

63) [T HO + @ d= [T H @) dt+ [ Hog) d
for all % and v. Setting

(5.4) Qu,v) = 2H(u) + 2H(v) — H(u +v) — H(u — v)

@ 2
=2 / (1 — cos ux)(1 — cos vx) 1—.1:;— dG(x),

— o0

we get the inequality

(5.5) Q(u,v) 20
for all w and v. Further, from (5.3) we obtain the equation
(5.6) 7 @@ ®, g dt = 0

for all « and ». Consequently, by (5.5), for every u and v the equation
Quf (£), vg(t)) = 0 holds almost everywhere. Since fg 0 on a set of positive
Lebesgue measure, and H is a continuous function, we infer that Q(u, v) = 0 for
all v and ». Thus, by (5.4), the function H satisfies the equation

5.7) H(u+v) + Hlu — v) = 2H(uw) + 2H(»).

The same arguments as in the case of Cauchy functional equation show that the
functions H(u) = cu?, where c is a constant, are the only continuous solutions
of this equation. Hence, and from (3.11), it follows that the random variables
M(E), (E € R) are Gaussian which completes the proof.

THEOREM 5.2. Let M, and M, be {T.}-homogeneous stochastic measures and

(5.8) [Mi] C [M.].

If M, is not a Wiener stochastic measure, then there are real constants ¢ and a such
that Mi(E) = cM.(E + a) for all sets E € R.

Proor. If the stochastic measure M, is trivial, then the assertion is obvious.
Suppose that M. is nontrivial. By (5.8) and theorem 2.1, for any set E € R
there exists exactly one function fg € L(M,) such that

(5.9) Mi(E) = [, f5(u)Ma(du).
Since the random variables ff,, Fe(w)M(du), f:’ » JE(u)M2(du) are independent
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for disjoint sets Iy, F, and 1/, is not a Wiener stochastic measure, we have, by
theorem 5.1, the equation

(5.10) fefe. =0 whenever E, N E, = J.
Moreover, by the uniqueness of the integral representation,
(5.11) et fe=fuur if EhNE =d.

Put S(E) = {u: fe(w) = 0}. The set S(¥) is defined up to an M.-null set, and
consequently, up to a Lebesgue null set. In what follows two sets are treated as
identical if their symmetric difference is a Lebesgue null set. I'rom (5.10) and
(5.11) we get the equations

for disjoint sets E, and E,. Further, by (5.10) and (5.11), fg = fr on S(E) when-
ever I C F. Thus formula (5.9) can be written in the form

(5.13) My(E) = /S O Ma(0),

where the function f does not depend on K and is M -integrable over every set
S(E), (K € R). Moreover, for any number ¢ we have the equation

() Mo(du)

(5.14) M(E) = TAML(E — 1)

‘L'(E_t)f(u) T My(duw) = ];,(E_”ﬂf(u — ) Ma(du).
Hence, by the uniqueness of the integral representation, we obtain the formula

(5.15) SE) =8SIr —1) +t.

Moreover, f(u) = f(u — t) Msalmost everywhere on S(F), (I € R). Consc-

quently, the funetion f is constant M.-almost everywhere and, by (5.13),

(5.16) M(E) = e (S(E)), (E €R),

where ¢ is a constant. If ¢ = 0, then the assertion is obvious. Suppose that A/ is

nontrivial. Then, by formula (3.4), we have the equation |E| = ¢|S(¥)|, (¥ € R),

where ¢, is a positive constant. Ior any simple function ¢ = > }-1 a;xx;, (F5; € R),

we put

(5.17) Ug = 21 QXS ()
=

S(E)

By (5.12) and (5.15), the transformation U is linear in the space of simple
functions, transforms indicators into indicators, commutes with the translations,
and satisfies the equation

(5.18) (Lg)(Lgs) =0 if gigs = 0.

Since [*, [(Ug)(w)| du = ¢y f2. lg@w)| du, the transformation U can be ex-
tended to a lincar operator in the IL-space over the real line commuting with
the translations. Consequently, there is a finite measure g on the field of Borel
subsets of the real line such that
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(5.19) () = [, 90 = wulaw)
(see [5], theorem 21.2.3) p. 568). Since U transforms indicators into indicators,

the measure g is nonnegative. Setting I, = [—n, n], we have, by (5.18) and
(5.19),

(5.20) [ [0 xte = 0xaane = du@onn) = 0
almost everywhere. Consequently, the equation

(5.21) xn(@ — Wxsnn(ex —v) =0

holds for almost every x and p X w-almost every pair u, v. But the left-hand side
of (5.21) is equal to 1 for all » > 1 + |u — v| and all numbers x satisfying the
inequality 1 + v < x €1 4 wif w > v and the inequality u — 1 <z <v—1
if v > w. Thus the product measure g X u is concentrated at the diagonal u = v,
and consequently, the measure p is concentrated at a single point. Hence, and
from (5.19), we get the formula

5.22 XS = L'XE = XE+a (E S R),

where @ is a constant. Thus S(F) = IY 4 a, which together with (5.16) implics
the assertion of the theorem.

