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1. Introduction

This paper is concerned with the integral equations which arise in any theory
of comets when account is taken of the perturbation in energy state which occurs
at each penetration of and passage through the planetary zone. The comet can
be thought of as executing a random walk along the scale of energy states,
where we define the energy state of a comet as the negative of its total energy
per unit mass (so that the energy state is zero when the comet is at rest “at
infinity’”). It will be convenient to measure the energy state z by the reciprocal
1/a of the semimajor axis of the instantaneous orbit, in a.u.7! (so that z = 1 for
the earth). For a parabolic comet z = 0, and when z < 0, as is sometimes the
case at perihelion, it will mean that a particle having the comet’s position and
velocity would, if not further perturbed, leave the solar system on a hyperbolic
orbit. However, the ultimate fate of a comet is not entirely determined by its
instantaneous orbit at perihelion; a further passage through the planetary zone
must take place before it will be even approximately correct to think of the
comet as moving in a pure inverse-square field, and elaborate perturbation
calculations are necessary before what I shall call the postorbit (the orbit after
emerging from the planetary zone) can be determined. Similar calculations
directed backward in time enable the preorbit to be found (this is the orbit before
entry into the planetary zone). Some 24 preorbits have been calculated by
E. Stromgren [17] and others, and recently 1. V. Galibina [4] (employing a new
method due to S. G. Makover [10]) has calculated 20 postorbits; practically all
the comets studied in this way had hyperbolic or at least near-parabolic orbits
at perihelion. Two decisive results have emerged from this work:

(1) the observations are consistent with the statement that hyperbolic preorbits do
not exist;

(2) some (perhaps about 15 per cent) of the comets having parabolic perthelion
orbits leave the solar system on hyperbolic postorbits.

This estimate is based on the fact that the energy state in the postorbit minus
that in the perihelion orbit is found to be distributed about a mean value of
about 4-0.000 50 with a standard deviation of about 0.000 50.
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It is evident that the sun’s family of comets is suffering continual depletion,
the risks of “falling into the sun,” of disintegration, and of diminution of bril-
liancy being further sources of loss (or apparent loss). The rate of formation of
new observable comets will depend on the physical origin of these objects, and
this is at present a matter of some controversy. Whatever view one may take
of the origin of comets, however, essentially the same mathematical problem
must be solved; namely, what mode of equilibrium, if any, is possible for a
family of comets generated in some unspecified manner, suffering successive
energy perturbations, and facing the constant risk of disintegration at perihelion
as well as the risk of total loss if ever the barrier z = 0 is crossed to the negative
side during the perturbations following a perihelion passage? In general terms
this problem was considered by H. N. Russell in an early paper [16]; more
recent and very much more detailed contributions have been made by A. J. J.
van Woerkom [18] and by J. H. Oort [11]. The question has now been taken up
again by J. M. Hammersley [5] and R. A. Lyttleton [9]; a significant new
feature of their work is that the probabilistic character of the processes of
perturbation and eventual loss is fully taken into account. The present investiga-
tion is also probabilistic in character, but the line taken here is rather different
from that followed in [5]; it arose in the course of informal discussions with
Dr. Hammersley, to whom I am much indebted both for stimulating my interest
in the problem and for many valuable technical comments.

The plan of the present work is as follows. The general problem with which
we shall be concerned is formulated in section 2, and it is solved in section 3 by
assuming a double-exponential form for the perturbation distribution; the evi-
dence for this assumption will be discussed in section 3, the relevant data having
been collected and analyzed elsewhere (Kendall [6]). In section 4 the preceding
results will be examined in relation to theories which have been proposed for the
origin of comets. Finally, in part II of the present paper some aspects of the
problem will be studied in the general case (without the double-exponential
assumption).

In pursuing this work I have been very conscious of the debt which I owe to
the late Professor E. A. Milne for constant encouragement and advice during
my early efforts at mathematical astronomy. To his memory this paper is
respectfully and affectionately dedicated.

2. Formulation of the problem

Consider a “new’” comet in the initial (positive) energy state z (measured

before it enters the planetary zone); if we have in mind Qort’s theory [11] of
the origin of comets, then a “new’” comet will here mean a member of the swarm
of precomets which has just been directed by stellar perturbations into an orbit
with a small perihelion distance (of the order of one astronomical unit). We
shall speak of the epoch of formation of a new comet, and so on, with reference
to the epoch at which the object ultimately to be an observable comet first
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approaches the sun along an orbit which will bring it into the observable region.
Let the perturbations in energy state during its first, second, third, - - - passage
into and out of the planetary zone be y1, s, ¥s, « + + , until the comet is lost or
has disintegrated. We can adequately think of these perturbations as occurring
at the successive perihelion epochs, so that the comet passes successively through
the energy states

21) z2o=2, a=x+y, 2=x+y1+y, Ba=c+y+y:+ys -,

and describes the greater part of a complete orbit in each of these states except
the first (in which it spends only half an orbit from aphelion to perihelion). Thus
we may take the times spent in the successive states to be

(22) V@, V@), Ve, V),

respectively, where V(z) = 27%2 = a3 is the periodic time (in years) for a comet
in the energy state z. It will be assumed that z and the y are statistically inde-
pendent and that the y are identically distributed. The available evidence con-
cerning the y-distribution dG(y) was collected in [6]; here we shall only assume
that it s symmetrical about y = 0 and that there is a positive probability that
y # 0. These assumptions are dynamically plausible and they are consistent
with the observations. They suffice for the truth of the following assertion:
with probability one there will exist a, say first, positive integer N such that zy < 0.
The sufficiency of the assumptions follows from the theorems of Frank Spitzer,
which form the basis of part II of the present paper. In an earlier draft of this
work the (almost) certainty of ultimate loss was derived from theorem 4 of [1]
and the additional assumption, now redundant, that E(jy|) < «. Thus we can
be sure that the comet will be perturbed out of the solar system (unless it disin-
tegrates at some earlier perihelion passage).

