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1. Introduction

The title I have chosen deliberately echoes that of the paper by L. J. Savage,
[1] because it is written with an objective which closely corresponds to Savage’s
—to encourage practical statisticians to explore the ways in which the study of
the likelihood function generated by a set of data can help in its interpretations
At the same time I hope theoretical statisticians will be encouraged to study the
theory of likelihood with a view to explaining in detail how the likelihood
function can be used, and what its limitations are. It appears to be high time we
did this, because for some years now it has been common for geneticists to
express themselves in terms of likelihood, and the following quotation indicates
that high energy physicists are following suit: “How then can an experimenter
present the results of his work in an ‘objective’ fashion, that is, without intro-
ducing his own prior beliefs? One way, often used by physicists (my italics, G.B.),
is to present L(z{*; o) as a function of « for his particular observations
a0 7 [2]

Whereas in some fields it is still possible to attribute failure to use “orthodox”
statistical methods to mere ignorance, such an explanation is untenable in the
case of statistically sophisticated areas such as these two. It must be here that
the “orthodox’’ methods have been tried and found wanting.

Lest my allusion to Savage be misinterpreted to mean that I accept the
subjective Bayesian position, let me hasten to specify some of the ways in
which we differ. Whereas Savage, if I understand him aright, would regard a
specification of the likelihood function as always providing, at least in principle,
the solution to problems of statistical inference, I conceive of likelihood methods
as rigorously applicable only to those situations where the distribution of the
observations z over the sample space S can be taken as known to belong to a
(usually continuously) parametrized family of distributions with probability
functions f (z, ), the parameter  ranging over a well-defined parameter space €.
The primary problem in such a case is often how to express the order of prefer-
ence among the different values of § which may be said to be rationally induced
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when the observations z are known. It is this problem which, it seems to me, is
answered by giving the likelihood function

1) L(6) = f (=, 0)/sup f (=, 6).

This problem is different from that of establishing any particular one of the
#’s as “true” in some absolute sense, or of rejecting any such particular value as
incredible. Being equipped with a likelihood function is like being equipped
with a balance, but no weights, and being confronted with several specimens,
Ay, Asy Az, -+ 3 By, By By, -+ ;3 Cq, Cy, C, - - - of each of several denominations
A, B, C of coins. With such a balance we could establish, for example, that a coin
of denomination A4 is more than twice, but less than three times as heavy as
one of denomination B. But we could not express the weight of any of the coins
in grams. And the analogy with the balance would be misleading, unless we
imagined that the coins have the peculiarity that different denominations react
chemically to dissolve into thin air when put together on the same scale pan. It
would then have no verifiable meaning to say that the weight of a coin of denomi-
nation A is equal to the combined weight of a coin of denomination B put
together with a coin of denomination C. Correspondingly, if the likelihood of 6;
against 6, is 4, while that of 6, against 6; is 4, it will have no meaning to say that
the likelihood of 6, against “6; or 6;” is 4/(1 4+ 2) = 4, because the likelihood
of “6, or 65" is not well defined on the data z.

If each of 6; and 6; had a definite prior probability, and these prior proba-
bilities stood in the ratio p:(1 — p), then we could interpret “6, or 6;” in
relation to z, as meaning ‘‘9;, with probability p, or 6;, with probability 1 — p.”
Then the likelithood for “6; or 6;,” given x, would be proportional to pf (z, 62) +
(1 — p)f(z, 6;). My unwillingness to suppose that such combinations of likeli-
hoods always have meaning is another respect in which my position differs from
that of the subjective Bayesians.

But perhaps the major difference lies in my view that there are inference
problems not of this comparative form, where it cannot be taken as known that
the distribution of x belongs to a well-defined family. In relation to an hypothesis
H, it may well be appropriate to define a (real-valued) measure of discrep-
ancy T(x) and, given an observed result z, to calculate the probability
Pr {T(z) > T(xo)|H} = a(x,). If this probability is small, we shall be faced with
the disjunction: either an event of small probability has occurred, or H is false.
Thus with sufficiently small o, we shall be disposed to think up some alternative
to H which fits the observations better.

