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1. Introduction

A two-way communication channel is shown schematically in figure 1. Here z;,
is an input letter to the channel at terminal 1 and y; an output while z; is an
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input at terminal 2 and y. the corresponding output. Once each second, say,
new inputs z; and . may be chosen from corresponding input alphabets and
put into the channel; outputs ¥, and y, may then be observed. These outputs
will be related statistically to the inputs and perhaps historically to previous
inputs and outputs if the channel has memory. The problem is to communicate
in both directions through the channel as effectively as possible. Particularly, we
wish to determine what pairs of signalling rates R, and R, for the two directions
can be approached with arbitrarily small error probabilities.
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Before making these notions precise, we give some simple examples. In figure 2
the two-way channel decomposes into two independent one-way noiseless binary
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612 FOURTH BERKELEY SYMPOSIUM: SHANNON

channels K, and K,. Thus z,, x,, y; and y, are all binary variables and the opera-
tion of the channel is defined by y, = x; and y; = z,. We can here transmit in
each direction at rates up to one bit per second. Thus we can find codes whose
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Ficure 3
rates (R, R;) approximate as closely as desired any point in the square, figure 3,

with arbitrarily small (in this case, zero) error probability.
In figure 4 all inputs and outputs are again binary and the operation is defined
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by 41 = y2 = 21 + 2 (mod 2). Here again it is possible to transmit one bit per
second in each direction simultaneously, but the method is a bit more sophis-
ticated. Arbitrary binary digits may be fed in at z; and x, but, to decode, the
observed y must be corrected to compensate for the influence of the transmitted
z. Thus an observed y; should be added to the just transmitted x; (mod 2) to
determine the transmitted x.. Of course here, too, one may obtain lower rates
than the (1, 1) pair and again approximate any point in the square, figure 3.

A third example has inputs z; and z, each from a ternary alphabet and outputs
11 and ¥, each from a binary alphabet. Suppose that the probabilities of different
output pairs (¥, ¥2), conditional on various input pairs (zy, 72), are given by
table I. It may be seen that by using only z, = 0 at terminal 1 it is possible to
send one bit per second in the 2 — 1 direction using only the input letters 1
and 2 at terminal 2, which then result with certainty in a and b respectively at
terminal 1. Similarly, if 2, is held at 0, transmission in the 1 — 2 direction is
possible at one bit per second. By dividing the time for use of these two strategies
in the ratio N\ to 1 — X it is possible to transmit in the two directions with
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TABLE 1
yiye Output Pair

21%2 aa ab ba bb
00 1/4 1/4 1/4 1/4

01 1/2 1/2 0 0
02 0 0 1/2 1/2

Input 10 1/2 0 1/2 0
Pair 11 1/4 1/4 1/4 1/4
12 1/4 1/4 1/4 1/4
20 0 1/2 0 1/2
21 1/4 1/4 1/4 1/4
22 1/4 1/4 1/4 1/4

average rates B, = 1 — A\, B, = \. Thus we can find codes approaching any
point in the triangular region, figure 5. It is not difficult to see, and will follow
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from later results, that no point outside this triangle can be approached with
codes of arbitrarily low error probability.

In this channel, communication in the two directions might be called in-
compatible. Forward communication is possible only if x. is held at zero. Other-
wise, all 2, letters are completely noisy. Conversely, backward communication
is possible only if a; is held at zero. The situation is a kind of discrete analogue
to a common physical two-way system; a pair of radio telephone stations with
“push-to-talk’” buttons so arranged that when the button is pushed the local
receiver is turned off.

A fourth simple example of a two-way channel, suggested by Blackwell, is the
binary multiplying channel. Here all inputs and outputs are binary and the
operation is defined y; = y. = a,12. The region of approachable rate pairs for this
channel is not known exactly, but we shall later find bounds on it.

In this paper we will study the coding properties of two-way channels. In
particular, inner and outer bounds on the region of approachable rate pairs
(Ry, R;) will be found, together with bounds relating to the rate at which zero
error probability can be approached. Certain topological properties of these
bounds will be discussed and, finally, we will develop an expression describing
the region of approachable rates in terms of a limiting process.
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2. Summary of results

We will summarize here, briefly and somewhat roughly, the main results of
the paper. It will be shown that for a memoryless discrete channel there exists
a convex region G of approachable rates. For any point in G, say (B,, R»), there
exist codes signalling with rates arbitrarily close to the point and with arbitrarily
small error probability. This region is of the form shown typically in figure 6,

Ficure 6

bounded by the middle curve G and the two axis segments. This curve can be
described by a limiting expression involving mutual informations for long se-
quences of inputs and outputs.

In addition, we find an inner and outer bound, Gr and G, which are more
easily evaluated, involving, as they do, only a maximizing process over single
letters in the channel. Gy is the set of points (Rys, Rx) that may be obtained by
assigning probabilities P{x;, 2;} to the input letters of the channel (an arbitrary
joint distribution) and then evaluating

_ P {x|zs, gﬁ) _ P{z)|2,, yo}
R = B (log I ) = & Plaewd s T2

- M),
B =B (log P {2,|x:}

where E(u) means expectation of u. The inner bound G is found in a similar way
but restricting the distribution to an independent one P{z;, x5} = P{x1}P{zs}.
Then Gy is the convex hull of (R, Rx) points found under this restriction.

It is shown that in certain important cases these bounds are identical so the
capacity region is then completely determined from the bounds. An example is
also given (the binary multiplying channel) where there is a discrepancy between
the bounds.

The three regions Gr, G and Go are all convex and have the same intercepts
on the axes. These intercepts are the capacities in the two directions when the
other input letter is fixed at its best value [for example, z; is held at the value
which maximizes R under variation of P {x,}]. For any point inside G the error
probabilities approach zero exponentially with the block length n. For any point

(1
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outside @ at least one of the error probabilities for the two codes will be bounded
away from zero by a bound independent of the block length.

Finally, these results may be partially generalized to channels with certain
types of memory. If there exists an internal state of the channel such that it is
possible to return to this state in a bounded number of steps (regardless of
previous transmission) then there will exist again a capacity region G with similar
properties. A limiting expression is given determining this region.

3. Basic definitions

A discrete memoryless two-way channel consists of a set of transition probabil-
ities P {y1, yalm1, 2} where xy, s, ¥1, y2 all range over finite alphabets (not neces-
sarily the same).

A block code pair of length n for such a channel with M, messages in the for-
ward direction and M, in the reverse direction consists of two sets of n functions

fo(ma), fi(ma, yn), fo(ma, Y, Y1), < -+, faa(ma, yu1, * -+, Y1,0-1)

go(ms), ga(ma, Yar), go(ma, Yo, Y2), =+ , Ga1(ma, Yor, * - , Y2,n1)-

Here the f functions all take values in the x, alphabet and the g functions in
the x, alphabet, while m, takes values from 1 to M, (the forward messages) and
m, takes values from 1 to M, (the backward messages). Finally i, for ¢ =
1,2, ---,n — 1, takes values from the y, alphabet and similarly for y;;. The f
functions specify how the next input letter at terminal 1 should be chosen as
determined by the message m; to be transmitted and the observed outputs
Y, Yaz, + -+ at terminal 1 up to the current time. Similarly the g functions
determine how message m, is encoded as a function of the information available
at each time in the process.

A decoding system for a block code pair of length » consists of a pair of func-
tions @(mi, yu, Y1z, " * + , Y1) &N Y(Ma, Yo1, Yoz, - -+ , Y2a). These functions take
values from 1 to M, and 1 to M, respectively.

The decoding function ¢ represents a way of deciding on the original trans-
mitted message from terminal 2 given the information available at terminal 1 at
the end of a block of » received letters, namely, yu, %12, - - -, Y1 together with the
transmitted message m; at terminal 1. Notice that the transmitted sequence
Ti1, T1z, ** * 5 T1a although known at terminal 1 need not enter as an argument
in the decoding function since it is determined (via the encoding functions) by
my and the received sequence.

