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1. Introduction

This paper will be concerned with stochastic processes with finite second-order
moments. We start from a given probability space (Q, a, 3), where Q is a space
of points w, while 0 is a Borel field of sets in Q, and $3 is a probability measure
defined on sets of H.
Any a-measurable complex-valued function X = x(w) defined for all w E Q

will be denoted as a random variable. We shall always assume that

Ex = f x(C) d¶3 = 0,
(1)

EIxI2 = fQ Ix(.) I2d$ <0o
Two random variables which are equal except on a null set with respect to 3
will be regarded as identical, and equations containing random variables are
always to be understood in this sense.
A family of random variables x(t) = x(t, w), defined for all t belonging to some

given set T, will be called a stochastic process defined on T. With respect to T,
we shall consider only two cases:

(i) T is the set of all integers n = 0, :t1, ±2, ,
(ii) T is the set of all real numbers t.

With the usual terminology borrowed from the applications, we shall in these
cases talk respectively of a stochastic process with discrete time, or with continu-
ous time. In the first case, where we are concerned with a sequence of random
variables, we shall usually write x,, in place of x(n).
With due modifications, the majority of our considerations may be extended

to cases where T is some other set of real numbers.
We shall also consider finite-dimensional vector-valued stochastic processes,

writing
(2) x(t) = {x(l)(t), x(2)(t), * *,(qt
where x(t) is a q-dimensional column vector, while the components x(")(t),
x(')(t) are stochastic processes in the above sense.
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58 FOURTH BERKELEY SYMPOSIUM: CRAMER

The covariance functions of the x(t) process are

(3) R,k(t, u) = E{x(i)(t)V(k)(u)} = Rki (u, t),

where j, k = 1, 2, -", q. These are all finite, since we consider onily variables
with finite second-order moments. In the particular case q = 1, we are concerned
with one single stochastic process x(t), and there is only one covariance function

(4) R(t, u) = E{x(t)x(u)}.

2. Stationary stochastic processes

In the important particular case when all Rik are functions of the difference
t - u, so that we have

(5) Rjk(t, u) = r,k(t - u),
the x(t) process is known as a stationary stochastic process. We shall not here be
concerned with the so-called strictly stationary processes, which satisfy more
restrictive conditions.
The class of stationary processes possesses useful and interesting properties,

which have been thoroughly studied. The present paper is the outcome of an
attempt to generalize some of these properties to certain classes of nonstationary
processes. In particular, various properties related to the problem of linear least
squares prediction will be considered. For the sake of brevity, we shall in the
sequel always use the word "prediction" in the sense of "linear least squares
prediction."

In the first part of the paper, the general case of a vector-valued stochastic
process with finite second-order moments will be studied. For such a process,
there exists a uniquely defined decomposition into a deterministic and a purely
nondeterministic component, which are mutually orthogonal.

In the case of a vector process with discrete time, the properties of this de-
composition are a straightforward generalization of the well-known Wold decom-
position [12] for stationary one-variable processes with discrete time. This case
will be treated in detail in section 4 of the present paper.

For a process with continuous time, on the other hand, the-properties of the
nondeterministic component are somewhat more complicated than in the case
of a stationary process. This case will be dealt with in section 5. We shall here
give only the main lines of the argument, and state our main results. Complete
proofs will be given in a forthcoming publication in the Arlciv for Matematik.
The decomposition into a deterministic and a purely nondeterministic com-

ponent forms the basis of a time-domain analysis of a given stochastic process,
generalizing the well-known properties of stationary processes.
For the class of stationary processes, "the chief advantage of turning from

the time-domain analysis of stochastic processes to the frequency-domain or
spectral analysis is the possibility of using the powerful methods of harmonic
analysis" (Wiener and Masani [11], p. 140). This can be done for stationary
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processes, since there exist for these processes spectral representations in the form
of Fourier-Stieltjes integrals, both for the process variables themselves and for
the associated covariance functions.

In the second part of the present paper, we shall consider certain classes of
nonstationary processes admitting spectral representations of a similar kind.
Our results in this part of the paper are of a much less definite character than
those given in the first part. In fact, only some highly preliminary results con-
cerned with the spectral analysis of processes will be given here. Also we shall
here consider only one-variable processes with discrete time, although most of
our results may be generalized to the vector case, and also to processes with
continuous time.
Two classes of stochastic processes admitting spectral representations will be

considered, each including the stationary processes as a particular case.
For a stationary process with discrete time, it is well known that there exists

a representation in the form of a stochastic Fourier-Stieltjes integral

(6) x.= f2l einu dz(u)

where z(u) is a stochastic process with orthogonal increments. If we consider a
process x,, representable in the same form, but without requiring that z(u)
should necessarily have orthogonal increments, we shall be led to a class of sto-
chastic processes first introduced by Loeve [7], [8], and called by him harmoniz-
able processes. Obviously this class contains the class of stationary processes.
The harmonizable processes will be considered in section 6 of the present paper.

Finally, in section 7 we shall consider a different kind of generalization of the
concept of a stationary process. With respect to a stationary process with dis-
crete time, it is well known that there exists a unitary shift operator U, which
takes every xn into the immediately following variable xn+i. The properties of
this operator are intimately connected with the properties of the stationary
process. The more general class of processes obtained when it is only assumed
that the shift operator is normal has been studied by Getoor [5]. In section 7
we shall give some very preliminary results concerning the spectral analysis of
this class of processes, restricting ourselves to the case of processes with discrete
time.