When, in such a case, we say that H is rejected on the data at the « level of
significance, we are using « as a “measure” of credibility of H, on the data, in
the simple but useful sense, that as « ranges from 1 down to 0 our disposition to
think of some alternative will increase. On the other hand, of course, if H is
rejected by data x on the « level of significance, while another hypothesis H’ is
rejected by other data y on the « level of significance, it will not at all follow that
our disposition to think of an alternative to H' must be the same as our dispo-
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sition to think of an alternative to H. Only if H' is rejected by the same data,
using the same criterion T, on a higher level of significance than H will it be
illogical, in the absence of other evidence, to accept H’ while rejecting H.

_ It is an elementary error, of course, to think of Pr {T'(z) > T(zo)|H}, when it
13 known that T(z) > T(xo), as being the probability of H. It is a measure, or
ranking, of credibility of a different, cruder, but nonetheless useful kind. Likeli-
hood may, in a loose sense, be thought of as standing intermediate between this
crude measure of credibility, and the very precise measure provided by a state-
ment of probability.

I should, perhaps, make clear that I am making no serious claim to originality
in this paper. It might well be regarded as a sermon on the text, from an early
edition of Fisher’s Statistical Methods: “The mathematical concept of probability
is inadequate to express our mental confidence or diffidence in making such
inferences (from sample to population—G.B.), and . . . the mathematical
quantity which appears to be appropriate for measuring our order of preference
among different possible populations does not in fact obey the laws of probability.
To distinguish it from probability, I have used the term ‘Likelihood’ to designate
this quantity*; since both the words ‘likelihood’ and ‘probability’ are loosely
used in common speech to cover both kinds of relationship. . . .”

“*A more specialized application of the likelihood is its use, under the name
of ‘power function’, for comparing the sensitiveness, in some chosen respect, of
different possible tests of significance.”

I shall try to expound what I take this to mean.

2. The likelihood function as an operating characteristic

My first point is a gloss, or extension, on Fisher’s footnote. One of the great
services that have been rendered by Neyman and Pearson to mathematical
statistics is the emphasis they have placed on the operating characteristic of a
statistical procedure. First applied by them in connection with hypothesis test-
ing, or two-way decision procedures, the concept has more recently been general-
ized to cover multiple decision procedures. If the sample space S is finite (as we
shall later argue is really always the case) and there are k possible decisions
D;(t=1,2, ---,k), and if C; is the region in S where we take decision D;, then
the operating characteristic of our decision procedure specifies Pr {D;|6} as a
function of 8; that is, it gives

(2) P(6)

I

2 f(z, 0
zEC;

2, w(z)L(6),
z€C:

where L.(0) is the likelihood function, given the observation x, and
3 w(z) = sup L.(6),

the normalizing factor of the likelihood function, may be regarded here as a
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(nonnegative) weighting factor. In other words, the i-th component of the operating
characteristic P;(0) is a weighied sum of the likelihood functions for the points leading
to the i-th decision.

(Here we take the operating characteristic to consist of the set of functions
which gives the probability of taking the i-th decision as a function of the
parameter value 6. This is a more direct generalization of the original idea of the
power curve than the (single) function which gives the mean value of the loss as
a function of 9. The former becomes a special case of the latter, of course, if we
allow vector-valued loss functions. But the former, though less general, has the
advantage that it retains a precise meaning in situations, often arising in practice,
where the exact evaluation of losses is impossible.)

We can go further if we restrict consideration to decision procedures which are
admissible. For, under wide conditions, we know that such procedures must be
Bayes with respect to some prior on ©Q, and hence have the property that two
points z, 2’ in S for which the likelihoods L.(f), Lr(8) are the same, must lead
to the same decision.

Thus, in such conditions we can say that any component of the operating
characteristic of any admissible procedure is obtainable by forming weighted
sums of possible likelihood functions.