We will assume, except when the contrary is stated, that all messages m, are
equiprobable (probability 1/M;), that all messages m. are equiprobable (prob-
ability 1/M,), and that these events are statistically independent. We also as-
sume that the successive operations of the channel are independent,

(3) P{yn, 13, = 5 Yimy You, Y23, **+ , Y2alyy Tagy <o 0, Tamy Tony Tony -+ - Tan}

= H P{yrs, yail2rs, Tai}

i=1

@)
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This is the meaning of the memoryless condition. This implies that the probabil-
ity of a set of outputs from the channel, conditional on the corresponding in-
puts, is the same as this probability conditional on these inputs and any previous
inputs.

The signalling rates R, and R, for a block code pair with M; and M, messages
for the two directions are defined by

R = 7-1Z log M,

4) .
R2 = = IOg MQ.

n

Given a code pair and a decoding system, together with the conditional prob-
abilities defining a channel and our assumptions concerning message probability,
it is possible, in principle, to compute error probabilities for a code. Thus one
could compute for each message pair the probabilities of the various possible
received sequences, if these messages were transmitted by the given coding
functions. Applying the decoding functions, the probability of an incorrect de-
coding could be computed. This could be averaged over all messages for each
direction to arrive at final error probabilities P, and P, for the two directions.

We will say that a point (R,, R.) belongs to the capacity region G of a given
memoryless channel K if, given any ¢ > 0, there exists a block code and decoding
system for the channel with signalling rates Rf and R} satisfying |R; — Rf| < e
and |R; — R3] < e and such that the error probabilities satisfy P. < e and
P €2 < e

4. Average mutual information rates

The two-way discrete memoryless channel with finite alphabets has been
defined by a set of transition probabilities P {y, ys|21, 2.} . Here z, and z, are the
input letters at terminals 1 and 2 and y, and y, are the output letters. Each of
these ranges over its corresponding finite alphabet.

If a set of probabilities P{x,} is assigned (arbitrarily) to the different letters
of the input alphabet for x; and another set of probabilities P{z,} to the alphabet
for x, (these two taken statistically independent) then there will be definite cor-
responding probabilities for 3 and y, and, in fact, for the set of four random
variables x, 3, 1, ¥2, namely,

P{xl’ T2, Y1, y2}
Py}

P {x:} P {xa} P {1, yalms, 2}
Z P{xly L2y Yy, yZ})

Z1,T2,Y2

()

and so forth.

Thinking first intuitively, and in analogue to the one-way channel, we might
think of the rate of transmission from x; to the terminal 2 as given by H(z,) —
H (21|73, y2), that is, the uncertainty or entropy of z, less its entropy conditional
on what is available at terminal 2, namely, y. and z.. Thus, we might write
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(6) R12 . H(.Tl) - H(xllﬁ'z, yz)

. Plxy, x5, ya}
=E l 1 2 Y2 ]
I: 8 Ple:} Plas, y)

_ Pj:cllxzz yzt
- B[ log SRt
() Ry = H(xy) — H(xo|xs, 11)

=F [log 131%8}11)%%]

7 ijz Ty, 3{1} :|
=F I:log P {a)

These are the average mutual informations with the assigned input probabilities
between the input at one terminal and the input-output pair at the other ter-
minal. We might expect, then, that by suitable coding it should be possible to
send in the two directions simultaneously with arbitrarily small error probabilities
and at rates arbitrarily close to Ry and Rz. The codes would be based on these
probabilities P{x;} and P{x,} in generalization of the one-way channel. We will
show that in fact it is possible to find codes based on the probabilities P {z,} and
P{z,} which do this.

However the capacity region may be larger than the set of rates available by
this means. Roughly speaking, the difference comes about because of the prob-
ability of having x; and x, dependent random variables. In this case the appropri-
ate mutual informations are given by H (z:|x1) — H(x2|x1, y1) and H(x:|x2) —
H (1|2, y2). The above expressions for Ry and Ri; of course reduce to these
when x; and z; are independent.

6. The distribution of information

The method we follow is based on random codes using techniques similar to
those used in [1] for the one-way channel. Consider a sequence of n uses of the
channel or, mathematically, the product probability space. The inputs are
X, = (rn, Tz, -+, T1a) and X, = (Zo1, Top, - - -, T2») and the outputs Y, =
(Y1, Y1z, =+ 5 Y1) @0d Yo = (Yo, ¥23, - -+ , ¥20), that is, sequences of n choices
from the corresponding alphabets. ‘

The conditional probabilities for these blocks are given by

(8) P{Yl; Y2[X1y X2} = IkI P{ylk, yzklxm, $2k}-

This uses the assumption that the channel is memoryless, or successive operations
independent. We also associate a probability measure with input blocks X,
and X, given by the product measure of that taken for z;, z.. Thus
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P{X,} = IkI P{zy}

)
P{Xz} = IA_;I P{.’Egk}.

It then follows that other probabilities are also the products of those for the
individual letters. Thus, for example,

P{Xl’ Xz, Yl’ Yg} = IkI P{xlk) L2ky Y1k, y2k}
(10)
P{X2IX1; Yl} = II;I P{x2k|x1k, ?Ju}

The (unaveraged) mutual information between, say, X; and the pair X, Y,
may be written as a sum, as follows:

P »
I(X1; Xs, V) = log P{X,, X, Y?} = log IkI (e, Tu, Yaj
T P{X\} P{X,, Yo} HP {zu} H P{za, yu}
k k
(11) = Z lOg Pixlk, Lok, 921:}

k P {z} P{xox, yu}
I(X,; X5, Yy) = Zk: I(21x; Tok, Yor)-

Thus, the mutual information is, as usual in such independent situations, the
sum of the individual mutual informations. Also, as usual, we may think of the
mutual information as a random variable. Here I(X;; X,, Y,) takes on different
values with probabilities given by P{X;, X,, Y.}. The distribution function for
I(X,; X, Yy) will be denoted by p12(Z) and similarly for I(X:; Xy, Y1)

pe(Z) = P{I(Xy;; X, Yo) £ 2}
pn(2) = P{I(Xy; Xy, Y1) = 7.

Since each of the random variables I(X;; X,, Y,) and I(X;; X, Y)) is the sum
of n independent random variables, each with the same distribution, we have
the familiar statistical situation to which one may apply various central limit
theorems and laws of large numbers. The mean of the distributions p;2 and px
will be nRy; and nR,; respectively and the variances n times the corresponding
variances for one letter. As n — ©, pp[n(Ry2 — €)] — 0 for any fixed ¢ > 0, and
similarly for px. In fact, this approach is exponential in n; p[n(Rye — €] £
exp [—A(e)n].

(12)

6. Random codes for the two-way channel

After these preliminaries we now wish to prove the existence of codes with
certain error probabilities bounded by expressions involving the distribution
functions py; and pg;.

We will construct an ensemble of codes or, more precisely, of code pairs, one
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code for the 1 — 2 direction and another for the 2 — 1 direction. Bounds will
be established on the error probabilities P.; and P., averaged over the ensemble,
and from these will be shown the existence of particular codes in the ensemble
with related bounds on their error probabilities.

The random ensemble of code pairs for such a two-way channel with M; words
in the 1 — 2 code and M, words in the 2 — 1 code is constructed as follows.
The M, integers 1,2, --- , M; (the messages of the first code) are mapped in
all possible ways into the set of input words X; of length n. Similarly the integers
1,2, .-+, M, (the messages of the second code) are mapped in all possible ways
into the set of input words X; of length n.

If there were a; possible input lefters at terminal 1 and a; input letters at ter-
minal 2, there will be a? and a3 input words of length n» and a?™* mappings in
the first code and a3™* in the second code. We consider all pairs of these codes, a
total of af*'a3*" pairs.

Each code pair is given a weighting, or probability, equal to the probability
of occurrence of that pair if the two mappings were done independently and an
integer is mapped into a word with the assigned probability of that word. Thus,
a code pair is given a weighting equal to the product of the probabilities as-
sociated with all the input words that the integers are mapped into for both
codes. This set of code pairs with these associated probabilities we call the
random ensemble of code pairs based on the assigned probabilities P{X;} and
P{X,}.