PART I. THE GENERAL VECTOR-VALUED PROCESS
WITH FINITE SECOND-ORDER MOMENTS

3. Notation, deterministic and nondeterministic processes

All random variables x, y, * * * defined on the given probability space (&29, Oa
and satisfying (1), form a Hilbert space S, if the inner product and the norm
are defined by the usual expressions
(7) (x, y) = E(xy), IxW 2 = Ejx12.
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Whenever we use the term convergence with respect to a sequence of random
variables, it will be understood that we refer to convergence in the topology
induced by this norm, that is, convergence in quadratic mean.
We now consider a vector-valued stochastic process x(t) = {x(') (t), **, x( (t)},

where the x(i)(t) are complex-valued stochastic processes, defined for all t E T.
Every random variable x(i)(t) is assumed to satisfy (1), and is thus an element
of t. In order to avoid trivial difficulties we shall always suppose that, for every
j= 1, - , q,
(8) EIx(i)(t) ; > 0

for at least oiie t E T'. We shall say that two processes x(t) and y(t) of this type
are orthogonal, in symbols x(t) I y(t), if

(9) E{z(i)(t)(k)(11)}- = 0,

forj, k = 1, *-,qandallt, u E T.
Let D(x, t) denote the subspace of I spanned by the random variables x(i)(u)

for j = 1, ** *,qand all u such that u T and u < t. We shall write this

(10) b(X, t) = c {x(i)(u), j = 1, * , q, u C T, u _ t},
where e stands for "span." Instead of D(x, +oo), we shall write simply ,D(x).
As t decreases, the set !p(x, t) can never increase. It follows that, when t+ ,

the set D(x, t) must tend to a limiting set, which we denote by .t(x, - c). We
thus have for any t, < t2

(1 1) '(X, --) C 't(X, tl) C 't(X, t2) C D(X) C t
It can be said that t(x, t) contains all the information available when we know
the development of all the component processes x(i)(u) up to and including the
point t. In the terminology used by Wiener and Masani ([11], p. 135), we can
say that p(x, t) represents the past and present of x(t), while -(x,-c) corre-
sponds to the remote past of the process.

If 9) is any subspace of !, that is, any closed linear manifold in &, we denote
by Pwmy the projection on 9)1 of an arbitrary element y of SD. When T? = D(x, t),
we write simply Pt instead of Pm.

Similarly, if y(l) .--, y(q) are any elements of .&, and y denotes the column
vector

(12) y = (y(), .. y()),
we shall write

(13) Puy = (PPy(l), *, 0)),
replacing PM01 by Pt in the particular case when 9) = t(x, t).
The projection Pt-hX(i)(t) is, among al elements y of the subspace 5(x, t - h),

that which minimizes the norm llx(l)(t) - yll. Accordingly Pthx(f)(t) is, from
the point of view of linear least squares prediction, the best possible prediction
of x(2)(t) in terms of all variables x(l)(u), X..,x(q)(U) with u _ t - h. The norm
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(14) 0A = IIx(70(t) - Pt_g%x(')(t)II
is the corresponding error of prediction. For 0 < h < k, we obviously have

(15) 0 _ at . ox?.

Going back to relation (11), we shall now consider two extreme possibilities
with respect to the subspace J(x, -oo), namely

(16) D(A) (x, -X)= ),
(B) "(x,-00) = 0.

In case (A), it follows from (11) that D(x, t) = 6(x, -co) for all t. Thus, in
particular, x(J) (t) C f(x, - o0) for all j and t, and it follows that the prediction
error aT reduces to zero for j = 1, * * *, q, for all t E T and all h > 0. Hence for
every t E T the components x(15(t) of x(t) all can be exactly predicted by means
of the information provided by the arbitrarily remote past of the process. In
this case we shall say that the x(t) process is deterministic. Every x(t) process
not satisfying condition (A) will be called nondeterministic.
On the other hand, in case (B) we can say that the information provided by

the remote past of the x(t) process is, in the limit, of no value for the prediction
of the component variables x(l) (t) at any given time t. Thus every piece of infor-
mation contained in the process at the instant t must have entered the process
as an innovation at some definite instant u _ t in the past or present. Accord-
ingly, a process satisfying condition (B) will be called a purely nondeterministic
process. (Wiener and Masani [11] use the term regular process.) For such a
process, the irrelevance of the remote past for prediction purposes may be ex-
pressed by the relation

( 17) lim qjS = | X1x(5(t) | |

which holds for j = 1, ** , q and every t C T.

4. The discrete case
When T is the set of all integers n = 0, 4 1, ***, we are concerned with a

discrete vector process
(18) xn - (x"1, **,X)
where it is assumed only that each component xn'J is a complex-valued stochastic
process with discrete time parameter n, zero mean-values, and finite second-order
moments. Using the notations introduced above, we have

(19) Pn_lXn P-n X ** *Xn_lX).
Writing
(20) ,n = Xn - Pn-lxn, ( = n - Pn-iXn
it follows that
(21) ,n = (l), *Xn)-
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The sequence of vector-valued random variables Z, defines a vector-valued sto-
chastic process with discrete time parameter n. The Z, process will be called
the innovation process corresponding to the given xn process. This name may
be justified by the following remarks.

If, for a certain value of n, we have

(22) ,n = (0 *, O),
this signifies that every component n'l is zero, that is, every x"'j is contained in
the subspace t(x, n - 1). From the prediction point of view this means that
every component xn( Of xn can be predicted exactly by means of the information
available when we know the development of the x process up to and including
the instant n - 1. Obviously this can be expressed by saying that no innovation
enters the x process at the instant n or, equivalently, that the innovation re-
ceived by the process at this instant reduces to zero.