A stationary proeess {x,) is said to be indecomposable if for every decompo-
sition 2y = yo + 2, (3o, 20 € [/]), for which the processes {T' o} and {Tz} are
independent and completely nondeterministic, at least one component y, or z
vanishes.

THEOREM 5.3.  Stationary processes admitting a prediction are indecomposable.

Proor. For Gaussian processes the result is well-known (see [4], theorem 3,
p. 177). Suppose that the process {x;} is not Gaussian and set y, = T, 2. = Ti20.
Since the subspace [x,:¢ < a] is countained in the direct sum of subspaces
[yt < al] and [z, t < a] and the processes {y/}, {z,} are independent and
completely nondeterministic, we have the relation N, [x,: ¢ < a] = {0}. Conse-
quently, the process {z,} is also completely nondeterministie. Let M, A7, and 32
be {7.}-homogeneous stochastic measures induced by {x.}, {y.}, and {z.}, re-
speetively. Of course, 3/ is not a Wiener stochastic measure and [M] D [,]
and [M] D [M.]. Thus, by theorem 5.2, either [ ;] = [M] or [M;] = {0},
(j = 1, 2). By the independence of {y,} and {z,} we have the cquation [M,] N
[M,] = {0}. Consequently, either [M;] = {0} or [M:] = {0}, which impliex
that at least one component, yq or z,, vanishes. The theorem is thus proved.

The following theorem gives a characterization of Gaussian completely non-
deterministic processes.

THEOREM 5.4. A nontrivial completely nondeterministic process {x.} is Gaussian
if and only if for every y € [x,] the process {T .y} admits a prediction.

Proor. The necessity of the condition is obvious. In order to prove the
sufficiency of this condition, consider the integral representation of {x,} in terms
of a nontrivial {7'/}-homogeneous stochastic measure 3. By theorem 3.1, L(M)
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is an Orlicz space A*(®) defined by a convex function ® satisfying condition (*).
Put g(u) = e if u > 0, and g(u) = 0 if u < 0. Since, by (3.7),

@ 1
(5.23) /_ _®(g(u)) du = /0 ‘1’—5:‘—) du < =,

the function ¢ belongs to L(}) and, consequently, the element

(5.24) Yo = f " g(u)M(du) = L ® e~ M (du)

H

belongs to [x.]. Ptu y: = T., By the assumption, the process {y,} admits a
prediction. Further, for any a < b, we have the formula

(5.25) Yy — ety = f * =M (du).

First we shall prove that the process y, is nondeterministic. Suppose the
contrary. Then y, € [y.:t £ 0], and consequently, there is a sequence z, =
>k Cintry, (8 < 0) convergent to yi. Thus, by (5.25),

(5.26) / ) e~ M (du)
1

ey — ey = lim (e7'z, — ¢7272,)

n— 0

n ti+1
Im 3 ciexp (t; — 1) / e~ M (du),
tj

n—w j=1

which shows that
(5.27) [P @) € MQ): T € Ry, T C (=<, 1]].

On the other hand, the random variable ff e~ M (dw) and cach random variable
from [M(J): J € Ry, J C (—, 1]] are independent. Thus, flz e M(du) = 0.
Since the stochastic measure 1/ is nontrivial, the last cquation contradicts the
uniqueness of the integral representation. Thus, the process {y, is nonde-
terministic.

By the decomposition theorem 1.1, y, = y, + y.’ where the processes {y.}
and {y:'} are independent, {y/} is deterministic, and {y;’} is completely non-
deterministic. Moreover, y/ = Ty, yi' = Twi, and the component {y;'} does
not vanish.

First, let us assume that the component {y/) also does not vanish. Since
yo, yo € [x/], we have the integral representation

(5.28) Yo = f_: g" () M (du), = [jw g" () M (du)
where ¢’, ¢”’ belong to L(M) and do not vanish almost everywhere. Moreover,
(529)  yi=[" gu— M@ and y = [* ¢"(u— )M (dw).

It is clear that there are two numbers # and ¢ such that the product
¢ (u — t)g"" (v — t,) does not vanish almost everywhere. Since y; and y., are



PREDICTION PROBLEMS 257

independent, we infer, in view of theorem 5.1, that M is a Wiener stochastic
measure, and consequently, {z,} is a Gaussian process.

Finally, suppose that the deterministic component vanishes; then {y.} is
a completely nondeterministic process. By the representation theorem 4.2,

there is then a nontrivial {T,}-homogeneous stochastic measure M’ such that
[M'] C [M]and

(5.30) Y = f.‘,, Fu — M’ (du),

where f € L(M'). Suppose that 3 is not a Wiener stochastic measure. Then, by
theorem 5.2, M'(E) = ¢M(E + a) where ¢ ¢ 0 because the process {y,} is
nontrivial. Consequently, by (5.29),

(5.31) Yo = ¢ [_“w F(u — a)M(dw),

which, by the uniqueness of the integral representation, contradicts (5.24). Thus,
M is a Wiener stochastic measure, and consequently, {x.} is a Gaussian process,
which completes the proof.
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