Any particular code pair of the ensemble could be used to transmit informa-
tion, if we agreed upon a method of decoding. The method of decoding will here
consist of two functions ¢(X,, Y1) and ¢(X,, Y;), a special case of that defined
above. Here X; varies over the input words of length » at terminal 1, and Y,
over the possible received blocks of length n. The function ¢ takes values from
1 to M, and represents the decoded message for a received Y, if X; was trans-
mitted. (Of course, X; is used in the decoding procedure in general since it may
influence Y, and is, therefore, pertinent information for best decoding.)

Similarly, ¢(X,, Y;) takes values from 1 to M; and is a way of deciding on
the transmitted message m; on the basis of information available at terminal 2.
It should be noted here that the decoding functions, ¢ and ¥, need not be the
same for all code pairs in the ensemble.

We also point out that the encoding functions for our random ensemble are
more specialized than the general case described above. The sequence of input
letters X, for a given message m; do not depend on the received letters at ter-
minal 1. In any particular code of the ensemble there is a strict mapping from
messages to input sequences.

Given an ensemble of code pairs as described above and decoding functions,
one could compute for each particular code pair two error probabilities for the
two codes: P, the probability of error in decoding the first code, and P., that
for the second. Here we are assuming that the different messages in the first
code occur with equal probability 1/M,, and similarly for the second.
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By the average error probabilities for the ensemble of code pairs we mean the
averages E(P,) and E(P.;) where each probability of error for a particular code
is weighted according to the weighting factor or probability associated with the
code pair. We wish to describe a particular method of decoding, that is, a choice
of ¢ and ¢, and then place upper bounds on these average error probabilities
for the ensemble.

7. Error probability for the ensemble of codes

THEOREM 1. Suppose probability assignments P{X,} and P{X,} in a discrete
memoryless two-way channel produce information distribution functions pi2(Z) and
021(Z). Let My = exp (Rn) and M, = exp (Rsn) be arbitrary integers and 6, and 0,
be arbitrary positive numbers. Then the random ensemble of code pairs with M,
and M, messages has (with appropriate decoding functions) average error probabil-
ities bounded as follows:

E(Py) < pu[n(Ry + 6)] + =
E(Po) £ puln(Rs + 65)] + e~

There will exist in the ensemble at least one code pair whose individual error prob-
abilities are bounded by two times these expressions, that is, satisfying

P, = 2pp[n(Ry + 61)] 4 2e—n4
P = 2pn[n(R: + 65)] + 2¢ 7.

This theorem is a generalization of theorem 1 in [1] which gives a similar
bound on P, for a one-way channel. The proof for the two-way channel is a
generalization of that proof.

The statistical situation here is quite complex. There are several statistical
events involved: the choice of messages m; and ms, the choice of code pair in
the ensemble of code pairs, and finally the statistics of the channel itself which
produces the output words Y, and Y, according to P{Y, Y, X;, Xo}. The en-
semble error probabilities we are calculating are averages over all these statistical
events.

We first define decoding systems for the various codes in the ensemble. For a
given 6, define for each pair X;, Y, a corresponding set of words in the X space
denoted by S(X}, Y1) as follows:

(15) S(X, ¥y) = {Xz[ log }%%% > n(Rs + 02)}-

That is, S(Xy, Y,) is the set of X, words whose mutual information with the
particular pair (X, Y,) exceeds a certain level, n(R. -+ 62). In a similar way, we
define a set S/(X;, Y3) of Xy words for each X,, Y, pair as follows:

P{X,, X, Y} .
PX}P (X, Yy ~ "Bt "‘)}

(13)

(14)

(16) S’(Xz, Yg) = {Xll log
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We will use these sets S and S’ to define the decoding procedure and to aid
in overbounding the error probabilities. The decoding process will be as follows.
In any particular code pair in the random ensemble, suppose message m; is
sent and this is mapped into input word X;. Suppose that Y} is received at ter-
minal 1 in the corresponding block of n letters. Consider the subset of X, words,
S8(X;, Y)). Several situations may occur. (1) There is no message m. mapped into
the subset S(X;, Y,) for the code pair in question. In this case, X, Y, is decoded
(conventionally) as message number one. (2) There is exactly one message
mapped into the subset. In this case, we decode as this particular message.
(3) There are more than one such messages. In this case, we decode as the
smallest numbered such message.

The error probabilities that we are estimating would normally be thought of
as calculated in the following manner. For each code pair one would calculate
the error probabilities for all messages m; and m,, and from their averages get
the error probabilities for that code pair. Then these error probabilities are
averaged over the ensemble of code pairs, using the appropriate weights or
probabilities. We may, however, interchange this order of averaging. We may
consider the cases where a particular 7, and 7, are the messages and these are
mapped into particular X; and X, and the received words are Y; and Y..
There is still, in the statistical picture, the range of possible code pairs, that
is, mappings of the other M; — 1 messages for one code and M; — 1 for the
other. We wish to show that, averaged over this subset of codes, the probabil-
ities of any of these messages being mapped into subsets S'(X,, ¥») and S(Xi, Y1)
respectively do not exceed exp (—n#6,) and exp (—nbs).

Note first that if X; belongs to the set S'(X;, Y,) then by the definition of

this set
P{X,, X, Yo}
I Lo 2 0
- og PX)P(%, Vi > n(Ry + 6))

P{X\|X,, Yo} > P{X}er®Bt®,
Now sum each side over the set of X; belonging to S'(Xz, ¥3) to obtain
(18) 12 Y,  P{XiX,, Yo} > en®ito) > P{Xi}.

X1€8' X Y9) X€8(X:,Y9)
The left inequality here holds since a sum of disjoint probabilities cannot exceed
one. The sum on the right we may denote by P{S'(X,, ¥5)}. Combining the
first and last members of this relation

(19) P{S,()—(z, 72)} < e~ n(Bit0),

That is, the total probability associated with any set S’ (X,, Y,) is bounded by
an expression involving n, R, and 8; but independent of the particular X,, Y.

Now recall that the messages were mapped independently into the input
words using the probabilities P{X,} and P{X}. The probability of a particular
message being mapped into S’'(Xe, Y2) in the ensemble of code pairs is just
P{S'(X;, Y)}. The probability of being in the complementary set is 1 —
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P{S'(X;, Y3)}. The probability that all messages other than 7, will be mapped
into this complementary set is

(20) 1 = P{SX, Yo)} It 2 1 — (M, — NP (X, Vo))
21— MP{S(X,, Vo))

=1 — Me B+

1 —e ™,

Here we used the inequality (1 — x2)? = 1 — pz, the relation (19) and finally
the fact that M; = exp (nRy).

We have established, then, that in the subset of cases being considered (7,
and 7, mapped into X; and X, and received as Y; and Y5), with probability
atleast 1 — exp (—n#,), there will be no other messages mapped into S'(X;, Ys).
A similar calculation shows that with probability exceeding 1 — exp (—nb,)
there will be no other messages mapped into S(X;, Y;). These bounds, as noted,
are independent of the particular X;, Y; and X, V..

We now bound the probability of the actual message 7, being within the
subset S’(Xs, Y2). Recall that from the definition of pi(Z)

@) puln(Ri + 0] = P{log preste el < u(k + 0 |

h

In the ensemble of code pairs a message ,, say, is mapped into words X; with
probabilities just equal to P{X;}. Consequently, the probability in the full en-
semble of code pairs, message choices and channel statistics, that the actual
message is mapped into S'(X,, Y5) is precisely 1 — p[n(R: + 61)].

The probability that the actual message is mapped outside S'(X,, Y5) is therc-
fore given by pi2[n(R; + 6,)] and the probability that there are any other mes-
sages mapped into S’(Xs, Y,) is bounded as shown before by exp (—n#;). The
probability that either of these cvents is true is then certainly bounded by
pre[n(Ry + 6,)] + exp (—n#,); but this is then a bound on F(,), since if neither
event occurs the decoding process will correctly decode.