Hammersley [5] and Lyttleton [9] are not especially interested in the disin-
tegration effect, and so for them the total time of residence as an effective
member of the solar system is

(23) V@ + Vet + Ve +ut
+ -+ VEet+typtye+ oo+ yn-);

the distribution of this random variable is one of the main topics discussed by
them. We shall follow Oort [11] in writing & for the chance of loss by disintegra-
tion (or some similar mechanism) at or near perihelion on each circuit. Oort
estimated & = 0.019 (from 11 disintegrations in 576 apparitions), and repeated
his calculations with the smaller value k¥ = 0.003. We shall merely assume that
0=k<1.

Without committing ourselves to any specific theory of the origin of comets
we shall suppose that new comets are formed at epochs which constitute a
Poisson process with parameter p, so that p({, — #) is the expected number of
new comets formed during a time interval ({;, {,), the actual number being



102 FOURTH BERKELEY SYMPOSIUM: KENDALL

Poisson-distributed and the numbers corresponding to nonoverlapping intervals
being independent. To begin with we shall merely assume that this process has
continued since (about) the epoch of formation of the solar system. Once we arc
through with the initial discussions, however, we shall treat this as an infinitely
remote event; that is, we shall suppose that the system has existed long enough
for statistical equilibrium to have been attained. We shall avoid making any
special assumptions about the distribution dF(x) of the initial energy state
beyond requiring that F(0) = 0 (because certainly z > 0). Thus a complete
formulation of the probabilistic model requires a sequence of negative-
exponential random variables with mean value 1/p, a sequence of random vari-
ables having the distribution dF(z), a doubly indexed sequence of random
variables having the distribution dG(y), and a doubly indexed sequence of 0-1
variables having the mean value k, all these random variables being statistically
independent.

We now turn our attention away from the history of an individual comet and
consider instead the statistical properties of the ensemble which is the sun’s
whole family of (observable) comets; this is “un élément aléatoire de nature
quelconque” in the sense of M. Fréchet [3], at least insofar as any specific
mathematical object can be described as “queleconque.” Let ¢ = 0 denote the
epoch of observation (that is, now) and let M (Z) denote the number of comets
in energy states z > Z = 0, so that M (0) is the (perhaps infinite) size of the
whole family. A comet formed at the epoch ¢t = —7 in the energy state x will
contribute one unit to M(Z) if and only if it is still in the system and has not
been destroyed by the disintegration mechanism at ¢t = 0 and is then in an energy
state z > Z. Let the probability of this event be denoted by P’(r, Zlx), so that

(2.4) Qr, 7) = ﬁ) * P(r, Zlx) dF(2)

is the probability that a comet known to have been formed at { = —7 will con-
tribute to M (Z). We can now find the probability-generating function

(2.5) o(Z;w) = EfwM@] 0=w=l,

as follows. For fixed Z and w let ¢r denote the corfesponding generating function
when only comets formed in the interval (—7', 0) are to be counted. Then, by
considering the first comet to be formed after t = — T, we find that

(2.6 dr =T+ [T11 4 (= DT — 1, Z)]bru e p du,
0

and on writing 7" — w = v and differentiating with respeet to 7', we then easily
find that

(2.7) ¢r = exp [ p(w — 1) [ Q(r, 2) dr |

We obtain ¢(Z; w) from ¢r by setting T equal to the effective age of the solar
system, which we shall denote by (% ). Thus we conclude that M (Z) is a Poisson
variable whose mean value is
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(2.8) EM@)] = » [ Q(r, 2) dr.

The integral at (2.8) may diverge; if so, then M(Z) = « almost certainly.

Now the absolute statistical fluctuations in M (Z) are of no significance for us
because we cannot (yet) examine a number of independent replicates of the solar
system; we could not even make use of the joint distribution of the M (Z) for
the same system but relating to different epochs, because the period of time
covered by astronomical observations is negligible on this scale. We can, however,
make use of the joint distribution of the variables M(Z,), M(Z,), - - - relating
to different energy levels for the same system at the same epoch; that is, we can
study the way in which the observed z-values are distributed along the z-axis;
we shall call this the z-spectrum.

On extending the preceding argument we find that the numbers M(Z;, Z;) of
comets with energy states in the nonoverlapping half-open intervals (Z;, Z;]
are independent, Poisson variables with mean values

() . .

(2.9) p [ QG Z) — QG 2] dr, i=12.
It follows that, if Z = 0 is fixed, if the integral

(2.10) (7 Q. 2) dr

is finite, and if the (finite!) number M (Z) of comets with energy states z > Z is
known, then the individual energy states of these M comets will be distributed
as if they constituted a sample of size M from the distribution

[ e pdr

[ Q(r, 2) dr

(2.11) P{z> ¢ = Z ¢ <.