Suppose, on the other hand, that for a certain n, the vector variable n has
at least one component n-0 such that Eltni) 2 > 0. Then t'n3 = _11 - P,1xnI) does
not reduce to zero, so that xn cannot be predicted exactly in terms of the vari-
ables x<', ***, 4,) with m _ n - 1. The variable t(nZ then represents the inno-
vation received by the component x'f) at the instant n, and consequently
E. = (Q), * * * X tn") which is not identically zero, is the innovation entering into
the vector process x at the instant n.
The set of all those values of n, for which the innovation n does not reduce

to zero, may be said to form the innovation spectrum of the xn process. This set
contains precisely all those time points where a new impulse, or an innlovation,
enters into the process.
The innovation spectrum may be empty, finite, or infinite; and it will be

readily seen that, to any given set of integers n, we can construct an x, process
having this set for its innovation spectrum. For a deterministic process, the
innovation spectrum is evidently empty, while for any nondeterministic process
it must contain at least one value of n. For a nondeterministic stationary process,
the iimovation spectrum includes all integers n.

Let now n be a given integer, and consider the set of q random variables
n .., n, with covariance matrix

(23) Rn = {E(ti(A,))} j, k = 1, * , q.

The rank rn of Rn is equal to the maximum number of linearly independent
variables among n('), ..., ( Thus 0 < rn _ q, and rn > 0 if, and only if, n
belongs to the innovation spectrum of the x process.

Let f(x, n) denote the rn-dimensional space spanned by the variables
n * n, . Since tW E D(x, n), it is seen that f(x, n) is a subspace of t(x, n).
It follows from (20) that tn(3 is always orthogonal to t(x, n - 1), and conse-

quently f(x, n) I t(x, n - 1). It also follows from (20) that any two variables
t.(1 and n with m z- n are orthogonal, so that f(x, m.) I f(x, n) when m 54 n.

If we orthogonalize the set of variables tP, * , ( we shall obtain a set of
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rn variables, say") *..., (r.,? forming a complete orthonormal system in f(x, n),
and in addition q - r. zero variables. If n does not belong to the innovation
spectrum, rn = 0, and the space r(x, n) reduces to zero.
The vector sum of the orthogonal family of subspaces f(x, m) with m <_ n,

(24) R(x, n) ff(x, n) + f(x,n -1) + *-
is the space spanned by all n with j = 1, * * *, q and m _ n. Obviously this is
a subspace of !(x, n). It will be seen that the set of all variables q<°, where
j = 1, * * *, r. and m <_ n, forms a complete orthonormal system in (x, n).
This remark will be used later.
We now proceed to the proof of the following lemma which, in the stationary

case, corresponds to part (b) of lemma 6.10 of Wiener and Masani [11].
LEMMA 1. The space R(x, n) is, within &t(x, n), the orthogonal complement of

ID(x, -oo). In symbols

(25) t(x, n) 1 D(x,-oo),
S9(x, n) = R(x, n) + t(x,-o).

We have already seen that f(x, m) is orthogonal to !b(x, m - 1), and a fortiori
orthogonal to D(x, -o). Consequently the vector sum R(x, n) is orthogonal to
'(x, -0).

Further, since ft(x, n) and D(x, -oo) are both subspaces of t(x, n), we have

(26) R (x, n) + S§(x, - ) C !9(x, n).
On the other hand we have X() = t(n) + Pn-ixn(J so that every element of
t(x, n) is the limit of a convergent sequence of variables, each of which is the
sum of a linear combination of tn"), ***, ' and an element of t(x, n -1).
Since t(x, n) and t(x, n - 1) are orthogonal, it follows that every element of
t(x, n) is the sum of one element of f(x, n) and one of t(x, n - 1), so that

(27) D(x, n) C t(x, n) + !t(x, n -1) C ft(x, n) + 9(x, n - 1).
By repeated application of this relation we obtain

(28) t(x, n) C SR(x, n) + I(x, n - p)
for every p> 0, and finally, as p --+ o,

(29) t(x, n) C R(x, n) + D(x,-00).
This, together with (26), completes the proof of the lemma.
We can now prove the analogue of the Wold decomposition for the Xn process,

thus generalizing theorem 6.11 of Wiener and Masani [11].
THEOREM 1. For any given Xn process, there is a uniquely determined decom-

position
(30) xn = u,, + Vn

having properties (a) and (b).
(a) un = (un, * , un2)) and vn = (vK, * * *, vn ), where all un° and vbelongto

S!(x, n).
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(b) The un and v, processes are orthogonal, and un is purely nondeterministic,
while vn is deterministic. The nondeterministic component un has, in addition,
property (c).

(c) un can be expressed as a linear combination of those innovations t, of the xn
process that have ente7ed into the process before or at the instant n,

n
(31) un = E, Aptpl

where the An, = {anJ°} are q X q matrices, such that the development formally ob-
tained for any component u(i,

(32) un = p
p=-° k=1

is convergent in the topology of St. Thus, writing

( =) - |2y(|(33) Cnp akan(Jp ||p-' X|E anp Sp|k=1aJk=1q
we have

n

(34)~~ ~~~~~~~~(E )((2 < X0
p=-oo

for all n and for j = 1, ***, q. The coefficients an are uniquely determined if, and
only if, the rank rp has the maximum value q, while the cnp are uniquely determined
for all n, p, and j.