Of course, the same argument with interchanged indices gives the correspond-
ing bound for E(P.;). This proves the first part of the theorem.

With regard to the last statement of the theorem, we will first prove a simple
combinatorial lemma which is useful not only here but in other situations in
coding theory.

LEmMma.  Suppose we have a set of objects By, By, -+ -, B, with associated prob-
abilities Py, Py, - - - , P,, and a number of numerically valued properties (functions)
of the objects fy, fa, - -+, fa. These are all nonnegative, f(B;) = 0, and we know the
averages A; of these properties over the objects,

(22) Z PJfl(BJ> = Ai; r = L2 .- ’d'
J

Then there exists an object B, for which

(23) fi(By) = dA,, )

Il
—
N
9
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More generally, given any set of K; > 0 satisfying Y ¢-1 (1/K;) £ 1, then there
exists an object B, with

(24) fi(By) £ KA, i=1,2 - ,d

Proor. The second part implies the first by taking K; = d. To prove the
second part let Q. be the total probability of objects B for which f:(B) > K;A..
Now the average A; > Q.K;A; since Q:K;A; is contributed by the B, with
f(B) > KA, and all the remaining B have f; values = 0. Hence

25) <z i=1,2 -, d
The total probability @ of objects violating any of the conditions is less than or
equal to the sum of the individual Q;, so that

i 1
(26) Q< i‘_é_:lk—i <1

Hence there is at least one object not violating any of the conditions, conclud-
ing the proof.

For example, suppose we know that a room is occupied by a number of people
whose average age is 40 and average height 5 feet. Here d = 2, and using the
simpler form of the theorem we can assert that there is someone in the room
not over 80 years old and not over ten feet tall, even though the room might
contain aged midgets and youthful basketball players. Again, using K; = 8/3,
K, = 8/5, we can assert the existence of an individual not over 8 feet tall and
not over 106 2/3 years old.

Returning to the proof of theorem 1, we can now establish the last sentence.
We have a set of objects, the code pairs, and two properties of each object, its
error probability P, for the code from 1 to 2 and its error probability P., for
the code from 2 to 1. These are nonnegative and their averages are bounded as
in the first part of theorem 1. It follows from the combinatorial result that there
exists at least one particular code pair for which simultaneously

Py = 2{pu[n(Ry + 61)] + e~}
P, = 2{P21[’n(R2 + 6)] + e},

This concludes the proof of theorem 1.

It is easily seen that this theorem proves the possibility of code pairs arbitrar-
ily close in rates B, and R, to the mean mutual information per letter By, and R
for any assigned P{z;} and P{z,;} and with arbitrarily small probability of
error. In fact, let By — Ry = Ry — R, = € > 0 and in the theorem take 8, =
0, = ¢/2. Since pp[n(Riz — €/2)] — 0 and, in fact, exponentially fast with n (the
distribution function en/2 to the left of the mean, of a sum of n random variables)
the bound on P, approaches zero with increasing n exponentially fast. In a sim-
ilar way, so does the bound on P.. By choosing, then, a sequence of the M,
and M, for increasing n which approach the desired rates R, and R; from below,
we obtain the desired result, which may be stated as follows.

(27)
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THEOREM 2. Suppose in a two-way memoryless channel K an assignment of
probabilities to the input letters P{x,} and P{x,} gives average mutual informations
in the two directions

o Pfftllxz, 2/2}

= 1 (1og Lol

(28)

Then given € > O there exists a code pair for all suficiently large block length n
with signalling rates in the two directions greater than Rz — € and Ry — e respec-
tively, and with error probabilities P,y < exp [—A(e)n], P, < exp [— A(e)n] where
A(e) ©s positive and independent of n.

By trying different assignments of letter probabilities and using this result,
one obtains various points in the capacity region. Of course, to obtain the best
rates available from this theorem we should seek to maximize these rates. This
is most naturally done & la Lagrange by maximizing R;, + ARy for various
positive \.

8. The convex hull G, as an inner bound of the capacity region

In addition to the rates obtained this way we may construet codes which are
miztures of codes obtained by this process. Suppose one assignment P {z,},
P {z,} gives mean mutual informations Ry, R and a second assignment P’ {z,},
P’{zy} gives Ris, R3;. Then we may find a code of (sufficiently large) length n
for the first assignment with error probabilities < & and rate discrepancy less
than or equal to ¢ and a second code of length n’ based on P’{x;}, P’ {x;} with
the same § and ¢. We now consider the code of length n + n’ with M, M words
in the forward direction, and M,M3 in the reverse, consisting of all words of the
first code followed by all words for the same direction in the second code.
This has signalling rates Rt and R} equal to the weighted average of rates for
the original codes [Rt = nR,/(n + n') + n'Ri/(n + n’); R = nRy/(n + n') +
n’R3/(n + n’)] and consequently its rates are within ¢ of the weighted averages,
|Rt — nRy/(n + n') — n'Rizg/(n + n')| < eand similarly. Furthermore, its error
probability is bounded by 235, since the probability of either of two events (an
error in either of the two parts of the code) is bounded by the sum of the original
probabilities. We can construct such a mixed code for any sufficiently large n
and n’. Hence by taking these large enough we can approach any weighted
average of the given rates and simultaneously approach zero error probability
exponentially fast. It follows that we can annex to the set of potnts found by the
assignment of letter probabilities all points in the convex hull of this set. This
actually does add new points in some cases as our example, of a channel (table I)
with incompatible transmission in the two directions, shows. By mixing the
codes for assignments which give the points (0, 1) and (1, 0) in equal proportions,
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we obtain the point (1/2, 1/2). There is no single letter assignment giving this
pair of rates. We may summarize as follows.
THEOREM 3. Let Gy be the convex hwll of points (R, Ra)

e = & (1o P )

R = 2l 5

when P{x,} and P{xy} are given various probability assignments. All points of Gr
are in the capacity region. For any point (R, R») in Gr and any € > 0 we can find
codes whose signalling rates are within e of Ry and R, and whose error probabilitics
in both directions are less than cxp [— A(e)n] for all sufficiently large n, and some
positive A(e).

It may be noted that the convex hull Gr in this theorem is a closed set (con-
tains all its limit points). This follows from the continuity of K. and Ry as
functions of the probability assignments P{x;} and P{x,}. Furthermore if Gt
contains a point (I, Ry) it contains the projections (Rs, 0) and (0, R,). This will
now be proved.

It will clearly follow if we can show that the projection of any point obtained
by a letter probability assignment is also in G;. To show this, suppose P{z;}
and P{z.} give the point (R, Rx). Now Ry, is the average of the various par-
ticular Ry when 2, is given various particular values. Thus

(29)

P{xi|x, Yo}
(30) Ry = Y Py} 3 Play, yelze) log Plailzs pal,
2 LYy P{xl}
There must exist, then, a particular z,, say 23, for which the inner sum is at
least as great as the average, that is, for which

(31) X Play, plat) log I vel
xLYy2 P{xl}
Z Pz} 3 P{z, yolzs) log P{xy|xs, yo}
1,2 P{xl}

The assignment P {x,|x3} for letter probabilities ; and the assignment P{z.} = 1
if z; = 2% and 0 otherwise, now gives a point on the horizontal axis below or to
the right of the projection of the given point Ry, R . Similarly, we can find an z1
such that the assighment P{z.|zt} for z» and P{zt} = 1 gives a point on the
vertical axis equal to or above the projection of Ry, . Note also that the as-
signment P{z%} = 1, P{z3} = 1 gives the point (0, 0). By suitable mixing of
codes obtained for these four assignments one can approach any point of the
quadrilateral defined by the corresponding pairs of rates, and in particular any
point in the rectangle subtended by Ry, Ra. It follows from these remarks that
the convex hull Gt is a region of the form shown typically in figure 7 bounded
by a horizontal segment, a convex curve, a vertical segment, and two segments
of the axes. Of course, any of these parts may be of zero length.
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The convex hull Gy is, as we have seen, inside the capacity region and we will
refer to it as the inner bound.