This makes it possible to apply statistical tests when comparing a section of an
empirical z-spectrum with that predicted by theory, provided that the function
@ can be calculated. However, the function @ involves the distribution dF (x) of
the initial energy state, and the latter distribution is closely connected with
one’s choice of theory of the origin of comets. We shall therefore eliminate dF (z)
from the analysis as far as possible by supposing that z is fixed and is the same
for all comets; the function Q(r, Z) will then be replaced by P(r, Z|x). The
question of how one should average over the z-values, or, in case a single value
of z is appropriate, of what single value of x to choose, will be left open for the
moment. We therefore turn to the consideration of the quantities

(2.12) R(Z|z) = L ® P(r, Z|z) dr,
noting that when R(Z|z) is finite then

(2.13) P{z>§|z>Z;x}=II§T(§%» 05Z=s¢<w.
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We have here replaced () by «, indicating that from now on we shall treat the
epoch of formation of the solar system as an infinitely remote event. The extent
to which this is a justifiable assumption can be assessed by comparing the age of
the solar system with the distribution of residence times for comets found by
Hammersley in [5].

We have used N for the ordinal number of the perihelion passage at which
the comet (on emergence from the planetary zone) would first be thrown into a
parabolic or hyperbolic postorbit, in the absence of the disintegration mechanism.
We shall now use N* to denote either this integer N or the ordinal number of
the perihelion passage at which disintegration would occur, whichever is the
smaller; thus the last complete circuit, or half circuit, if N* = 1, will be described
in the energy state zyx—1 = ¢ + 41 + -+ + yn*—1, and the total time spent as
a bound member of the system in energy states z > Z will be

(2.14) S = %V(x) + X Vi,
155 <N*

2 >Z

where the first term V(x)/2 is to be omitted if x < Z.

We can think of S as the area below the “curve’ constructed as follows.
Consecutive segments of length V(2)/2, V(21), V(22), * - - , V(2x*-1) are laid out
along a horizontal axis, starting at zero, and the ordinate is required to be +1
if z; > Z (respectively z > Z) and zero if 2; < Z (respectively + < Z) in the
interior of the segment of length V(2;) (respectively V(x)/2). Everywhere else
the ordinate is to be equal to zero. The function so constructed is nonnegative,
and is jointly measurable with respect to its two arguments, which are the real
variable labeling the horizontal axis (carrying Borel sets and Lebesgue measure)
and the probability parameter. Thus Fubini’s theorem applies and gives

(2.15) E[S] = R(Z|x).

We shall obtain an explicit formula for R(Z|z) by calculating E[S] in another
way. First let A(z|z) be the number of complete circuits (excluding the initial half
circuit) performed in energy states > 2, and let B(z|z) be the number of complete
circuits performed in energy states < z, so that A(z|lz) + B(zlz) = N* — 1.
Then

%V(z)H(w —-2Z) - /; V(2)d.A(2|),
(2.16) S = -
3V@HG = 2) + [ Ve,
zZ40

because B(:|z) is continuous to the right. Here H(u) = 1 if u is positive, and
otherwise H () is zero. Let C(z|x) denote the expected number of complete circuits
performed at an energy state less than or equal to 2, so that C (zlz) = E[B(z|z)].

uJ = f: V(2)d.B(z|zr), where 0 <2z <2 <o, then
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(2.17) J = [V@)BG)E — [ " Blele) av (@),
and so
(2.18) ElJ] = [VEC(En)]E — f * Clelr) AV (2)

[ v@dc ),

provided that C(z|z) is finite for z = z,. Alternatively, the taking of expectations
can be justified by an appeal to H. Robbins [15] or W. Feller [2]. Thus, letting
21| Zand z; T «, we find that

(2.19) R(Zlo) = 2 V@H( — 2) + [, V@LC(R), Z 20,

provided that C(2|x) s finite for all finite z. This last formula, together with (2.13),
shows that the statistical discussion of the z-spectrum hinges on the determina-
tion of the function C(z|z) for all positive z and z. Plainly C(0|z) = 0.

We shall now set up an integral equation which is satisfied by C(z) = C(z|x)
for fixed positive z, and from which in certain circumstances it is possible to
determine C(z) when z > 0. We start with the explicit formula

©

(2.20) C@=x a—kr[[ - [do@) - @),
En

n=1
where the region E, of integration is that determined by the inequalities
O<z4+wnp+y+ -+, s=1,2+--,n—1,
O0<z+y+yp+ - ty.=2
It is now clear that C'(z) must be a solution to the integral equation
(2.22) C(x)

= (=B [d6@) + (1 — k) [ C@ + y) d6@y), z> 0.

0<z4uy =Sz 0<z+n

Let C,(x) denote the sum of the first r terms of the series (2.20), and let K(x)
be any nonnegative solution to (2.22). Then iteration of (2.22) gives

(2.23)
K@ = C@+ 0 =0 [[ - [Ke+un+ o +v)d6w) - dG),
F,

(2.21)

where F, denotes the region of integration determined by the inequalities
O<z+wyr+ys+ - + ¢ withs=1,2, ---, r. If now K() is finite and
bounded for all x > 0, then the last term on the right side of (2.23) will tend to
zero when r tends to infinity, because we know that with probability one the
barrier at z = 0 will ultimately be crossed, and then it will follow that
K(x) = C(x). Thus f the integral equation (2.22) possesses a finite nonnegative
measurable solution C(x) which is bounded for x > 0, then
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(2.24) C(z) = C(z|x),
and R(Z|x) can be calculated from (2.19) for all x > 0 and Z = 0.