PROOF. For all n and forj = 1, ***, q we take for u(n and vnJ) the projections
of x!, on the subspaces 9(x, n) and t(x, - oo) respectively. It then follows from
lemma 1 that u( and v(') belong to Sj(x, n), and that we have

(x =u-u + vU,
(35)n n n

Xn = Un + Vn,

where

(36) Un = (un') . ul), Vn= (v(1) , vn.

Since u,( belongs to ft(x, m), while vn) belongs to D(x, -cc), it further follows
from lemma 1 that u(m and v?(n are always orthogonal. Thus the un and Vn proc-
esses are orthogonal, according to the definition given in section 3. If, in accord-
ance with section 3, we define

( (u, n) = e(u,,, j = 1, *, q, m _ n),
(37)~ ~~ $(v n) =-(v(v), j ,** q )

we thus find that t(u, m) and t(v, n) are orthogonal for all m and n.
Since all uit and vm with m < n belong to t(x, n), we have

(38) t(u, n) + t(v, n) C g(x, n).
OIn the other halnd, it follows from (35) and from the orthogoiiality of the un aii(
vn processes that
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(30) (x, n) C (u, n) + I(v, n1).
Hence by lemma 1, S)(u, n) + '(v, n) = S3(x, n) = ft(x, n) + '(x, -oo). By
the definition of the un and vn we have, however, t(u, n) C SR(x, n) and
b(v, n) C D(x, -c), and thus obtain

(u, n) = (x, n),
()(v, n) = D(x,-cc).

From lemma 1 we then obtain D(u, -cc) = R(x, --o) = 0, so that the u,
process is purely nondeterministic. On the other hand !(v, - c) = t(x, -c) =
!(v, n) for every n, and so the vn process is deterministic.
The properties (a) and (b) of the decomposition considered here are thus

established, and we shall now prove that this is the only decomposition of the
given xn process that has these properties. Suppose, in fact, that un and v, are
any processes satisfying (35), and having the properties (a) and (b) stated in
the theorem. Then (38) and (39) will still hold, so that we obtain as before

(41) I(x, n) = I(u, n) + I(v, n)
for all n. It is readily seen that, owing to the orthogonality of t(u, n) and .D(v, n),
this holds even for n = -oo, and we obtain

(42) D(x, -c) = V(u, -c) + !(v,-).
However, on account of property (b), we have '(u, -cc) = 0, and thus

(43) D(x, -c ) = !(v, -c ) = ,D(v, n)
for all n. Hence by (41) and lemma 1 we find that relations (40) will still hold.
In the decomposition x( - uW + vnJ, the first component must then be the
projection of x' on R(x, n), and the second the projection on '(x, -oo), so that
the decomposition is unique.

It finally remains to prove property (c). In order to do this, we use the remark
made above about the completeness of the orthonormal system -n4 in the space
R(x, n). The corresponding Fourier development of the element u(n E R(x, n)
will have the form

n rp
(44) Un E E7 bnp 71p'p=-_ k=l
with

(45) E_F ibnp'2 o
p=-_ k=l

For any fixed p, the orthogonal variables 7 .,77p are certain linear com-
binations of the innovation components , * *, '2'. The coefficients appearing
in these linear combinations will be uniquely determined if, and only if, the
rank rp has its maximum value q. Replacing the 7(k) in the above development
of un'J by their expressions in terms of the t(k), we obtain the development given
under (c), and we find that
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(46) kIb=n

The proof of theorem 1 is thus completed.
We can now immediately state the following result, which gives the applica-

tion of theorem 1 to the prediction problem for the x,, process.
THEOREM 2. Let h be any positive integer. With the notation of theorem 1, the

best prediction of the component xn>> in terms of all variables x(", A*,x27 with
p . n - h will be

n-h q
(47) Pn-hXn = E anp4t j + vn2,

P=-O k=1

with the corresponding error of prediction

(48) Oa(h = nIxn - n
n 1/2

= ip E (cnp)_=n-h+l }

This follows directly from theorem 1 and from the definition (14) of the error
of prediction, if we observe that vn, as well as all . with p _ n - h, belong to

(x, n - h), while all t(') with p > n - h are orthogonal to this space.
It should be noted that the coefficients an(§) in the expression for the best

prediction of x't' given in theorem 2 depend on certain covariances of the x
process up to the time n. Accordingly, any statistical estimation of this prediction
by means of theorem 2 must be based on information concerning the covariance
structure of the process up to the time n, either from a priori knowledge (as in
the case when the process is assumed to be stationary), or from previous statisti-
cal experience.

5. The continuous case

REMARK. I am indebted to Professor K. Ito for the observation that there
are interesting points of contact of this section and a work by T. Hida on
"Canonical representations of Gaussian processes," which will shortly appear
in the Memoirs of the College of Science, University of Kyoto.
We now consider a q-dimensional stochastic vector process

(49) x(t) = {x(1) (t),I * *, x(q) (t)},

the parameter set T being the set of all real numbers t. Each component x(15(t)
is a complex-valued stochastic process with continuous time t, and the covariance
functions Rjk(t, u) defined by (3) are all assumed to be finite.
When t increases from -x to +00, the point x(i)(t) describes a curve in the

Hilbert space !(x), and the x(t) process is made up by the set of q curves corre-
sponding to the components x(1)(t), ..., xM)(t). The subspace t(x, to) is spanned
by the arcs of these curves that belong to the domain t _ to. The properties of the
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family of all subspaces t(x, t), where t ranges from -oo to +cc, will play an
important part in the sequel.
The following theorem is directly analogous to the first part of theorem 1,

and can be proved along similar lines, so that we may content ourselves here
with stating the theorem.
THEOREM 3. There is a unique decomposition of the x(t) process,

