
A NOTE ON MAXIMAL POINTS
OF CONVEX SETS IN 4

ROY RADNER
UNIVERSITY OF CALIFORNIA, BERKELEY

1. Introduction

The problem of characterizing maximal points of convex sets often arises in the
study of admissible statistical decision procedures, of efficient allocation of eco-
nomic resources (cf. Koopmans, [4], chapter 1, and references given there), and
of mathematical programming (cf. Arrow, Hurwicz, and Uzawa, [2]).

Let C be a convex set in a finite dimensional vector space, partially ordered
coordinate-wise (that is, for x = (xi) and z = (zi), x > z means that xi 2 zi for
every coordinate i). Let D be the set of all strictly positive vectors (namely
vectors all of whose coordinates are strictly positive); further, let B be the set of
vectors in C that maximize -i yixi for some vector y = (yi) in D. It is obvious
that every vector in B is maximal in C with respect to the partial ordering <.
One can also show that every vector that is maximal in C also maximizes Es yix
on C for some nonnegative vector y. Arrow, Barankin, and Blackwell [1] showed
further that every vector maximal in C is in the (topological) closure of B. They
also gave an example (in 3 dimensions) in which a vector in the closure of B (and
in C) is not maximal in C.
The purpose of this note is to generalize the Arrow-Barankin-Blackwell result

to the case of t4, the space of bounded sequences topologized by the sup norm.
In this generalization, however, the set C is assumed to be compact.

2. The theorem

Let X denote t4, that is, the Banach space of all bounded sequences of real
numbers, with the sup norm topology, where the norm of x = (xi) in X is

(2.1) llxll sup Ixil.
i

For x in X, I shall say that x > 0 if xi 2 0 for every i, and that x > 0 if x> 0
but x = 0. Also, for xl = (xl) and x2 = (x2) in X, I shall say that xl > x2 if
x- x2 > 0 (and so on for xl > x2).
A point x in a subset C of X will be called maximal in C if there is no x in C for

which x > x.
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Let Y denote the set of all continuous linear functions on X. For any y in Y,
I shall say that y 2 0 if y(x) 2 0 for all x > 0 in X, and that y >> 0 if y(x) > 0
for all x > 0. Define

(2.2) S {y: yEY, IIYII = 1, y 0,
S+ {y: y eS, y >>O}.

(Recall that for y in Y, IIYII sup {Iy(x)I: x e X. llxil = 1}). It shall be under-
stood that Y has the weak* topology, and that the Cartesian product X X Y
has the corresponding product topology.

If y >> 0, and x maximizes y(x) in a subset C of X, then x is clearly maximal
in C. On the other hand, if ± is maximal in a convex subset C of X, then there is
a y 2 0 in Y such that £ maximizes y(x) in C. (To see this, consider the non-
negative orthant of X; this is a convex set with a nonempty interior, and its
interior is disjoint from the convex set of all points (x -£) for which x is in C.
The hyperplane that separates these two convex sets corresponds to the required
y.) It is easy to see that there can be maximal points in a convex set C that do not
maximize any strictly positive continuous linear function on C. The following
theorem gives information about such points in the case in which C is compact.
THEOREM. If ± is maximal in a compact convex subset C of X, then there is a

y in S such that
(1) x maximizes y(x) on C, and
(2) (±, y) is the limit of a generalized sequence (xm, yi) of points in C X S+ such

that for each m, xm is maximal in C and maximizes ym(x) on C.
LEMMA 1. Define f (x, y) -y(x); then f is continuous on X X S.
PROOF. For any x, Z in X and y, y in S,

(2.3) If(x, y) - f(x, Y)I = iy(x -x) + y(x) -y0f)I
< 1-lx - tii + Iy(x) - 00

Hence lix - Ze < e/2 and ly(x) - V(!)I < e/2 imply if(x, y) - f(x, Y)I < E,
which completes the proof of the lemma.
LEMMA 2. For any p >> 0 in Y, define

(2.4) S, {8 y SS,y 2 P};
then for every p >> 0 in Y, S, is convex and compact.

PROOF. The set S, is immediately seen to be convex, as the intersection of
two convex sets, S and {y: y E Y. y > p}. Note that the latter set is also closed.
The set S can also be characterized as {y: y E Y, y 2 0, y(e) = 1}, where
e =- (1, 1, - - - , etc. * - -), and is therefore clearly closed. Thus S is a closed subset
of the unit sphere in Y, which, by Alaoglu's theorem, is compact in the weak*
topology; hence, S is compact, and therefore also Sp.
LEMMA 3. If y(x) 2 0 for every y in S+, then Y > 0.
PROOF. Suppose that x = (xi) and that for some k, Tk < 0. Let

(2.5) qk _
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let qj (j $ k) be any sequence of positive numbers such that

(2.6) E qj = 1 - qk,

and define q(x) =- qixi. It is easy to verify that q >> 0, llqll = 1, and q(T) < 0,
which completes the proof of the lemma.
PROOF OF THE THEOREM. The point x is maximal in the compact convex set

C if and only if 0 is maximal in the compact convex set C - {£}; hence, without
loss of generality we may take £ = 0.
By lemmas 1 and 2, for every p >> 0 in Y, the hypotheses of a minimax

theorem of Ky Fan (cf. [3], p. 121) are satisfied for the function f defined on
C X S,. Hence, there exist xP in C and yp in S, such that, for all x in C and y
in sp,
(2.7) y(xp) 2 yp(xp) 2 yP(x).
In particular, since 0 is in C,

(2.8) yp(xp) > 0.

Let D be the set of all p >> 0 in Y. The family {(xp, yp): p E D} is a net if
D is directed by <. It was noted in the proof of lemma 2 that S is compact;
hence, 97 has a cluster point, say (x, y), in C X S, and a subnet, say M, of 91
converges to (x, y). Note that for every (xP, yP) in on, inequality (2.7) implies
that xP maximizes yp(x) on C, and therefore (since yP >> 0), xp is maximal in C.

I now show that x = 0. For every y in S+ and p in Y such that 0 << p < y, we
have y in Sp, and hence, by (2.7) and (2.8), y(xP) > 0; hence, by continuity,
y(x) 2 0. In other words, for every y in S+, y(x) > 0. It follows by lemma 3
that x > 0. Since 0 is maximal in C, x = 0.
To complete the proof, it suffices to show that the maximum of y(x) on C is 0.

From (2.7), for every p >> 0 in Y and every x in C,

(2.9) f[(x -XP), yvP] < 0.

Hence, by the continuity of f (lemma 1), f (x, y) < 0.
Every continuous linear function y on X can be represented as an integral with

respect to a finitely additive, finite, measure on the integers. In particular, it
can be represented in the form

(2.10) y(x) = L yixi + YW(x),
j<W

where Fj <x Iyil <0, and y. is a continuous linear function such that y.(x) = 0
for every x with only a finite number of nonzero coordinates. From this repre-
sentation, it is clear that y >> 0 if and only if, in (2.10), yi > 0 for every i < m.

It is an open question whether the theorem can be sharpened by replacing the
set S+ by the set of continuous linear functions of the form (2.10) with y >> 0,
Yx = 0, and Ei<. Yi = 1. It is also not known whether the condition that C be
compact can be dispensed with.
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