3. Double-exponential perturbations

In physics and astronomy unknown symmetrical distributions with finite
variances are commonly taken to be Gaussian, and this course has been followed
in the present problem by Oort [11] and, in a portion of their work, by Ham-
mersley and Lyttleton. We have so far only assumed that the perturbation
distribution dG(y) is symmetrical, but we are of course quite ready to grant also
the finiteness of the second moment. On this occasion there is even a sound
theoretical reason for the Gaussian assumption; we are concerned essentially
with a problem about the cumulative sums of independent random variables
having the distribution dG(y), and if the second moment is finite then all but
the first few such sums will have nearly Gaussian distributions in virtue of the
central limit theorem. It is easy to overlook the fact that precisely the same
argument can be employed to justify the choice of any other distribution which
lies in what is called the domain of attraction of the Gaussian law (that is, which
is such that its convolutions ultimately approach the Gaussian law). Thus if we
are dealing with cumulative sums of identical independent random variables
having a finite variance, but of otherwise unknown distribution, and if some
other distribution within the Gaussian domain of attraction is analytically more
convenient, there is every reason to choose it, as a working approximation,
rather than the Gaussian law itself. This is the case in the present problem. We
shall find that there are great analytical advantages in approximating to dG(y)
by the double-exponential law

3.1) %e‘lm/b d‘zyg —o <y < o,

The empirical evidence on the form of dG(y) is collected in my paper [6]; of
the various estimates there obtained the one most free from possible selection
errors is that based on Galibina’s computations of 20 postorbits. This empirical
distribution is shown again here in figure 1 as a convolved histogram, the
polygonal line in the figure, together with the density curve for the double-
exponential law having the same (zero) mean and variance. A Gaussian curve
of the same mean and variance is also shown, but does not give a markedly
better fit; the differences would be small after a few convolutions. In this section
of the paper we shall adopt the double-exponential assumption and explore its
consequences.

The fundamental integral equation (2.22) now takes the form

3.2)
Cx) = (1 — k) /:'y(w —2)dw+ (1 — k) [0” Cw)yy(w — z) dw, x>0,
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for any fixed z > 0, where
3.3) v(u) = Ell;e‘l"l/”, —o < u < o,

It is slightly easier to handle (3.2) if we first put D(z) = Z(x) + C(z), where

\ Double- Exponential
/ Empirical

Gaussian

T T T
- 200 -100 o 100 200

Az (UNITS 10 o.u.)

Figure 1
Comparison of Gaussian, double-exponential, and
empirical distribution of Az.

Z(z) =1 for 0 <z Sz and Z(x) =0 for z < 2. The function D(z) then
satisfies the equation
(3.4)

1

k 1

D(x) = Z(x) + 2—b e—olb /‘”D(w)ew/b dw + 2_b kex/b /” D (w)e—'® duw,
0 T

and we try to find a solution D(-) which is bounded for x > 0. Such a function
will have to be continuous save for a jump of amount —1 at z = z, and it will
have to satisfy
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(3.5) D(O+) = 1+ [" Dw)evis dw,
0

the integral being finite. It will be differentiable except when z = 2, and for all
other positive values of z we shall have

—k —k

’ 1 —x * w 1 z, ® — W
(36) D@) = — g e ﬁ D(w)e s® dw + == eelb / D(w)e—'b duw,

from which we see that D’(-) must be continuous (that is, it can be defined at
x = 2z so as to be continuous) throughout (0, «), that

3.7 D'0+) = 2= [* Dw)ewrt du,
2/,
and that
(3.8) DO+) = 1 + bD'(0+).
When 0 < = # 2, then D’/(z) exists and is given by
D) —Z 1—k

3.9) D) = 2O2EE) _1okpg)
so that D(-) must satisfy the differential equation
(3.10) D" (z) — kb—2D(z) = —b~2Z(x), 0<z#z
On integrating (3.10) we obtain

k—l A Az B —)‘:cy 0 < é .
3.11) D) = {F TAT T e r=2

Cee, z < z;

here X\ denotes the positive square root of k/b? and the term in exp (Az) is omitted
when z > z because we want D(z) to be bounded. When k& = 0, the last two
equations have to be replaced by

2
A+ Br — =
3.12) D(z) = t 267
C, z <.
We now have to find the constants A, B, and C in each case. This is easily

done by using the continuity of D’(-), the known jump of D(:) at z = 2, and
the relation between D(0+) and D’(0+4). The final results are as follows.

0<z=e

! _k\/—k {1 —e?* — ¢ Mginh \z
(3.13) Clzlr) = + kY2[1 — e~ cosh A\x]}, 0<z=£e,
] _k\/k {cosh Nz — 1 + kY2 sinh Nz} e, z <z

When there is no disintegration (k = 0) a separate analysis is needed, and we
then find that
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T T 2 O<zze
(3.14) C(zlz) = .
% + ;_bz‘l 2 <z

That the functions defined at (3.13) and (3.14) are identical with C(z|z) is a
consequence of the facts that they are nonnegative and bounded, and can be
shown, by substitution, to satisfy the integral equation (3.2); the identification
with C(z|z) then follows immediately in virtue of the result established at the
end of section 2. In (3.13) and (3.14) we have all that is needed for a study of
the z-spectrum when the perturbation distribution dG(y) has the double-

exponential form. It will be recalled that N = b-'V'k; the constant b can be

estimated by noting that the root-mean-square perturbation ¢ = bVv'2. Notice
that in each case C(-|z) is continuous at z = z.

The technique which we have employed for the calculation of C(z|z) is a very
powerful one, and it can be used to obtain the expectations or more generally
the distributions of many random variables connected with the motion of a
single comet, when the perturbation distribution has the double-exponential
form. To illustrate this we shall now find the joint probability-generating func-
tion for the random variables A(z|z) and B(zlz) which were introduced in
section 2; it will be recalled that the function C(z|z) with which we have just
now been concerned is the mathematical expectation of B(z|z), and that
A(z|z) + B(z|z) is the total number of complete circuits performed by the comet
before it is lost by one mechanism or another. In order to simplify the rather
complicated formulas we shall suppose for the remainder of this section of the
paper that k = 0; the results now to be obtained should be useful in graduating
the numerical (Monte Carlo) studies by Hammersley and Lyttleton, and can
be so employed because these writers did not include a disintegration effect in
that part of their work. The reader who wishes to try out the method for himself
may like to obtain the analogous formulas which hold when k£ > 0.