(50) x(t) = u(t) + v(t),

having properties (a) and (b).
(a) u(t) = {u(l)(t), ** *, u(q)(t)} and v(t) = {v(1)(t), *, v(g)(t)}, where all u(i)(t)

and v(i)(t) belong to St(x, t).
(b) The u(t) and v(t) processes are orthogonal, and u(t) is purely nondetermin-

istic, while v(t) is deterministic.
The second part of theorem 1 is concerned with the representation of the

nondeterministic component of a given process with discrete time as a linear
function of the innovations associated with the past and present of the process.
For the nondeterministic component of a process with continuous time there
exists, in fact, an analogous representation. However, the circumstances are
somewhat more complicated than in the discrete case, and we shall here only
give some preliminary discussion and state our main results, reserving complete
proofs for a forthcoming publication.

For our present purpose, it will be sufficient to deal with the purely nonl-
deterministic component u(t) of the given x(t) process, and we may then as well
assume that x(t) itself is purely nondeterministic, that is, the deterministic
component v(t) is identically zero. Further, we shall find it convenient to intro-
duce a certain regularity condition relating to the behavior of the x(t) process in
points of discontinuity. Thus it will be assumed throughout the rest of the
present section that we are dealing with a vector process x(t) satisfying the
following two conditions.

(C1) x(t) is purely nondeterministic, that is, t(x, -oo) = 0.
(C2) The limits x(i) (t - 0) and x(i) (t + 0) exist (as always in the .& topology)

for j = 1, * * *, q and for every real t.
We shall then write

(51) x(t -O) = {x(1)(t - ), * * )*,x (t- 0)},
and similarly for x(t + 0).

It follows without difficulty from condition (C2) that the space D(x) is sepa-
rable, and that the set of points of discontinuity of x(t), that is, the set of all t
such that at least one of the relations

(52) x(t-0) = x(t) = x(t +0)

is not satisfied, is at most enumerable.
Let us now consider the family of subspaces D(x, t) of the space D(x). As t

increases from - to +oc, the (x, t) form a never decreasing set of subspaces,
with D(x, -oo) = 0 and !(x, +-) = D(x). The limits t(x, t i 0) will exist
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for all t. If (t, t + h) and (u, u + k) are disjoint intervals, the orthogonal com-
plements

(53) S?(x, t + h) - !(x, t) and 5(x, u + k) - D(x, u)
are mutually orthogonal.
The set of all t such that for any h > 0 we have

(54) !D(x, t + h) - !D(x, t - h) 96 O
will be called the innovation spectrum of the x(t) process. A point t such that at
least one of the relations

(55) 1(X,1 t - O) = !D(x, t) = 1(X,1 t + O)
is not satisfied, is a point of discontinuity of the innovation spectrum. The space
D(x) being separable, it follows immediately that the set of all discontinuity
points is at most enumerable.
A discontinuity point of the innovation spectrum will not necessarily be a

discontinuity point of the process, nor conversely. We shall make some remarks
concerning the relations between these two kinds of discontinuities.

Let us first consider the case of a left discontinuity of the innovation spectrum,
that is, a point t such that

(56) 9)1(t) = (x, t) - t(x, t -0) $ 0.

Then it is easily shown that
(57) x(t) - x(t -0) id 0,

so that t is also a left discontinuity point of the process. Further, if y(l) denotes
the projection of x(')(t) - x(2)(t - 0) on 9X(t), we have y(i) $ 0 for at least one
j, and the subspace TI(t) is spanned by the variables y(l), *.*, y(q), and has thus
at most q dimensions.
Thus in particular (56) implies (57). The converse statement is however not

true: a left discontinuity of the process may, in fact, be a continuity point of
the innovation spectrum.

Proceeding now to the case of a right discontinuity, it can be shown that
neither of the two relations
(58) 9(t) = (x, t +0) - "(x, t) 0O
and

(59) x(t + 0) - x(t) 0O

implies the other. In fact, it can be shown by examples that (58) may be satisfied
even in a continuity point of the process, while on the other hand (59) may be
satisfied even in a continuity point of the innovation spectrum.
The only implication that exists between the relations (56), (57), (58), and

(59) is thus that (56) implies (57).
As in section 3, we now denote by Pgz the projection of any point z EG (x)

on the subspace ID(x, t). When t increases from - oo to +oo, the P, form a never
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decreasing set of projections, with P_OO = 0 and P+x = I. For h > 0, the differ-
ence Pt+h - Pt is the projection on t(x, t + h) - D(x, t). The limits Pt+o exist
for every t, and are the projections on b(x, t - 0) respectively.