Now let us introduce a new notion—that of a nonrestricting class of possible
decisions. The idea behind this is that when the number k of possible decisions is
small we often, in practice, feel that we should be able to have a wider choice;
and it often happens that when we review the possibilities open to us, we are in
fact able to choose from among a wider class of decisions than we thought. For
example, we often find the simple two-way decision alternatives in an hypothesis
testing problem restrictive—to declare rejection at the 59 level, or nonrejection,
say—and we may give ourselves three alternatives: rejection at 5%, rejection at
19, or nonrejection. Or, again, we may take as a third alternative, in such a
case, to continue sampling.

The artificiality of a restricted class of decisions is perhaps most marked in
connection with procedures such as those which have been developed to select
the k largest from a set of m means. It can easily happen that we find ourselves
with clear evidence that & — 1 of the means are larger than the rest, but we really
have no substantial grounds for selecting the k-th one from the remaining
(m — k + 1). Then we may well regret having said we would choose k, and
would prefer to be allowed to choose only k — 1. Or again, we may find that
k + 1 of the means are clearly larger than the rest, but there are no appreciable
differences between these. Here we would wish to be allowed to choose k¥ + 1
instead of k; and this may, on re-examination of the real situation, prove to be
allowable in such a case. To represent the practical situation fully, we would
need to set up the problem as one of selecting approzimately I means, with a loss
function for departure from k, as well as a loss function for selecting a smaller
rather than a larger mean. If we do not do this, it is only because the theory of
such a problem could well become unmanageable.
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On examination, it appears that the difficulties we experience, in situations
such as these, arise from the fact that limitations on the alternatives allowed to
us, force us to make the same decision for two distinct observations z, z’, even
though the information which z provides about 8 is different from that which z’
provides, in the sense that the value of any minimal sufficient statistic for 8 is
different at x from what it is at 2’. A nonrestrictive class of decisions may then
be associated with an admissible decision rule which is such that the class C; of
observations z which lead to decision D, consists of those observations, and only
those observations, for which a minimal sufficient statistic takes a given value.
But in such a case, the class C; will consist of those observations, and only those,
for which the likelihood function is a fixed L;(6). And then P;(6), which we have
seen is a weighted sum of likelihood functions, will evidently be proportional to
this L;(#). Thus, in this sense, a decision function which makes full use of the
information provided by the observations will have an operating characteristic
whose components are proportional to the set of possible likelihood functions.

It is important to notice that this result is “robust under approximation,”’ in
the following sense: we may say that a set of possible decisions is not seriously
restrictive if it does not force us to make the same decision for two observations
z, 2’ for which the information about 8 is very different; for this last will mean
that the likelihood functions L.(6) and L./(§) will be approximately equal, and
thus their weighted sum will be approximately equal to either one of them. Thus,
when the set of possible decisions is not seriously restrictive, the z-th component
P;(0) of the operating characteristic of any admissible decision rule will be ap-
proximately proportional to the likelihood function L.(8) for any z in C;.

Therefore, one reason for looking at the set of possible likelihood functions
which can arise from a given experiment is that it gives us a conspectus of the
set of operating characteristics of admissible decision rules. Hence, it may well
lead to economy of thought to look at these likelihood functions, especially in
the many practical situations where it is not at all easy to obtain a true con-
spectus of the set of all possible decisions, together with their associated loss
functions.

To conclude this section we may note that presumably what Fisher had in
mind in writing his footnote was that the choice of a critical region C in S,
together with the decision rule to reject the hypothesis tested if x fell in C, and
not to reject it if z fell in S — C, was tantamount to introducing a new observa-
ble y, taking the value 1 if z fell in C, and the value 0 if z fell in S — C. The
sample space S would then be mapped onto a two-point sample space {0, 1}.
The likelihood function of 6, given y = 1, would then be proportional to the
power curve associated with C; and indeed, if, as would often be the case, P(6)
had supremum 1, the likelihood function and the power curve would be identical.

3. Frequency interpretations

One of the red herrings most frequently drawn across discussions on the
foundations of statistics is based on the false idea that some measures of un-
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certainty can be given frequency interpretations, but others cannot. An associ-
ated fallacy, against which Charles Stein has spoken out clearly, but few others
have, is the idea that such frequency interpretations are unique. It is worthwhile
stressing the universality, and the nonuniqueness of frequency interpretations,
because this helps to get rid of the idea that the meaning of measures of un-
certainty is to be found in a particular set of frequency interpretations. The
meaning of ideas like probability, significance level, and likelihood, is really to
be found only in their use; frequency interpretations are expository only.