Let » and v be fixed real numbers in the half-closed interval [0, 1), let z be a
fixed positive number, and let us consider

(3.15) 0(x) = 6(u, v; z|lz) = E[udGlalyBEla)]

as a function of the positive real variable z. It is easily seen that it must satisfy
the integral equation

(3.16) 8(x) = %e—rlb + %6—‘“’ [-" w(w)8(w) cv/® ib'“g

0

+ %e”” fﬁ m(w)f(w) e~»/? dTw’

z

where m(w) = v when 0 < w < 2, and =(w) = u when z < w. Now 6(-) is a
bounded nonnegative measurable function, and from the fact that it satisfies
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the integral equation we see that it is continuous for > 0 and differentiable
for x # 2. We find that

3.17) 2000+) =1 + [n w(w)B(w)e~/® d%)’
0

where the integral is convergent. Let us write P, @, and R for the three terms
which occur on the right side of the integral equation; then when z # z we shall
have

—P—Q+R

(3.18) 8 (x) = -

o that 6'(z) can be defined in such a way that 6’(-) is continuous and

(3.19) 200'(0+) = —1 + /w r(tL‘)O(uv)e*“'/"(—l;—v;
Jo

thus

(3.20) 600+) = 1 + b6'(0-+).

When z # z we can differentiate again, and this time we find that

+P+Q+R _ r@)0);
b2 b2

(3.21) 8 (z) =

accordingly 6(-) satisfies the differential equations

Jfll;”a(x), 0<z<s
(3.22) 0" (z) = 1

1 —u

b2

0(x), z < x.

All we have to do now is to solve these equations and use the continuity and
boundedness of 6(-) and 8’(-) and the relation between 6(04) and 6'(0+) to
determine the four constants. We find that

2\ sinh u(z — x) 4+ 2u cosh p(z — )

(323) O(M, v; le) — {(1 + Mb)()\ + ﬂ)c“z =+ (1 - llb)(,u —_ )\)e—uz
2'-" e—)\(x—z)

T+ )N + me= + (1 — wb)(w — Ne

Here Ab = +(1 — w)Y2 and ub = 4 (1 — v)V?; this N\ has no connection with
the N in (3.13).

I'rom the formulas (3.23) a large number of particular results of some interest
can be obtained. Thus if we want the distribution of the number A4 (z|z) of com-
plete circuits at energy levels above z, we must let v approach one from the left;
we get

0<zx

IIA
N

1A

4 X.
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b4 z—2)(1 — w2

b+ (z+ b)(1 — w? O<zss
(3.24) Elud€n] = e~ @—2) -2/
’ 2 § T
14 ﬁ#} (1 — u)l/2
If in (3.24) we put u = 0, we obtain
9—;;—2_;—””, 0<z <z
(3.25) P{A(zlz) = 0} = A
e —(x—2
Btz 2E e

But the probability given at (3.25) is just the chance that the highest energy
state Z = zmax in which complete circuits are made will not exceed z, and so the
distribution of the random variable z;,,x has an atom of mass(1/2)exp(—z/b) at
zero (this is just the chance that no complete circuits are made, since we con-
ventionally define znax = 0 in this case) and the remaining probability mass is
distributed as follows:

—(x=-2Z)/b
Z z;bb):_ 7 42, 0<Z<uz,
(3.26) X
(—2:{7)—2 iz, <7<,

Normally x will be much smaller than b (at least if we follow Oort), and then we
can easily obtain the upper five and one per cent points in the zmax-distribution;
they are

Zos = 18b + 20z,

(3.27)
Zos = 98b + 100z.

These formulas are of particular interest in connection with the Monte Carlo
runs of Hammersley and Lyttleton; they may also, when amended to allow
k > 0, be of value in deciding how frequently a comet will be lost (from the
long- to the short-period family) by entering too small an orbit.

If we keep v fixed and let « approach one from the left, we obtain in exactly
the same way the probability-generating function for B(z|z). We already know
the expectation C(z|z) for this random variable, and now we can supplement
this by calculating, for example, the variance.

4. The z-spectrum, theoretical and empirical

According to the formulas of section 2 the expected number of comets with
energy states greater than z can be calculated by multiplying R(z|z) by the
constant p, where z is the energy state of a comet during its initial approach to
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perihelion. If we knew the distribution of z, then R(z|x) would have to be
weighted accordingly. But we do not know this; we therefore retain x as a vari-
able and leave the question of the correct weighting open for the time being. .

We want to compute a theoretical z-spectrum which can be compared with
the empirical distribution of z as measured in the preorbit, and we shall have to
be careful to make an ascertainment correction to allow for the fact that we can
observe, not all the comets in a given energy band, but only those which happen
to have passed through perihelion during the comparatively short period of
time T covered by astronomical observations.

On examining formulas (2.19), (3.13), and (3.14) we see that pR(z|z) corre-
sponds to a concentration of pV(x)/2 “new’” comets in the energy state x plus
a continuous distribution of “old’’ comets with density

(4.1) pw@£0@@a, 0<z<w.