For an arbitrary random variable z in t(x), we now define a stochastic process
by writing for all real t

(60) z(t) = Ptz.
It then follows from the above that z(t) defines a complex-valued stochastic
process with orthogonal increments, such that

(61) z(-o) = 0, z(+c) =z,
Ez(t) = 0, EJz(t)12 = F(t, z),

where F(t, z) is, for any fixed z, a real, never decreasing and bounded function of
t, such that
(62) F(-xo, z) = 0, F(+ci, z) = EIzI2.
The points of increase of z(t), that is, the points t such that for any h > 0

(63) EIz(t + h) - z(t - h)I2 = F(t + h, z) - F(t - h, z) > 0,
form a subset of the innovation spectrum of x(t). Similarly, the left (right) dis-
continuities of z(t) form a subset of the left (right) discontinuities of the inno-
vation spectrum. Any increment z(t + h) - z(t) belongs to the subspace
t(x, t + h) - D(x, t), and may thus be regarded as a part of the innovation
received by the x(t) process during the interval (t, t + h).
We now denote by 2(z) the subspace of I(x) spanned by all the variables z(u)

for -oo < u < +00, and by 2*(z) the set of all random variables y representable
in the form

(64) y = f. g(u) dz(u)
with

(65) EiyI2 = f jg(u)J2dF(u, z) < X
If no u is at the same time a left and a right discontinuity of z(u), then 2(z) and
2*(z) are identical (see Doob [4], pp. 425-429). The variable y given by (64
will belong to 5(x, t) if, and only if, we have g(u) = 0 for almost all u > t,
"almost all" referring to the F(u, z)-measure on the u-axis.
By means of the theory of spectral multiplicity in Hilbert space (see, for

example, Stone [10], chapter VII, and Halmos [6]), we can now show that with
any x(t) process satisfying (C1) and (C2) it is possible to associate a number N,
which may be a finite positive integer or equal to +oo, such that we can find
N random variables zi, **, ZN belonging to !(x), with the properties

(a) V(zn) = 2*(zn), n = 1, ,N.

(b) 2(Z.) I 2(Zn) m i n.
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(c) D(X) = V(Zl) + - - - + S(ZN).
(d) N is the smallest number having the properties (a), (b), and (c).
In particular, since any component variable x(i)(t) of x(t) evidently belongs to

I(x, t), we have the expression
N f

(66) x(' (t) = E ge(t, u) dzk(u)
k=1 JC

for j = 1, ***, q. If N = °o, the series appearing here will converge in quadratic
mean, so that

Nt
(67) E f |g'k)(t, u)12 dF(u, 2k) < t.k=l1_0

If now we define a column vector

(68) z(u) = {z1(u), * U*, )'
and a q X N matrix

(69) G(t,u) = {giVI(t, u)}, j = 1, ***,q; k = 1, *,N,

we finally obtain the required expression for the vector variable x(t) in terms of
past and present innovations of the process, as stated in the following theorem.
THEOREM 4. The vector variable x(t) of any stochastic process satisfying con-

ditions (Cl) and (C2) can be expressed in the form

(70) x(t) = f_ G(t, u) dz(it),

where z(u) is an N-dimensional vector process with orthogonal increments, while
G(t, u) is a q X N matrix, in accordance with (68) and (69). The development (66)
formally obtained for the component x(.1 (t) is then convergent as shown by (67).

It will be seen that this is directly analogous to the last part of theorem 1,
except that certain sums have been replaced by integrals, and that the q-dimen-
sional random vector tp has been replaced by the N-dimensiolnal vector z(u). It
is the fact that the multiplicity N may have any integral value from 1 to oo that
introduces additional complication into the continuous case. It is possible to
construct examples corresponding to any given value of N, even when it is
required that x(t) be everywhere continuous (or even differentiable in quadratic
mean). We finally state the following theorem, which is the continuous analogy
of theorem 2.
THEOREM 5. Let h > 0 be given. For any x(t) process satisfying conditions

(CI) and (C2), the best prediction of the component x(i)(t) in terms of all variables
x(l)(u), **, x(a)(u) with u _ t - h will be

N rth
(71) Pt-hX(7'(t) = E|f kl (t,u) dZk(U),

k=1 triri

with the corresponding error of prediction
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(72) a.(£) - IIx(')(t) - Pt-hX(')(t)||

- {k1 f| gk(t, u) 12 dF(u,zk)}

PART II. ON TWO CLASSES OF PROCESSES
ADMITTING SPECTRAL REPRESENTATIONS

6. Harmonizable processes

We shall now consider a one-dimensional process with discrete time, such
that x, is given by a stochastic Fourier-Stieltjes integral

(73) x, = f0 einu dz(u),

where z(u) denotes, for 0 < u < 21r, a complex-valued random variable satis-
fying the conditions
(74) Ez(u) = 0, E{z(u)z(v)} = F(u, v).
It will be assumed that the complex-valued covariance function F(u, v) is of
bounded variation over the square C defined by 0 < u, v < 2w, in the sense that,
for every subdivision of C in a finite number of rectangles, we have

(75) E IA2FI < K,
the sum being extended over all the rectangles, and the constant K being inde-
pendent of the subdivision.
The integral (73) will then exist as a limit in quadratic mean of certain

Riemann sums. Processes of this type have been introduced by Loeve [7], [8],
and have been called by him harmonizable processes. The covariance function
corresponding to the process defined by (73) is

(76) R(m, n) = E(xmxn,) = |10 102 ei(rtnz-nv) dF(u, v).

Conversely, if the covariance function of a certain x. process is given by (76),
where F(u, v) is a covariance function satisfying (75) it is known (Loeve [8],
Cram6r [1]) that there exists a process z(u) satisfying (74), and such that xn is
given by the integral (73).
Without changing the value of the integral (73), we can always suppose that

z(u) is everywhere continuous to the right in quadratic mean, so that z(u + 0) =

z(u). The function F(u, v) then defines a complex mass distribution over C, such
that the mass carried by any rectangle h < u _ h + Ah, k < v _ k + Ak is
equal to the second-order difference A2F(u, v) corresponding to this rectangle.