Thus the commonest frequency interpretation of a level of significance asks us
to imagine a long series of cases, in each of which the hypothesis tested is true.
Then if, whenever significance level a is attained, we say that the hypothesis
tested is false, the long run frequency of errors is . More precisely, and a little
more generally, if we use the same rule for assertion in a long series of cases, in
which the hypothesis tested is sometimes true and sometimes false, the long run
frequency of errors cannot exceed «. But such an interpretation of ‘significance
level o’ runs into difficulty when we carry out multiple tests on a single set of
data. For this reason, among others, I personally prefer an account which runs
as follows.

Imagine that, at any particular time, one’s view of the world is represented
by the tentative acceptance of a number of hypotheses H;, each relating to a set
of data z;, the sets and the hypotheses being reasonably independent of each
other. If we have a measure of discrepancy (or test criterion) T defined for each
set of data, in relation to its associated hypothesis, the level of significance associ-
ated with z;, in regard to H,, is

Now the a;, if all the H; were true, would be distributed (nearly) uniformly
over the interval [0, 1]. For example, roughly 19, of the «; should be less than
0.01, and if the actual proportion is greatly in excess of this, we should consider
modifying some of the associated H.. It would also call for some consideration if
far fewer than 19, of the a; were less than 0.01, though attention would in this
case first be directed at the formation of the criterion 7T, or the calculation of
its distribution. Hypotheses giving low values to « should thus be regarded
much as luxuries by a person of moderate means—not to be avoided entirely,
but not to be indulged in to excess.

But neither this nor the more common frequency interpretation of significance
level is to be regarded as more than expository. The meaning of “H is rejected
at significance level o is “Either an event of probability « has occurred, or H is
false,” and our disposition to disbelieve H arises from our disposition to dis-
believe in events of small probability.

In the same way, to say that, on data z, 6 is k times as likely as 6’ means that
L(6)/L(¢') = k, simply; but we can give such a statement a frequency interpre-
tation as follows: imagine a long series of experiments, in each of which we have
to decide between two alternatives such as 8 and ¢'. If, in such a series, we assert
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the truth of the more likely hypothesis only when the likelihood ratio (such as
L(6)/L(0")) exceeds k, then the “odds against error’” are bounded below by k.
Here we define ‘‘odds against error” as the ratio

) Long run number of times we rightly decide
' Long run number of times we wrongly decide

(As was first noted by C. A. B. Smith, the truth of this interpretation follows
from a simple application of Markov’s inequality to the nonnegative random var-
iable L/L’, which has mean value 1 on ¢’.) We can thus attach an appropriate
form of “inductive behavior” to likelihood ratios, if we wish to. But in truth, as
with significance levels, our disposition to prefer  to 6’ (assuming k greater than 1)
arises from our disposition to prefer that hypothesis which makes more probable
what we know to be true. In this case, the disposition to prefer is measured in the
rather precise sense, that further independent data having a likelihood ratio less
than 1/k would need to be forthcoming before our preference between 6 and ¢
was reversed.

Another form of frequency interpretation for L() can be given, and is useful,
in cases where Q can be regarded as a separable topological space, in which L(6)
is always continuous, with a nonnegative measure m defined on open sets. It is
then possible to define a sequence T = {0,}, 7 = 1,2, 3, - - - of points in @ such
that, for any pair of open sets A, B in ,

©) im Number of times T visits 4, in first n terms _ m(4)
2—w Number of times T visits B, in first n terms ~ m(B)

If, now, we imagine a long run of cases, in which the true value of 6 on the r-th
occasion is 6,, and select from such a long run all those cases in which the likeli-
hood function was L(f), then in the subsequence so selected, for any pair of open
sets A, B,

) lim Number of times the subsequence visits A, in first » terms
»—e Number of times the subsequence visits B in the first n terms

- (J, 20 an)/(f, 110 m)

and if, in particular, fo L(6) dm is finite, then [4 L(6) dm/fa L(6) dm is the rela-
tive frequency with which the subsequence visits A. (These statements are true,
with probability 1, in the infinite product space S X 8 X § X ---, in which
the measure in the r-th component is defined by f(z, 6,). They follow from a
countable number of applications of the strong law of large numbers.)