It will be convenient to think of these as being the numbers of comets in the
various energy ranges at the commencement of the period 7. The chance that
one of the “new” comets will pass through perihelion during the period T is
equal to 2T/V(x). Consider those comets at the commencement of the period T
which are in the band (2, z + dz) of energy states. We shall only be concerned
with the long-period end of the z-spectrum, so that 7' << V(z). These comets will
approach perihelion (in preorbits having energy states in the stated band) during
a period starting at this epoch and of length V'(2), and because of the stationarity
of the situation a fraction T/V(z) of them will come to perihelion within the
period of length T covered by the observations. Thus the ascertainment factor
for the continuous distribution of “old” comets is equal to T'/V(2), so that the
theoretical z-spectrum (for z measured in the preorbit) consists of

(i) a concentration of pT' “new’” comets in the energy state z, and

(i) a continuous distribution of “o0ld”’ comets with density

(4.2) pT%C@@&, 0<z< .

Oort [11] has suggested that ‘“new” comets which are making their first close
passage by the sun may be intrinsically more luminous than “old” comets which
have already had this experience and have used up some of the relevant con-
stituents. If this is so then, as Qort has pointed out, the concentration of “new”
comets would occur with augmented frequency in the empirical z-spectrum. On
the other hand Lyttleton [8] refers to the possibility that “the chance of dis-
covering a comet may depend on its period.” This might be a reference to the
need for the ascertainment correction which we have just made, or it might
refer to a possibility of z-dependence for the chance of discovery given that
perihelion occurs during the period T. Whether or not such a refined ascertain-
ment correction is necessary I do not know; I have not made one.
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We shall now illustrate the use of the above formulas when the perturbation
distribution has the double exponential form. Two assumptions, (0) and (L),
will be made about the initial energy state x; they correspond very roughly to the
theories of Oort and Lyttleton, respectively. In formulating them and in the
subsequent numerical work we shall employ 10~% (astronomical unit)~! as a
practical unit for the energy state z. On this scale the empirical evidence [6]

leads to a value of about 75 for the standard deviation ¢ = bv/'2 of the perturba-
tion distribution, or say, b = 50.

AssuMpTION (O): the initial energy stale x is very small when compared with b;
we shall take x = 0+, that is, we let x | 0 4n all the preceding formulas.

AssumpTiON (L): the initial energy state x is appreciably larger than b; we
shall take a token value of x = 200 units.

Assumption (O) is appropriate in and might be said to be fundamental to
Oort’s theory; the evidence in its favor will be discussed in a moment. In Lyttle-
ton’s theory z = »2/600 a.u.~!, where v, in km/sec, is the velocity relative to the
sun of the initiating dust cloud. Lyttleton ([7], pp. 82-83) calculates an upper
limit of about six km/sec for v, implying an upper limit of about 6000 units for x,
and remarks that “had the result come out to, say, less than a tenth of this value
[of v], it might have suggested, in the absence of a fuller investigation than at
present seems possible, that the process needed exceptionally small though not
impossible conditions of relative velocity.” Now a reduction of v by a factor of
ten implies a reduction of x by a factor of one hundred, so that in his theory
2 = 60 corresponds to “exceptionally small though not impossible conditions of
relative velocity.” It is not clear where the margin should be drawn, and no
doubt general agreement cannot be hoped for at present, but it seems reasonable
to conclude that the extreme hypothesis (O) is as inadmissible on Lyttleton’s
theory as it is vital to Qort’s. On the other hand Lyttleton ([7], p. 104) takes as
typical a value of z(= 215) corresponding to a period of 10* years. This corre-
sponds to a choice for v of about one km/sec. It therefore seems reasonable to
take x = 200 units to represent the conditions of Lyttleton’s theory in the
present rough calculations.

Finally, we require an estimate of %, the disintegration probability. We have
already mentioned Oort’s estimate of 0.019. As it is the square root of & which
oceurs in our formulas we shall use the values k = 0.04, 0.01, 0.0025, and zero.

On assumption (O) we put £ = 04, so that z < z; thus only the first of the
formulas (3.13) is relevant. The continuous part of the expected z-spectrum is
then

(4.3) pT(1 — VE) exp (—l—f k) %’, 2> 0,

while to this we must add a concentration at z = 0 of amount pT (to be enhanced
if we think that fresh comets are intrinsically more luminous). When there is no
disintegration, that is, when k& = 0, the expected z-spectrum (4.3) becomes one
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with a uniform density. This latter result (equal numbers of comets in equal
intervals of the energy axis, when there is no disintegration) was stated by
Russell in 1920.

On assumption (L) we shall have x = 200, and because only the section
0 < z < 150 of the z-spectrum is at all reliably known from observation (the
existing evidence relating to z > 150 is biased by selection effects), we shall
have z < z; thus only the second of the formulas (3.13) is now relevant, and for
the expected z-spectrum we obtain

(4.4)
oT(1 — \/%) exp (—T—) \/E)[:/ITC sinh (l-',; \/E) + cosh (f \/I_c)] %’?, 0z <.
~ L/o
-
~ - -
~ - —
~ - - - —
~ - - I "'L/3
/ — —
/%Z‘/ 8§°
e |
— " O3
| |
o 75 150
B z (UNITS 107% a.u”')
FiGUuRe 2

Theoretical z-spectra.
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The major difference between (4.3) and (4.4) is that in (4.3) the density of the

expected z-spectrum is constant or falls off slowly, like 1 — (z/b)V’k, when 2
increases, while in (4.4) it increases quite rapidly, like 1 4 z/b. This is illustrated
in figure 2, where the monotonic-increasing curves relate to assumption (L),
while the monotonic-decreasing (or constant) curves relate to assumption (O).
For convenience of identification the curves are labeled L/n and O/n, where the
initial letter indicates the hypothesis made about x, and the final figure indicates
the value of k, thus: (0) £ = 0, (1) £ = 0.0025, (2) k = 0.01, (3) k = 0.04. The
horizontal scale gives z in 10~% X a.u.™!, while the vertical scale gives the density
of the continuous part of the expected z-spectrum, as a multiple of p7'. For the
curves associated with hypothesis (0), the concentration at z = 0 has been
allowed for by spreading it uniformly over the interval 0 < z < 10.