It follows from the Hermite-symmetric properties of covariances that the
masses carried by two sets of points symmetrically situated with respect to the
diagonal u = v of the square C are always complex conjugates. If a point set
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belonging to the diagonal u = v carries a mass different from zero, this mass
will be real and positive.
The function F(u, v) will be called the spectral function of the xn process, while

the distribution defined by F is the spectral distribution of the process.
In the particular case when the whole spectral mass is situated on the diagonal

u = v, it follows from the general symbolic relation
(77) E{dz(u) dz(v)} = du,F(u, v)
that the z(u) process has orthogonal increments, and so in this case the xn process
is stationary.

In the general case, F(u, v) may be represented as a sum of three components,
each of which is a covariance of bounded variation over C,
(78) F = F1 + F2 + F3.
Here F1 is absolutely continuous, with a spectral density fi(u, v) such that

(79) Fi(u, v) = f0" f (s, t) ds dt.

On the other hand, the F2 and F3 distributions both have their total masses
concentrated in sets of two-dimensional Lebesgue measure zero. For F2 this set
is at most enumerable, each point carrying a mass different from zero, while the
F3 set is nonenumerable, and each single point carries the mass zero. In the
stationary case, the F1 component is absent, while the F2 and F3 components
have their total masses situated on the diagonal u = v.
A sufficient condition that the harmonizable xn process given by (73) will be

deterministic can be obtained in the following way. The xn process will be deter-
ministic if, and only if, for every n and every h > 0 we can find a finite number
of constants c0, cl, c, such that the quantity
(80) W = E|xn - Coxn-h - ClXn -h ** - CrXn-h-r _
will be arbitrarily small. Writing
(81) g(u) = einu - Coei(n-h)u - . - Cei(n-h-r)u

it follows from (76) that we have

(82) W = f02r f2r g(u)g(v) dF(u, v)

and hence by the Schwarz inequality

(83) W 2 f2 gu)2 IdF(u, v)< |O f lg(v)l2 jdF(u, v)j.

By the symmetry of the spectral distribution, the two factors in the last member
are equal, so that we obtain

(84) W _ f|O |g(u)12 dG(u),

where
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(85) G(u) = f j2 1 dF(s, t)j.

Now G(u), being a never decreasing and bounded function of u, has almost
everywhere in (0, 2wr) a nonnegative derivative G'(u), and the integral
(86) f|2w log G'(u) du

will be finite or equal to - oo. In particular, if G'(u) = 0 on a set of positive
measure, the integral will certainly have the value - oo.

If the integral (86) has the value -oo, it follows from well-known theorems
in the prediction theory for stationary processes that the coefficients c; can be
chosen so as to make the second member of (80) as small as we please. Thus we
have the following result (Cramer [2]).
THEOREM 6. If we have

(87) fo log G'(u) du =

the xn process is deterministic.
In particular, if the F1 and Fs components in (78) are absent, so that the

whole mass of the F distribution is concentrated in isolated points, it will be
seen that G'(u) = 0 almost everywhere, so that (87) will certainly hold, and
the x. process will be deterministic.

Consider now, on the other hand, a process xn with a spectral function F
having an absolutely continuous component F1 not identically zero. Moreover,
let us suppose that the spectral density fi(u, v) corresponding to F1 belongs to
L2 over the square C. For such a process, we shall give a sufficient condition
that it is nondeterministic. Let

(88) fi(u, v) = E
p=1

be the expansion of fi(u, v) in terms of its eigenvalues u, and eigenfunctions
,pp(u). The .,u are real and positive, the opp(u) are a set of orthonormal functions

in (0, 27r), and the series converges in quadratic mean over C. We then have
THEOREM 7. Suppose that, in the expansion (88), there is a p such that the

Fourier series of the eigenfunction (p,(u)~~~~~~~~~~0
(89) (,op(u) E bpse-iu, E

_ lbp,12 < O
q=-co s=-

is "one-sided" in the sense that for a certain m it satisfies the conditions

(90) bp = Ofor q <im, bpm F# 0.

Then the xn process is nondeterministic, and the point n = m belongs to its innova-
tion spectrum.
Taking n = m and h = 1 in the expressions (80) and (81) for W and g(u) we

have, in fact (see Riesz and Nagy [9], p. 240),
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(91) JV = floT Jlo g(U)2() dF(u, v) _ flo lo g(u)9(v)fi(u, v) du dv

2r~~~~~

=1 AP g(u)<,op(u) du

and thus by hypothesis

(92) W > 1 f2T g(u)qp(u) du| = 47r2plb,j2
independently of the choice of the coefficients cj. This obviously signifies that
xm cannot be predicted exactly in terms of the variables xm.A, xm_2, , so that
the prediction error

(93) IXrn - Pmrlx,nll
is positive, and m belongs to the innovation spectrum of the x. process, which is
thus nondeterministic.

It follows from well-known theorems that, when the conditions of theorem 7
are satisfied, we have

(94) f02log sp(u)jdu>>
The converse of this statement is, however, not true; (94) may be satisfied even
in a case when sp(u) does not have a one-sided Fourier expansion. A simple
example is obtained by taking

(95) 27rf2(u, v) = p(u);p(z)
with

(96) (u) d i2 u _7r,
7r < u 27r.

It can also be shown by examples that there are nondeterministic processes with
a spectral density fi(u, v) belonging to L2 that do not satisfy the conditions of
theorem 7 for any value of p.
By imposing a further restrictive condition oIn the behavior of the spectral

density it is possible, however, to obtain a criterion which is both necessary and
sufficient in order that a given harmonizable process be nondeterministic, and
even have an a priori given set of integers as its innovation spectrum (Cra-
m6r [3]). Thus, in particular, it follows that, any set of integers being given, there
always exists a harmonizable process having this set as its innovation spectrum.