This last form of frequency interpretation may be contrasted with that
commonly given to a set of confidence intervals C(x), for a parameter 6, with
confidence coefficient 1 — «. Here we imagine the rule C(z) applied to every one
of a sequence of cases, in which 6 varies in any manner, and we can say that the
relative frequency with which C(z) contains the true value of 6 is 1 — a with
probability 1. Now, whereas this frequency interpretation is more general than
that just previously discussed, it is open to the objection that it may require us
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to group together cases where C(x) consists of the whole of €, when the true
value is certainly in C(z), and cases where C(z) is quite small, and it appears most
implausible that 6 should be in C(zx). The truth of the statement of long run
frequency cannot be doubted, but it is hard to justify its relevance to individual
cases, when they fall into such discrepant sets. (That cases where this happens
are by no means pathological is indicated, for example, by the problem of the
ratio of two normal means.) It would seem that lumping such cases to-
gether is just as ‘arbitrary’ as choosing a particular measure m, especially if
the value of the ratio

®) [, L@ dm/ [, L) dm

does not depend critically on the choice of m.

Perhaps it may be well to spell this out somewhat. By ‘arbitrary,” we mean
‘dependent on an act of will” Now the distinguished author of the theory of
confidence intervals has emphasized that his notion of ‘inductive behavior’ in-
volves an act of will. And I am now suggesting that this act of will is one which
not all of us would in fact make, since it may involve us in grouping together
statements about parameters, some of which are obviously true (since they
assert merely 9 € Q), while others are obviously doubtful (since they assert
‘9 € A, where A is a comparatively small subset of ). The act of will involved in
collecting together statements of the form ‘9 € A’ and statements of the form
‘9 € @, and labeling them all with the same confidence coefficient is not one
which all of us will wish to make. In the same way, if we refer a statement of
the form ‘9 € A,’ on the basis of a given sample, to a sequence of cases satisfying
the conditions of the measure m above, and so attach to this statement a ‘measure
of credibility’ given by the above formula, we are also making an act of will (in
choosing m), but one which, in many cases, could be less objectionable than that
involved with the confidence interval.

The objection here leveled against confidence intervals is much weakened, if
not removed, by inverting the usual form of statement. If, instead of asserting
‘0 € A, with confidence coefficient 1 — «, we say “‘any value of § in the comple-
ment —A of A is rejected at significance level «,” those cases where the con-
fidence set covers the whole parameter space lose their absurd appearance; since
we are then merely saying that the data are insufficient to enable us to reject any
of the possible values of 8. And even if, as many of us feel, it is inappropriate to
try to inflate the ‘significance’ of precise experiments, by adding to the denomi-
nator of the frequency a number of experiments which were insufficiently precise,
we still have recourse to the simple disjunction, “either 6 is not in —A4, or an
event of probability <a has occurred.”

4. An example from particle physics

It is fundamental to the point of view of the present paper that the theory of
statistical inference exists to serve those who are collecting and using empirical
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data, either to further natural knowledge or to improve the making of decisions;
and it is more especially (though not exclusively) with the furtherance of natural
knowledge that we are here concerned. It follows that our judgment of the value
of any proposed statistical technique will be based on the way in which the
technique in question appears to meet the purposes of those engaged in this
pursuit. It seems worthwhile, therefore, to consider a specific scientific situation
in which these ideas come into play. The broad nature of the problems facing
workers in particle physics is sufficiently well known to provide a useful example.

If a beam of polarized A particles is observed to decay into a proton and a pion
in a bubble chamber, it is possible for each such particle to measure the cosine z
~ of the angle between the track of one of the decay particles and the direction of
polarization of the decaying particle. It is then known that observations on
distinct particles are independent of each other, and each z follows a distribution
with density

(9) f(z,6) = 3(1 + 62), —1<z< 41,

where 6 is the product of the degree of polarization of the decaying particles, and
the parity nonconservation parameter.