The expected z-spectrum is not shown in figure 2 beyond z = 150 units,
because we have no reliable estimate of the observed spectrum beyond this
point. It is, however, likely that one will become available in the near future,
and then it will be worthwhile computing the expected density for z > x under
hypothesis (L); the formula for this is

(4.5)
oT(1 — \/70_) exp (—l_z> \/E)[Vl—’; sinh (% \/I_c) + cosh (% \/E)] %g, 2> .

This is to be associated with a concentration of amount p7" at z = z, just as (4.3)
is associated with a concentration of the same amount at z = 0.

With regard to the z-spectrum under hypothesis (0O), let us note that the con-
centration at z = 0 is equal in amount to the “mass’” in the continuous part of
the z-spectrum over the range 0 < z < b, approximately.

So much for the theoretical z-spectrum. Let us now take a look at the
observations.

In [6] we made use of the rigorously calculated preorbits of 24 long-period
comets; for one of these (Comet 1882 II) the original (preorbit) value of z was
1215 units, and we now exclude it from consideration. The remaining 23 comets,
their energy states in the preorbit (z_) and at perihelion (z), are shown in
table I.

In the last column of table I the figures in parentheses show the numbers of
comets with values of z_ in the stated intervals, based on rigorous calculations
of the preorbits for all comets for which zo < 200. These figures are taken from
column two of the table on page 366 of Oort’s paper [14]; here “all” comets
mean ‘‘all comets between 1850 and 1936 for which 2, was known with a mean
error of less than 10 units or for which, if no mean error was known . . . the
observations . . . extended over at least six months.”

It is known (see [6]) that zp = 2 — 50 + w, where w is a random variable
with mean value zero and with a standard deviation of 50 units, approximately.
Thus, except for rare exceptions, we shall have zo < z_ — 50 + 100 = z_ 4 50,
and so, if z_ < 150, then we can fairly safely assert that zo < 200. This means



116 FOURTH BERKELEY SYMPOSIUM: KENDALL

TABLE I

VALUES OF z_ AND 2y ¥OR 23 CoMETs

Range of Values Number in
of z2_ Comet 2 2 the Range
z < 5 units 1899 1 —2.7 —107.3 12 (13)
1898 VII —1.6 —60.7
1886 I -0.7 —69.4
1922 II +0.4 —-38.1
1902 III +0.5 +8.1
1914 'V +1.2 —14.7
1919 V +1.6 —19.3
1863 VI +1.7 —49.5
1907 I +2.5 —49.9
1897 1 +4.0 —87.2
1889 1 +4.2 —69.2
1932 VI +4.4 —-59.5
5<z<10 1925 I +5.4 —56.7 4 (4)
1886 IX +6.3 —-57.7
1890 1II +7.2 —21.5
1853 III +8.3 —81.9
10<z2<15 1925 VII +11.5 —-27.3 1(2)
15 <z <20 1908 IiI +15.8 —73.3 1(2)
20 <2 <25 1936 1 +20.5 —48.7 2 (1)
1904 1 +21.7 —50.4
25 <z <50 1886 1I +31.7 —47.7 1(3)
50 <z<75 1905 VI +62.1 —14.2 2 (2)
1910 1 +69.2 +21.4
75 <z < 100 none 0 (1)
100 < z < 150 none 0 (3 below 200)

that the figures collected by Oort and shown in parentheses in table I give an
unbiased estimate of the z-spectrum over the range z < 150, but not perhaps
beyond this.

The outstanding features of the empirical z-spectrum are (i) the absence of
any significantly negative values of z_, and (ii) the big concentration of values
below z = 5. It is now widely accepted that hyperbolic original orbits virtually
do not exist, and so we can take all entries in the table for which z < 5 as belong-
ing to the interval 0 < z < 5; effect (ii) then becomes the more pronounced.
This fact, the concentration of preorbits in the smallest energy class, is the
observation on which the whole of Oort’s theory is built, but its reality has been
questioned by Lyttleton [8]. Lyttleton’s main objections, and some replies
which might be made to them, are as follows.
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(a) The concentration of preorbits in the lowest energy class may be the result
of selecting for analysis those perihelion orbits which are most nearly hyperbolic.
(Undoubtedly this criticism was appropriate at an earlier stage, but it loses its
force now that the calculations have been extended to cover all sufficiently well-
observed comets for which 2z, < 200.)

(b) The energy interval in question has a width of only five units, while the
error in the determination of z_ may be of the order of 10 units. (But the effect
of random errors in z_ would be to diminish and not to enhance such a peak.)

This question will no doubt be settled in the course of time by the accumula-
tion of evidence. At the moment it seems reasonable to accept the phenomenon,
at least tentatively, as a real one.

If we do so, then we are obliged to follow Oort in concluding that an appre-
ciable number of the 12 or 13 comets in the lowest energy interval are “new”
comets which have not previously passed through a (close) perihelion. For if
these comets had all passed through the planetary zone in previous revolutions
then the over-all energy perturbation (with a root-mean-square value of about
75 units) would have eliminated any such concentration in the 0 to 5 class. It
now becomes very desirable to examine the physical characteristics of the comets
in the 0 to 5 class, to see if they, or a significant proportion of them, differ in any
marked way from what we may call “old” comets; such an investigation has
been carried out by Oort and M. L. Schmidt [12], but we shall not summarize
it here. A study of the distribution of aphelia for this group of objects would
also be of interest.