7. Processes with normal shift operator

For a stationary process with discrete time, we have the integral representa-
tion

(97) x ef 'i dz(u),
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where z(u) has orthogonal increments. In the preceding section we considered
the generalization obtained by dropping the assumption that z(u) has orthogonal
increments, and we saw that this leads to the class of harmonizable processes.
We now consider a different kind of generalization of (97), which leads to a

different class of processes. To this effect, we now regard the integration variable
u in (97) as a complex variable, and suppose that the integration is extended over
a certain domain D in the plane of u, and that z(u) is defined for all u belonging
to D.

After an appropriate change of variables, the integral corresponding to (97)
then takes the form

(98) xn = JDw- dz(p, X),

where w = p exp (iX), while z(p, X) is a random variable satisfying the conditions
(99) Ez(p, X) = 0, Elz(p, X) 12 < K
for all p, X such that w belongs to D. As in the stationary case, we still suppose
that z(p, X) has orthogonal increments, so that we have in the usual symbolism

(100) E{dz(pi, XI) Wz(p2, X2)} = 0, wI $d W2,
Eldz(p, X) 12 = dF(p, X),

where F(p, X) is a nonnegative and never decreasing function of p and X, which
is bounded throughout D. The integral (98) can then be defined in the same
way as before, and we obtain

(101) R(m, n) = E(xmxn) = JD WmWn dF(p, X).

The function F(p, X) will be called the spectral function of the x. process, and
defines the spectral distribution of the process, which is a distribution of real
and positive mass over the domain D.
We now introduce the further assumption that the domain D is entirely

situated within the ring
(102) pi-p _pPo > 0.
We observe that this includes the particular case of a stationary process, when
the domain D reduces to the unit circle.

In the present case we obtain from (101) for any complex constants c; and
any positive integer Q

(103) 0 Qcx Q rQ
cji F(103) 0._ E Lc,xA = , cj3kR(j, k) = f|Ec,wi dF,

j=-Q I i,k=-Q JDI-Q
and hence

(104) QE:,+ir . pE Q

El QEI CjjX-1 < El Q cj.rj.
-Q PO Q(
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According to Getoor [5], these inequalities imply that there is a shift operator
N uniquely defined and bounded throughout the Hilbert space '(x) of the x.
process, and such that
(105) Nrnx, = Xm+n
for all m, n = 0, i 1, . It also follows from the work of Getoor that in our
case N is a normal operator in t(x). We have, in fact,

(106) (Nxm, xn) = E(Xm,+l!n) = fD Wm+lWn dF

D
JD wm(Ww-) dF = E(xm.yn),

where

(107) Yn = N*x. = fD Wn dz.

It follows that

(108) NN*xn = N*Nxn = fD Iwl2Wn dz.

Thus N commutes with its adjoint N*, and consequently N is normal. In the
particular case of a stationary process, when the spectral mass is wholly situ-
ated on the unit circle, it is well known that N is even a unitary operator.
By an argument quite similar to that used for the deduction of the inequalities

(104), we obtain for n > 0

2Q Xj2 Q 12
(109) ponE o- E c,x <= E|xn- E CjXn-j

Q 2
< p2nE|X CX_j|2.=Pp~Exo - L cixj

j=1

The coefficients cj being arbitrary, this shows that we have for the prediction
errors Onh, where h is any positive integer,

(110) PO f0f2h < nth pl (Oh.

For n < 0 we obtain in the same way
(111) 2n2<n2 < a.2 < 2n 2Pi nh PC 00h.

From these inequalities, we obtain directly the following theorem.
THEOREM 8. If the Xn process defined by (98) and (102) is nondeterministic,

we have Onh > 0 for all n and all h > 0. In particular, the innovation spectrum of
the process then contains all n = 0, 1,

Suppose now that the spectral distribution defined by F(p, X) has a nonvanish-
ing absolutely continuous component. We may then write

(112) J = Exo- cjx2 = 1- E dF

> fJ 12r 11 _ E2 Cjf(p, X) dp dX,
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where f(p, X) is nonnegative and integrable. From the inequalities between
arithmetic and geometric means we further obtain

(113) 2wr(pl - Po)

r{ff(Pll-pO) Fpo| [logf(p, ) + 2 log-exp 2(i-P) 2 +2o 1 9.Jdpdx}

= G(f) exp ) 1 f2 log 1 - EWL| dp dX},

where

(114) G(f) = exp {2( j:1f| r log f(p, X) dp dX}

From Jensen's theorem we obtain, however,

(115) exp {2(1 P) | f; log 1 -
Q

ci dp dX}

{exp { - f log k dp} _ 1,

where w1, ***, wk are the zeros of 1 -F Q cjw-i outside the circle lwj = p. Con-
sequently

(116) 27r(pi - Po) - '

and it follows that, if G(f) > 0, then the x. process is nondeterministic, and we
have
(117) an,1 > 27r(pi - po)G(f).
In the particular case when there is an expansion

(118) log f(p, X) = c-i, b_. =b

absolutely convergent for p _ po, it can even be proved that the sign of equality
holds in (117).

Finally, we may observe that it is also possible to give a sufficient condition
for a deterministic process, corresponding at least partly to theorem 6. In fact,
it can be shown that if the spectral distribution defined by F(p, X) is discrete,
and if the set of points carrying a positive mass has at most a finite number of
limiting points, then the x,, process is deterministic.
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