A set of n observations ay, - - - , x;, - - -, Z, then gives a likelihood function L(8)
proportional to
(10) O +62)=1+s80+ 80+ - + 5,00

where the s, are the elementary symmetric functions formed by taking the sum
of products of the z;, r at a time. Since the likelihood is a polynomial in 8 with
real roots, all of them outside the interval —1 < 6 < +1, it is easy to see that
unless all the x; have the same sign (an event whose probability depends on 6,
but which cannot happen with » as small as 10 in more than about 5%, of cases),
there will be a unique maximum of L(f) lying between the largest negative root
of L(6) and the smallest positive root. It will turn out more convenient to deal
with the logarithmic derivative of the likelihood,

(11) g(0) = 9(log L(6))/06 = Z} (x:/(1 + 623)),

which is obviously monotone decreasing, with probability 1, in all cases. We shall
argue that for most purposes the best summary that can be provided of the data
consists in specifying those values of 8 for which g(6)/g’(§) takes given values—if
one is restricted to giving three numbers, then the roots of g(8) = 0, =2¢’(4) will
probably be most useful, provided that they all lie between —1 and +1; while if
they do not, instead it will be better to quote the value of g(1), or of g(—1), or
both, as the case may be. If more than three numbers can be given, then the
roots of g(6)/¢g’(6) = 0, =2, +3, with corresponding provisos, will be best. We
shall suggest that ideally, of course, it would be best to specify all values of g(8)
in the interval (—1, 4+1) if this were practicable. When the root 8 of g(6) = 0
lies in the interval, it is the value which maximizes the likelihood, and L(8) can
be recovered as
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]
12) L(8) = exp [, 4(6) do.

It is easy to see how L(6) could be recovered in other cases also.

Now why should we suggest that an approximate specification of g(8) is the
‘best’ way of summarizing the data? Such a judgment must involve an assess-
ment of the purposes for which the data are being collected. In this case the
main object is to collect numerical data on the properties of ‘elementary’ parti-
cles, with a view to finding some underlying regularity. The situation is very simi-
lar to that obtained in chemistry around the time when Newlands, Mendeleyev,
and Lothar Meyer worked towards establishing the periodic classification of the
chemical elements, when poor estimates of some atomic weights as well as the
fact that some elements had not yet been found, gave rise to difficulties in
establishing the classification—indeed 2 case could be made out for the thesis
that the classification was established just as soon as the numerical properties
of the elements were established with sufficient precision. With the ‘elementary’
particles of today it may well be that some underlying regularities are also being
obscured by inaccuracies in the data.

The function of the data analysis, then, is to point towards some values for the
masses, decay cross-sections, and so on, of the various particles, as being more
plausible than others. At the same time, the analysis should indicate how far a
theoretical value may differ from an experimental value, without having an
overwhelming weight of evidence against it. An important feature is, that we
should be able in some way to associate a ‘weight of evidence’ with each deviation
of theory from experiment, in such a way that the combined deviations can be
assessed. In practice this is often beset with computational difficulties, which
may mean, for example, that only first-order perturbation values are available
from theory; but should the extent to which a theory fits other facts appear to
justify it, further calculations are usually undertaken. Thus there will usually be
an element of judgment involved in our assessment of how well a theory fits
observed facts; but that part of this assessment which can be quantified surely
should be, and the likelihood of the theoretical values seem very well suited for
this purpose.

If one theory gives predicted values &, &, &3, - -+ , for a series of parameters
6y, 62, 0, - - - , independently determined, while another .theory predicts values
ti, t3, t3, - - - , then the first theory gives the better fit if

(13) L(t)L(t)L(%) - -+ > L)L) L) -+ -,

and vice versa if the inequality is reversed. For reasons just indicated, in ad-
dition to other complications which may arise, it may well be difficult, and not
altogether necessary, to actually carry through such a comparison with full
numerical precision. But the principle is there, and rough estimates can be made.
Low values of L for particular parameters will indicate in what respects a pro-
posed theory needs modification.