R,

FiGcure 7

It is of some interest to attempt a sharper evaluation of the rate of improve-
ment of error probability with increasing code length n. This is done in the
appendix and leads to a generalization of theorem 2 in [1]. The bound we arrive
at is based on logarithms of moment generating functions.

9. An outer bound on the capacity region

While in some cases the convex hull Gy, the inner bound defined above, is
actually the capacity region this is not always the case. By an involved calcu-
lation R. G. Gallager has shown that in the binary multiplying channel the
inner bound is strictly interior to the capacity region. However a partial con-
verse to theorem 3 and an oufer bound on the capacity region can be given.
Suppose we have a code starting at time zero with messages m; and m; at the
two terminals. After n operations of the channel, let ¥, and Y, be the received
blocks at the two terminals (sequences of n letters), and let x,, 5, 31, ¥» be the
next transmitted and received letters. Consider the change in “equivocation’ of
message at the two terminals due to the next received letter. At terminal 2, for
example, this change is (making some obvious reductions)

(32) A = H(my|my, Y3) — H(m|ms, Y2, )
— P{mdz Y21 :|_ [ P{m2’ Yﬂ’ y2} ]
B[ 108 5 7 | = B 108 B o, T3

— T P{yslmy, mg, Yo} _ Plyslza} 7.
=B [‘°g Plylzsy  P{plYe, mz}]

Now H (ya|my, me, Y2) = H(ys|my, ma, Y1, Y2) = H(ye|21, 22) since adding a con-
ditioning variable cannot increase an entropy and since P{ys|my, ms, Yy, Yo} =
P{ys|z,, 2}
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Also H(yz|xz) = H(yo| Y, me) since 2. is a function of ¥, and m, by the coding
function. Therefore

6 o= B (log B b Yy ) - Hley
I M . P{y2y xl; x2}P{x2}
i a5 5 (log B ) = B (g Tz i)

- 5 (los )

This would actually lead to a converse of theorem 1 if we had independence of
the random variables z; and z,. This last expression would then reduce to
E[log (P {z1|s, y2} /P {x1})]. Unfortunately in a general code they are not neces-
sarily independent. In fact, the next z; and z; may be functionally related to
received X and Y and hence dependent.

We may, however, at least obtain an outer bound on the capacity surface.
Namely, the above inequality together with the similar inequality for the second
terminal imply that the vector change in equivocation due to receiving another
letter must be a vector with components bounded by

(35) £ (1o ﬂz%%ﬁi) 5 (1og PPx{Qxffxﬁl})

for some P{x;, x5}. Thus the vector change is included in the convex hull of all
such vectors Go (when P{x,, 2.} is varied).

In a code of length n, the total change in equivocation from beginning to end
of the block cannot exceed the sum of n vectors from this convex hull. Thus this
sum will lie in the convex hull nGy, that is, Go expanded by a factor n.

Suppose now our given code has signalling rates R, = (1/n) log M, and R, =
(1/n) log M. Then the initial equivocations of message are nk; and nR.. Sup-
pose the point (nR;, nR») is outside the convex hull nGo with nearest distance
ne, figure 8. Construct a line L passing through the nearest point of nGo and

ne
nR, ,nR,
nG
° L
Ficure 8

perpendicular to the nearest approach segment with nGo on one side (using the
fact that nGo is a convex region). It is clear that for any point (nR3, nR$) on the
nGo side of L and particularly for any point of nG, that we have [nR; — nRY| +
[nR, — nRS = ne (since the shortest distance is ne) and furthermore at least
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one of the nR; — nR% and nR, — nR% is at least ne/v'2. (In a right triangle at
least one leg is as great as the hypotenuse divided by V2.

Thus after n uses of the channel, if the signalling rate pair R, R, is distance e
outside the convex hull Gy, at least one of the two final equivocations is at least
¢/V'2, where all equivocations are on a per second basis. Thus for signalling
rates e outside of Go the equivocations per second are bounded from below inde-
pendent of the code length n. This implies that the error probability is also
bounded from below, that is, at least one of the two codes will have error prob-
ability = f(¢) > 0 independent of n, as shown in [2], appendix.

To summarize, the capacity region G is included in the convex hull Go of
all points Rlz, R21

Ry

]«v [l()g I){xl T, ?/2} :I

4
\
P{xlx,}

1411 [log P{x2 xlz yl}]

P {xajz}

(36)
Ry

when arbitrary joint probability assignments P{z, 2.} are made.

Thus the inner bound Gr and the outer bound G are both found by the same
process, assigning input probabilities, calculating the resulting average mutual
informations R and Ry and then taking the convex hull. The only difference
is that for the outer bound a general joint assignment P {x;, .} is made, while
for the inner bound the assignments are restricted to independent P{z:} P{x.}.

We now develop some properties of the outer bound.

10. The concavity of R;; and R, as functions of P(xy,x»)

THEOREM 4. Given the transition probabilities P {y, yo|%1, 2} for a channel K,
the rates

P{ys|xy, x5}
Ry = E[ ]
te = B log Tp 0 1y
P{y|x, 22}
Ry=E [1 __l_,__]
& 8 P (ylr)

are concave downward functions of the assigned input probabilities P {x,, z2}. For ex-
ample, Ryo(Py{z1, 22} /2 + Pa{iy, 22} /2) Z Ruo(Pi{2s, 29})/2 + Ruo(Pafzy, 72})/2.

This concave property is a generalization of that given in [3] for a one-way
channel. To prove the theorem it suffices, by known results in convex functions,
to show that

(38)

@37

1
R;» (é Pl{xl, xz} + %P2{x17 xz}) - %Rm(Pl{xl, xz}) + § Rlz(Pz{Il, x?})
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But R12(P1 {121, xg}) and Rlz(Pz{xl, xg}) may be written

)
(39) Ru(Pi{zy, 22}) = T Pif{ze} X Pi{m, yolae} 1Ongz|M
) z1,y2 P {y2| x2}

40)  Ru(Prfm,zd) = £ Poled T Prles, wles} log Al .
e Py {yz|zs}

Here the subscripts 1 on probabilities correspond to those produced with the
‘probability assignment P;{z;, 22} to the inputs, and similarly for the subscript 2.
The inner sum Y ., 4, P1{z1, yo|z2} log (P1{ys|z1, z2} /P1{y2|z2}) may be recognized
as the rate for the channel from z; to ¥, conditional on z, having a particular
value and with the x, assigned probabilities corresponding to its conditional prob-
ability according to P,{z;, x2}.

The corresponding inner sum with assigned probabilities P.{xi, zs}

Y o Pa{21, y2|22} log (Pa{ya|®1, 22} /P2{ye|s}), which may be viewed as the rate
conditional on z, for the same one-way channel but with the assignment P, {x:|x.}
for the input letters.

Viewed this way, we may apply the concavity result of [2]. In particular, the
weighted average of these rates with weight assignments Py{z.}/(Pi{z:} +
Py{x;}) and Py{xs}/(P1{x3} + P:{xs}) is dominated by the rate for this one-
way channel when the probability assignments are the weighted average of the
two given assignments. This weighted average of the given assignment is

Py{z, Py{z,}
Pl{x2} + P2{x2} P1 {xz} + Pg{z2} Pz{:lhlxz}

=1 1
- 2 (P],{xz} + Pz{xz})

Thus the sum of two corresponding terms (the same z.) from (38) above is
dominated by Pi{zs} + P:{z.} multiplied by the rate for this one-way channel
with these averaged probabilities. This latter rate, on substituting the averaged
probabilities, is seen to be

(41) Py{my, 25} = Py{z)|z:} +

2 (Pi{zy, 22} + Pofzy, 2a}).

igz Xy, $2g
(42) zlzm P3{xl: J2lx2} 10g P {yzlxz}

where the subscript 3 corresponds to probabilities produced by using Ps{z;, 22} =
(Py{z1, 22} + P2{x1, 22} /2)/2. In other words, the sum of (39) and (40) (in-
cluding the first summation on ;) is dominated by

43 I (Pi{zs} + Pafzs}) Z Py{z;, yalws} log P Eyfllx:

=2 3 Py, ys, 72} log Py {ys|zy, 75}

1,72,y Ps{yzlil'zf )
This is the desired result for the theorem.
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11, Applications of the concavity property; channels with symmetric
structure

Theorem 4 is useful in a number of ways in evaluating the outer bound for
particular channels. In the first place, we note that R, + ARz as a function
of P{x,, z} and for positive A is also a concave downward function. Consequently
any local maximum is the absolute maximum and numerical investigation in
locating such maxima by the Lagrange multiplier method is thereby simplified.