The relation between the theoretical and empirical z-spectra may be studied
by comparing figure 2 with figure 3, in which we have a histogram showing the
frequency with which the observed values of z_ (based on the figures in paren-
theses in the last column of table I) fall into various subintervals of the range
0 <z < 150. Near z = 0 we have used intervals of length five units, although
the error of determination may be of the order of 10 units. Thus the peak of
over-all width of about 20 units which appears in figure 3 would be compatible
with a concentration at z = 0. There does not appear to be any prospect of
reconciling the observed z-spectrum with hypothesis (L), except perhaps by
giving up the hypothesis of statistical equilibrium, made in section 2 when we
put (o) = =, but qualitatively at least the agreement with hypothesis (O) is
striking. We proceed to examine this more carefully.

It does not seem likely that the present very sparse data could possibly dis-
criminate between the various values for the disintegration constant k, and in
fact from figure 2 we see that k has only a small effect [when combined with
hypothesis (O)] over the range 0 < z < 150. Let us first consider hypothesis (O)
combined with £ = 0 (curve O/0 in figure 2). The continuous z-spectrum is then

@6 | 0.02 T dz, 0<z<w,

and this has to be combined with a concentration p7 at z = 0. Before attempting
to compare this with observation we should first convolve it with a (say Gaussian)



118 FOURTH BERKELEY SYMPOSIUM: KENDALL

1 . = e e o o o vy

0 75 150

z{ UNITS 10°% a.u™')
Figure 3

The observed z-spectrum.

error distribution having a standard deviation of the order of 10. We can best
eliminate our ignorance of the form and precise magnitude of the error distribu-
tion by grouping together all the values of z in the interval 0 < z < 25, and then
we find that the observed and expected numbers in the various ranges are as
shown in table II. The flatness of the z-spectrum for z > 25 is well supported by

TABLE II

CoMPARISON OF THE OBSERVED z-SpEcTRUM wiTH HyporhEsis O/0

Range of Values of z Observed Number Expected Number

0<2<25 22 1.5 0T
25 <z <560 3 0.5 pT
50<2<75 2 0.5 pT
75 <z <100 1 0.5 pT
100 <z < 150 =3 1.0 pT

the empirical figures but is hardly worth a formal significance test with such
small numbers. The expected numbers for the intervals 0 < z < 25 and
25 < z < 150 are 1.5 pT and 2.5 pT, while the observed numbers are 22 and
6 to 9, respectively. Thus the concentration at z = 0 is four to six times as
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prominent as would be expected, unless we allow a disintegration effect. From
figure 2 it can be seen that with a disintegration rate &k = 0.04, which is some-
what higher than that envisaged by Oort (but just about compatible with the
data which he employed—11 disintegrations in 576 perihelion passages), the
continuous part of the z-spectrum can be depressed relative to the concentration
at z = 0; in fact the expected numbers in the two ranges just mentioned now
become each equal to 1.4 pT.

We conclude that the section 0 < z < 150 of the observed z-spectrum is
compatible with Oort’s assumption £ = 0, together with a disintegration rate
of the order of 0.04, provided that we assume the “fresh” comets to be intrin-
sically about four times more luminous than “old” comets.

This is entirely in accordance with Oort’s conclusions ([11], p. 105, column 1).
Oort and his colleagues at Leiden (especially E. H. Bilo, Mrs. J. van Houten,
and H. C. van de Hulst) are currently engaged in a rigorous determination of
the empirical z-spectrum over a much wider range of z-values. When this is
available a more thorough analysis along the present lines would be worthwhile.

To conclude this discussion it may be useful to give a brief résumé of the
deductions made by Oort on the basis of the existence of a peak at z = 0 in the
z-spectrum, identified with comets entering the planetary zone for the first time.
(I refer to the parallel survey of Lyttleton’s theory [5] available elsewhere
in this Symposium volume.) The first inference is that in the outskirts of the
solar system there must exist a swarm of what we may call “precomets,”
physically identical with the comets with which we are familiar, except that
they will on the whole be intrinsically more luminous than “old” comets. It is
supposed that these precomets are moving in elliptic orbits with perihelion
distances so large that they are quite undetectable by us except when by chance
one of them is thrown by stellar perturbations into a new orbit passing ultimately
within an astronomical unit or so of the sun. It is assumed that the swarm
extends to a radial distance of the order of 200,000 astronomical units; this
value is dictated by the large values of 2a which have been calculated for some
cometary preorbits, and by Oort’s estimate that a swarm with a radius of this
order could just keep in existence in the face of the disrupting forces of stellar
encounters for a period of the order of the age of the solar system. The swarm is
supposed to have spherical symmetry, and to possess an isotropic velocity
distribution. It is argued that these properties would be acquired by the swarm
because of stellar perturbations, if they were not present initially, and the
assumption of spherical symmetry is roughly in accordance with the observed
distributions of the poles of the orbital planes and the directions of aphelia for
long-period comets. Oort first tried a Maxwellian distribution of velocities, but
this led to unacceptably high densities in the swarm; he finally assumed a
velocity distribution of the form

av

@.n 3V, 0<V<U,

where U is a constant multiple of the square root of (R — r)/r (r being distance
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from the sun, and B = 200,000). This velocity distribution is stable when com-
bined with a suitable density distribution. The arbitrary constant in the latter
can beestimated from the observed number (about 100) of new observed comets
passing through perihelion per century with perihelion distances of 1.5 a.u. or
less. In this way Oort finds the number of comets in the swarm to be of the order
of 10!, but with a fotal mass which is only about one-tenth of that of the earth.
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