It is in a specific scientific situation such as we are contemplating that the
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difficulties of the subjective Bayesian position appear most strongly. For, quite
apart from the fact that anyone who could make a plausible survey of the prior
distributions involved in particle physics would have achieved a major feat of
scientific imagination, there is the question, what would a posterior distribution
do for us which the likelihood function will not? We could, of course, place bets
rationally; but this is not a serious aim—even though it may perhaps be indulged
in for amusement. And if we found a theory T' to be more probable, a posteriori,
than a theory 7", while being less likely on the data, this could only be because
T was considered a priori much more plausible than 7”.

But on what grounds could we go against the evidence in this way? On
examination, any case where such a thing appeared to be happening would
surely turn out to be one in which we were taking account of further relevant
information, in the guise of the prior distribution; however, then the likelihood
computation, taking this further information into account, would agree with the
posterior probability. In introducing a prior distribution, we thus are abandoning
the important claim to objectivity in return for an illusory gain.

It is an important advantage of the likelihood method that, when the number
of observations grows large enough, we can appeal to asymptotic theory to derive
arguments of the significance test type, which enable us to rule out certain
theories as too much at variance with the facts to be worth serious consideration.
But the probability levels we would invoke would normally be much smaller
than those commonly used, for example, with confidence intervals. For instance,
the probability of decay of a A particle into a proton, a muon, and a neutrino,
has been estimated to be about 1.5 X 10~%, so that we might, by over-simple
application of statistical arguments, be led to suppose that a particle seen to
decay in this way was not a A particle.

Among the set of 959, confidence intervals we might obtain for the (perhaps)
1000 quantities independently measured in particle physics, there should be
some 50 which would fail to contain the true values. We would have no indication
of which 50 these might be; and it could easily happen that one theory gave
values inside all the confidence intervals, whereas another gave several values
outside their confidence intervals. Yet the latter theory was more plausible, on
the data, than the former.

The practical advantage of the procedure suggested—to specify the values
at which g(8) /¢’ () equals 0, -2, and +=4—arises from the fact that, in combining
the results from two independent experiments we merely have to add the corre-
sponding g’s—easily done graphically—while in going out as far as g(6) = +4,
we would be taking care of any departures from linearity in ¢(6) which would be
likely to arise in practice.

6. Singularities in the likelihood function

Some writers have felt that the use of likelihood by itself ecannot be justified
in general, because infinite values may be encountered in connection with
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hypotheses which are not at all plausible. For example, if we have a single
observation z from a normal distribution with unknown mean and unknown
variance, the likelihood function is proportional to

(14) L(g, 0) = (1/V2x0) exp —3((x — u)/0)?,

which becomes infinite when p = z and ¢ = 0. Or again, as Bruce Hill has
pointed out, when we fit the three-parameter log-normal distribution, y =
log (x — 7), with ¥y normal with mean u and standard deviation o, there is a
singularity as r approaches the smallest of the observations x;, And I am in-
debted to Dr. A. W. F. Edwards for drawing my attention to a most interesting
example, arising in the theory of evolutionary genetics, where we suppose we are
observing a Brownian movement in z with variance increasing at unit rate per
unit time ¢. Given two pairs of observations (1, t1), (z2, &), with £, < £, we want
to estimate the epoch #,, and the value z, of z, at which the process began. We
find a singularity of the likelihood at (xo, to) = (x4, £).

It is trivial that all these paradoxes would be disposed of if it were accepted
that the distributions involved were never really continuous, but always dis-
crete, and that the continuous expressions for them were approximations intro-
duced for mathematical convenience. For then the likelihood function, like the
discrete probabilities, would necessarily always be finite. And it is an important
fact of nature that the resolving power of any measuring instrument is always
finite, so that the distribution of any quantity really observable is always dis-
crete. But it may be felt that the quantitative effect of this discretization will be
insufficient—although the likelihood will cease to be infinite, it will remain larger
than intuition would lead us to expect. Therefore, some further discussion is
called for.