In addition, this concavity result is very powerful in helping locate the maxima
when “symmetries” exist in a channel. Suppose, for example, that in a given
channel the transition probability array P{y:, y2\;, .} has the following prop-
erty. There exists a relabelling of the input letters z; and of the output letters ¥,
and y» which interchanges, say, the first two letters of the z; alphabet but leaves
the set of probabilities P{y, ys|21, 22} the same. Now if some particular assign-
ment P{z,, 2o} gives outer bound rates R;» and Rs, then if we apply the same
permutation to the x alphabet in P{z;, 2.} we obtain a new probability assign-
ment which, however, will give exactly the same outer bound rates Ri; and Ry.
By our concavity property, if we average these two probability assignments we
obtain a new probability assignment which will give at least as large values of Ry,
and Ry. In this averaged assignment for any particular z, the first two letters in
the x; alphabet are assigned equal probability. In other words, in such a case
an assignment for maximizing Rz + ARy, say P{z, 2o} viewed as a matrix, will
have its first two rows identical.

If the channel had sufficiently symmetric structure that any pair of z; letters
might be interchanged by relabelling the z; alphabet and the y; and y, alphabets
while preserving P{y1, y2|®1, Zo}, then a maximizing assignment P{z;, 2.} would
exist in which all rows are identical. In this case the entries are functions of .
only: P{x;, o} = P{x.}/a where « is the number of letters in the z; alphabet.
Thus the maximum for a dependent assignment of P{z,, .} is actually obtained
with z; and z, independent. In other words, in this case of a full set of symmetric
interchanges on the x; alphabet, the inner and outer bounds are identical. This gives
an important class of channels for which the capacity region can be determined
with comparative ease.

An example of this type is the channel with transition probabilities as follows.
All inputs and outputs are binary, y; = 2. (that is, there is a noiseless binary
channel from terminal 2 to terminal 1). If 2, = 0, then y. = 2, while if z, = 1,
12 has probability .5 of being 0 and .5 of being 1. In other words, if x, is O the
binary channel in the forward direction is noiseless, while if z, is 1 it is com-
pletely noisy. We note here that if the labels on the x; alphabet are interchanged
while we simultaneously interchange the y, labels, the channel remains unaltered,
all conditional probabilities being unaffected. Following the analysis above, then,
the inner and outer bounds will be the same and give the capacity region.
Furthermore, the surface will be attained with equal rows in the P{x;, 2.}
matrix as shown in table II.
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TABLE II

Z2
0 1

0 p/2  q/2

1 p/2  q/2

A

For a particular p this assignment gives the rates
(44) Rp=p, Ru= —(plogp+ qlogg).
These come from substituting in the formulas or by noting that in the 1 — 2
direction the channel is acting like an erasure channel, while in the 2 — 1

direction it is operating like a binary noiseless channel with unequal probabilities
assigned to the letters. This gives the capacity region of figure 9.

R |

21°

I -(plogp+aqlogq)

R | BIT

FIGURE 9

There are many variants and applications of these interchange and symmetry
tricks for aid in the evaluation of capacity surfaces. For example, if both the z,
and z, alphabets have a full set of interchanges leaving the transition prob-
abilities the same, then the maximizing distribution must be identical both in
rows and columns and hence all entries are the same, P{zi, 2} = 1/ac where a
and ¢ are the number of letters in the x; and z. alphabets. In this case, then, all
attainable R;:Rs points are dominated by the particular point obtained from
this uniform probability assignment. In other words, the capacity region is a
rectangle in the case of a full set of symmetric interchanges for both x, and ..

An example of this type is the channel of figure 2 defined by y1 = y» = 21 Dz
where @ means mod 2 addition.

12. Nature of the region attainable in the outer bound

We now will use the concavity property to establish some results concerning
the set T' of points (R, Ra1) that can be obtained by all possible assignments of
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probabilities P{z), 2z} in a given channel K, and whose convex hull is Go. We
will show that the set T is in fact already convex and therefore identical with Go
and that it consists of all points in or on the boundary of a region of the type
shown in figure 10 bounded by a horizontal segment L;, an outward convex seg-

LI
Lo
R r
21 L3
Rl2
Ficure 10

ment Ly, a vertical segment L3 and two segments of the coordinate axes. Thus Gy
has a structure similar to Gy.

Suppose some P{zy, 72} gives a point (R, Rz). Here Ry is, as we have ob-
served previously, an average of the different Ry, which would be obtained by
fixing . at different values, that is, using these with probability 1 and applying
the conditional probabilities P {x;|xs} to the z; letters. The weighting is accord-
ing to factors P {x.}. It follows that some particular z, will do as well at least as
this weighted average. If this particular x, is z3, the set of probabilities P {z,|z3}
gives at least as large a value of R;; and simultaneously makes Ry = 0. In

c'
(Rla ’Ral)

C

Q

Ficure 11

figure 11 this means we can find a point in T below or to the right of the projec-
tion of the given point as indicated (point Q).

Now consider mixtures of these two probability assignments, that is, assign-
ments of the form AP {z;z:} + (1 — N)P{x:|«%}. Here X is to vary continuously
from O to 1. Since R;» and Ry are continuous functions of the assigned prob-
ability, this produces a continuous curve C running from the given point to the
point Q. Furthermore, this curve lies entirely to the upper right of the connecting
line segment. This is because of the concavity property for the Ry, and Ry ex-
pressions. In a similar way, we construct a curve C’, as indicated, of points be-
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longing to I' and lying on or above the horizontal straight line through the
given point.

Now take all points on the curves C and C’ and consider mixing the corre-
sponding probability assignments with the assignment P{z}, 5} = 1 (all other
pairs given zero probability). This last assignment gives the point (0,0). The
fraction of this (0, 0) assignment is gradually increased for 0 up to 1. As this is
done the curve of resulting points changes continuously starting at the CC’
curve and collapsing into the point (0, 0). The end points stay on the axes dur-
ing this operation. Consequently by known topological results the curve sweeps
through the entire area bounded by C, C’ and the axes and in particular covers
the rectangle subtended by the original point (R, Ra1).

Ql
C
< 02

Ficure 12

We will show that the set of points I' is a convex set. Suppose @, and @,
figure 12, are two points which can be obtained by assignments P;{z;, x5} and
P, {xl, .’E2} .

By taking mixtures of varying proportions one obtains a continuous curve C
connecting them, lying, by the concavity property, to the upper right of the
connecting line segment. Since these are points of T all of their subtended rec-
tangles are, as just shown, points of T'. It follows that all points of the connecting
line segment are points of I'. Note that if @, and @, are in the first and third
quadrants relative to each other the result is trivially true, since then the con-
necting line segment lies in the rectangle of one of the points.

These results are sufficient to imply the statements at the beginning of this
section, namely the set I' is convex, identical with G, and if we take the largest
attainable Ry, and for this R, the largest Rz, then points in the subtended
rectangle are attainable. Similarly for the largest Ro.

It may be recalled here that the set of points attainable by independent as-
signments, P {z,, 2} = P{x:} P{z,}, is not necessarily a convex set. This is shown
by the example of table I.