Let us take first the (obviously imaginary) case of the single observation from
a normal population. Bearing in mind the discretization, together with the im-
portant point that likelihood measures relative plausibility, this says that if we
have an arbitrarily precise observation z, this provides arbitrarily strong evi-
dence in favor of an hypothesis H which says that z will certainly have this
value, as against any hypothesis H’ which gives z a nonzero variance. Now let
us imagine an experimental situation which might fancifully be thought to
correspond—one in which a space probe is sent to Mars to measure its magnetic
field, if any. The hypothesis H asserts that Mars has no magnetic field whatso-
ever, and H’ asserts that there is a weak magnetic field which, like that of the
earth, fluctuates with time, continuously. We suppose the fluctuation to be such
that if measured at a randomly chosen epoch, such as that of the arrival of the
probe, the magnetic field will be normally distributed, with mean 0.01 and
standard deviation 0.02. The probe takes one reading at its nearest approach to
Mars, and then begins transmitting the binary digits of the magnetic field
strength. These are all zero. To begin with, we shall feel that there is little evi-
dence in favor of either H or H’, but surely, as the successive digits (assumed to
be utterly reliable) turn out to be zero, we shall feel more and more disposed to
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favor H as against H'. In fact, as the digits accumulate, without limit, so our
disposition to favor H against H' will increase without limit, just as the likeli-
hood function suggests it should.

To turn now to the case of the log-normal distribution on analysis, it turns
out that the distribution of x, which gives rise to the singularity here, is one
which has a very high but narrow peak at the lowest observed value of z, zo, say,
together with a long, low tail covering larger values of x. Thus the hypothesis
to which the likelihood is pointing is one which says, in effect, that a moderate
fraction (perhaps 209%) of the values of z will lie very near to x,, that no value
of z will be observed less than x,, while the remaining (say) 809, of values will be
spread out rather thinly over the range above .

Now the data discussed by Hill related to the date of appearance of symptoms
after inoculation for smallpox, and were in fact recorded to the nearest day. On
carrying through the arithmetic, it appears that the paradox could only arise
in this case if we supposed the times of appearance of symptoms to be recorded
to the nearest exp {—150}-th part of a day, that is, correct to about 10-%
seconds. It may perhaps bring home the absurdity involved to point out that
merely to avoid the uncertainty due to the finite velocity of light signals, it would
be necessary, for this sort of accuracy, for the distance from the observer to the
subject to be controlled to less than the nuclear radius. But now suppose we had
a medical theory which predicted the time of occurrence of symptoms with this
sort of precision; would not observations in accordance with it be taken as strong
confirmation?

6. Likelihood sets and confidence intervals

If the view is accepted that the likelihood serves to rank possible parameter
values in a rational order of plausibility on given data, then those subsets
A(\; z) of the parameter space defined by

@1 AQ\; z) = {6: L, 2) > z}

acquire some importance. For a given z, those points belonging, for example, to
A(%; z) will be such that no alternative value of 8 can be specified for which the
given data will give a likelihood ratio more than 2 to 1 in favor. In this sense,
these are the values of § which this experiment will not by itself contradict. Or,
we may convert the values of \, ranging from 0 to 1, to another scale of value of
C, also ranging from 0 to 1, by the condition

(22) LM L6, z) dm/ L L6, z) dm = C,

and so obtain a measure, C, of the assurance with which we might assert that 6
was in A(A; x). This measure of assurance would have the frequency interpre-
tation referred to in the above section; it would not, in general, be a “confidence
coefficient,” in the sense of confidence interval theory.

Finally, we might establish \ as a function of z, with parameter e, in such a way
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that the resulting A(\; ) would be a confidence set for 6, with confidence
coefficient . In this way we can obtain three ways of parametrizing the sets 4,
for a given x, with the parameters \, C, and «, all of which will range between 0
and 1. The parametrization with A\ will involve nothing which is not given in
the original specification; the parametrization with C will involve an arbitrary
choice of the measure m for its interpretation; the parametrization with o will
also involve an arbitrary classification of the observed result along with others
not observed. In the asymptotic situation to which the classical maximum likeli-
hood theory applies, natural choices in the two latter cases will lead to an
equation of C with @, and a unique functional relationship of each with X\. In
small samples, this will not be so; and perhaps the more liberal minded of us will
feel inclined to quote all three parametrizations, since all of them convey useful
information.
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