It follows also from the results of this section that the end points of the outer
bound curve (where it reaches the coordinate axes) are the same as the end points
of the inner bound curve. This is because, as we have seen, the largest Ry can be
achieved using only one particular x, with probability 1. When this is done,
P{zy, x:} reduces to a product of independent probabilities.
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13. An example where the inner and outer bounds differ

The inner and outer bounds on the capacity surface that we have derived
above are not always the same. This was shown by David Blackwell for the
binary multiplying channel defined by y1 = y2 = 2:r2. The inner and outer
bounds for this channel have been computed numerically and are plotted in
figure 13. It may be seen that they differ considerably, particularly in the middle

1.0

0.9

= o
< HAGELBARGER
a CODE

INNER AND OUTER
n0.21 BOUNDS Gy AND G, FOR

MULTIPLYING CHANNEL

0.l
0 | ] ] ] ] | ] ] |
ol 0.2 03 0.4 05 0.6 07 0.8 0.9 1.0
R, qH(p)
Ficure 13

of the range. The calculation of the inner bound, in this case, amounts to finding
the envelope of points

Ris = —pe[prlogpr + (1 — p1) log (1 — p1)]

Ra = —pilpzlogpe + (1 — p2) log (1 — p2)].
These are the rates with independent probability assignments at the two ends:

(45)
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probability p, for using letter 1 at terminal 1 and probability p. for using letter 1
at terminal 2. By evaluating these rates for different p, and p. the envelope
shown in the figure was obtained.

For the outer bounds, the envelope of rates for a general dependent assign-
ment of probabilities is required. However it is easily seen that any assignment
in which P{0, 0} is positive can be improved by transferring this probability to
one of the other possible pairs. Hence we again have a two parameter family of
points (since the sum of the three other probabilities must be unity). If the prob-
abilities are denoted by p» = P{1,0}, p: = P{0,1},1 — p; — p» = P{1, 1}, we
find the rates are

Rm:_(l"‘pl)l: 2 log—&—+<l— p2)1)10g<1_ pe )]

- 1 - 1 — 1 —
(46) 1—p 2 r 4!
R = —(1 — o) | —P1—1og —PL_ (_ px) (__zn_)]
a1 (1 pz)[l_pglogl_m-l- 1 e log|1 T

Here again a numerical evaluation for various values of p; and p, led to the
envelope shown in the figure.

In connection with this channel, D. W. Hagelbarger has devised an interesting
and simple code (not a block code however) which is error free and transmits at
average rates Ry = Ry = .571, slightly less than our lower bound. His code
operates as follows. A 0 or 1 is sent from each end with independent probabilities
1/2,1/2. If a 0 is received then the next digit transmitted is the complement of
what was just sent. This procedure is followed at both ends. If a 1 is received,
both ends progress to the next binary digit of the message. It may be seen that
three-fourths of the time on the average the complement procedure is followed
and one-fourth of the time a new digit is sent. Thus the average number of
channel uses per message digit is (3/4)(2) + (1/4)(1) = 7/4. The average rate
is 4/7 = .571 in both directions. Furthermore it is readily seen that the message
digits can be calculated without error for each communication direction.

By using message sources at each end with biased probabilities it is possible
to improve the Hagelbarger scheme slightly. Thus, if 1’s occur as message digits
with probability .63 and 0’s with probability .37, we obtain rates in both direc-
tions

—.63 log .63 — .37 log .37
1 — (.63)2

(47) Rip = Ry = = .593.

We will, in a later section, develop a result which in principle gives for any
channel the exact capacity region. However, the result involves a limiting process
over words of increasing length and consequently is difficult to evaluate in most
cases. In contrast, the upper and lower bounds involve only maximizing opera-
tions relating to a single transmitted letter in each direction. Although sometimes
involving considerable calculation, it is possible to actually evaluate them when
the channel is not too complex.
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14. Attainment of the outer bound with dependent sources

With regard to the outer bound there is an interesting interpretation relating
to a somewhat more general communication system. Suppose that the message
sources at the two ends of our channel are not independent but statistically
dependent. Thus, one might be sending weather information from Boston to
New York and from New York to Boston. The weather at these cities is of
course not statistically independent. If the dependence were of just the' right
type for the channel or if the messages could be transformed so that this were
the case, then it may be possible to attain transmission at the rates given by
the outer bound. For example, in the multiplying channel just discussed, sup-
pose that the messages at the two ends consist of streams of binary digits which
occur with the dependent probabilities given by table ITI. Successive z1, x, pairs

TABLE III
Ty
0 1
0 0 275
7}
1 275 45

are assumed independent. Then by merely sending these streams into the channel
(without processing) the outer bound curve is achieved at its midpoint.

Tt is not known whether this is possible in general. Does there always exist a
suitable pair of dependent sources that can be coded to give rates R;, R, within ¢
of any point in the outer bound? This is at least often possible in the noiseless,
memoryless case, that is, when y; and y. are strict functions of z; and 2, (no
channel noise). The source pair defined by the assignment P{z;, z;} that produces
the point in question is often suitable in such a case without coding as in the
above example.

The inner bound also has an interesting interpretation. If we artificially limit
the codes to those where the transmitted sequence at each terminal depends
only on the message and not on the received sequence at that terminal, then the
inner bound is indeed the capacity region. This results since in this case we have
at each stage of the transmission (that is, given the index of the letter being
transmitted) independence between the two next transmitted letters. It follows
that the total vector change in equivocation is bounded by the sum of n vectors,
each corresponding to an independent probability assignment. Details of this
proof are left to the reader. The independence required would also occur if the
transmission and reception points at each end were at different places with no
direct cross communication.
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16. General solution for the capacity region in the two-way channel

For a given memoryless two-way channel K we define a series of derived
channels Ky, K,, - - - . These will also be memoryless channels and the capacity
region for K will be evaluated as a limit in terms of the inner bounds for the
series K,.

The channel K; is identical with K. The derived channel K, is one whose
input letters are actually strategies for working with K for a block of two input
letters. Thus the input letters at terminal 1 for K, consist of pairs [z1, f(z1, y1)].
Here 21 is the first transmitted letter of the pair and ranges therefore over the a
possible input letters of K. Now f(z1, 1) represents any function from the first
input letter z1 and output letter yi to the second input letter z3. Thus this func-
tion may be thought of as a rule for choosing a second input letter at terminal 1
depending on the first input letter and the observed first output letter. If z1 can
assume a values and yi can assume b values, then the (i, yi) pair can assume ab
values, and since the function f takes values from a possibilities there are a®®
possible functions. Hence there are a-a®® possible pairs [z}, f(z1, ¥1)], or possible
input letters to K, at terminal 1.

In a similar way, at terminal 2 consider pairs [z3, g(x3, ¥3)]. Here g ranges over
functions from the first received and transmitted letters at terminal 2 and takes
values from the z, alphabet. Thus these pairs have c¢-¢°? values, where ¢ and d
are the sizes of the input and output alphabets at terminal 2.

The pairs [z}, f(z1, y1)] and [z}, g(z}, ¥3)] may be thought of as strategies for
using the channel K in two letter sequences, the second letter to be dependent
on the first letter sent and the first letter received. The technique here is very
similar to that occurring in the theory of games. There one replaces a sequence
of moves by a player (whose available information for making a choice is in-
creasing through the series) by a single move in which he chooses a strategy.
The strategy deseribes what the player will do at each stage in each possible
contingency. Thus a game with many moves is reduced to a game with a single
move chosen from a larger set.

The output letters for K; are, at terminal 1, pairs (y1, ¥}) and, at terminal 2,
pairs (y3, ¥3); that is, the pairs of received letters at the two terminals. The
transition probabilities for K, are the probabilities, if these strategies for intro-
ducing a particular pair of letters were used in K, that the output pairs would
occur. Thus

(48) PKz{(y%: y%)) (y%: yg)l[x%y f(x}) y{)]: [xé’ g(x%y yé)]}
= Px{yl, yalai, 23} Px{yA, 4ilS(a1, y1), g(az, y2)} -

In a similar way the channels K3, K4, - - - are defined. Thus K, may be thought
of as a channel corresponding to n uses of K with successive input letters at a
terminal functions of previous input and output letters at that terminal. There-
fore the input letters at terminal 1 are n-tuples
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(49) [z}, fat, 41), -+« fama(ah, 2d, <o 2wl 0, -, 92D,
a possible alphabet of

(50) aasba@ed)? . .. @ = plab)»—1)/(ab—1)
possibilities. The output letters at terminal 1 consist of n-tuples

(51) Wik, oo, b

and range therefore over an alphabet of b" generalized letters. The transition
probabilities are defined for K, in terms of those for K by the generalization of
equation (39)

(52) PKn{y}) y%; Tt y'lll(x}:flv Joy - - 7fn—l); (xé; gy, G2, * "0, gn—l)}
= I=IIPK{yﬂfi—1, giat.

The channel K, may be thought of, then, as a memoryless channel whose
properties are identical with using channel K in blocks of n, allowing transmitted
and received letters within a block to influence succeeding choices.

For each of the channels K, one could, in principle, calculate the lower bound
on its capacity region. The lower bound for K, is to be multiplied by a factor 1/n
to compare with K, since K, corresponds to n uses of K.

THEOREM 5. Let B, be the lower bound of the capacity region for the derived
channel K, reduced in scale by a factor 1/n. Then as n — « the regions B, approach
a limit B which includes all the particular regions and is the capacity region of K.

Proor. We first show the positive assertion that if (R, Rz) is any point in
some B, and ¢ is any positive number, then we can construct block codes with
error probabilities P, < ¢ and rates in the two directions at least R — ¢ and

Ry — e. This follows readily from previous results if the derived channel K,
and its associated inner bound B, are properly understood. K, is a memoryless
channel, and by theorem 3 we can find codes for it transmitting arbitrarily
close to the rates Ry, Ry in B, with arbitrarily small error probability. These
codes are sequences of letters from the K, alphabet. They correspond, then, to
sequences of strategies for blocks of n for the original channel K.

Thus these codes can be directly translated into codes for K n times as long,
preserving all statistical properties, in particular the error probability. These
codes, then, can be interpreted as codes signalling at rates 1/n as large for the K
channel with the same error probability. In fact, from theorem 3, it follows that
for any pair of rates strictly inside B, we can find codes whose error probability
decreases at least exponentially with the code length.

We will now show that the regions B, approach a limit B as n increases and
that B includes all the individual B,. By a limiting region we mean a set of
points B such that for any point P of B, and € > 0, there exists no such that
for n > n, there are points of B, within ¢ of P, while for any P not in B there
exist e and no such that for n > no no points of B, are within e of P. In the first
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place B, is included in B, for any integer k. This is because the strategies for
Bi. include as special cases strategies where the functional influence only in-
volves subblocks of n. Hence all points obtainable by independent probability
assignments with K, are also obtainable with K, and the convex hull of the
latter set must include the convex hull of the former set.

It follows that the set Bi, approaches a limit B, the union of all the By, plus
limit points of this set. Also B includes B, for any #n;. For n and n; have a com-
mon multiple, for example nn,, and B includes B,,, while B, includes B,,.

Furthermore, any point obtainable with K., can be obtained with Kyni.., for
0 £ a = n, reduced in both coordinates by a factor of not more than k/(k + 1).
This is because we may use the strategies for Ky, followed by a series of a of
the first letters in the x; and x. alphabets. (That is, fill out the assignments to
the length kn + « with essentially dummy transmitted letters.) The only dif-
ference then will be in the normalizing factor, 1/(block length). By making &
sufficiently large, this discrepancy from a factor of 1, namely 1/(k + 1), can be
made as small as desired. Thus for any ¢ > 0 and any point P of B there is a
point of By, within e of P for all sufficiently large n,.

With regard to the converse part of the theorem, suppose we have a block
code of length n with signalling rates (R, R.) corresponding to a point outside B,
closest distance to B equal to e. Then since B includes B,, the closest distance
to B, is at least . We may think of this code as a block code of length 1 for the
channel K,. As such, the messages m; and m. are mapped directly into “‘input
letters” of K, without functional dependence on the received letters. We have
then since m; and m; are independent the independence of probabilities associated
with these input letters sufficient to make the inner bound and outer bound the
same. Hence the code in question has error probability bounded away from zero
by a quantity dependent on e but not on n.

16. Two-way channels with memory

The general discrete two-way channel with memory is defined by a set of
conditional probabilities

(53) P{ylm yznlxu, T12y ** ¢y Tiny Lo1y Togy * ** 4 T2n,
.
Y1, Y1y "0y Yine; Yau, Yoo, 00y Yzna) s

This is the probability of the nth output pair y1., 2. conditional on the preced-
ing history from time ¢ = 0, that is, the input and output sequences from the
starting time in using the channel. In such a general case, the probabilities might
change in completely arbitrary fashion as n increases. Without further limita-
tion, it is too general to be either useful or interesting. What is needed is some
condition of reasonable generality which, however, ensures a certain stability
in behavior and allows, thereby, significant coding theorems. For example, one
might require finite historical influence so that probabilities of letters depend
only on a bounded past history. (Knowing the past d inputs and outputs, earlier
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inputs and outputs do not influence the conditional probabilities.) We shall,
however, use a condition which is, by and large, more general and also more
realistic for actual applications.

We will say that a two-way channel has the recoverable state property if it
satisfies the following condition. There exists an integer d such that for any input
and output sequences of length 7, X1,, X2, Yia, Yas, there exist two functions
F(X1ny Y1n), 9(X2n, Y2,) whose values are sequences of input letters of the same
length less than d and such that if these sequences f and g are now sent over the
channel it is returned to its original state. Thus, conditional probabilities after
this are the same as if the channel were started again at time zero.

The recoverable state property is common in actual physical communication
systems where there is often a ‘“‘zero” input which, if applied for a sufficient
period, allows historical influences to die out. Note also that the recoverable
state property may hold even in channels with an infinite set of internal states,
provided it is possible to return to a ‘“ground” state in a bounded number of
steps.

The point of the recoverable state condition is that if we have a block code
for such a channel, we may annex to the input words of this code the functions f
and g at the two terminals and then repeat the use of the code. Thus, if such a
code is of length » and has, for one use of the code, signalling rates R, and R,
and error probabilities P, and P, we may continuously signal at rates Ri =
nRy/(n + d) and R; = nR:/(n + d) with error probabilities P,y < P, and

112 é P €2

For a recoverable state channel we may consider strategies for the first »
letters just as we did in the memoryless case, and find the corresponding inner
bound B, on the capacity region (with scale reduced by 1/n). We define the
region B which might be called the limit supremum of the regions B,. Namely,
B consists of all points which belong to an infinite number of B, together with
limit points of this set.

THEOREM 6. Let (Ry, R;) be any point in the region B. Let ng be any integer
and let & and e be any positive numbers. Then there exists a block code of length
n > no with signalling rates Ri, R satisfying |By — Ri| < &, |R: — RS < & and
error probabilities satisfying Py < &, P < €. Conversely, if (Ry, Ry) is not in B
then there exist ng and & > 0 such that any block code of length exceeding no has
either P,y > & or P» > 6 (or both).

Proor. To show the first part of the theorem choose an n; > 7o and also
large enough to make both dR,/(d + n) and dR./(d + n) less than ¢/2. Since
the point (R, R.) is in an infinite sequence of B,, this is possible. Now construct a
block code based on n; uses of the channel as individual “letters,” within /2
of the rate pair (Ry, Rz) and with error probabilities less than e. To each of the
“letters” of this code annex the functions which return the channel to its original
state. We thus obtain codes with arbitrarily small error probability < e ap-
proaching the rates Ri, R, and with arbitrarily large block length.

To show the converse statement, suppose (R, R.) is not in B. Then for some
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ng every B, where n > n,, is outside a circle of some radius, say e, centered
on (R4, R,). Otherwise (R;, Rz) would be in a limit point of the B,. Suppose we
have a code of length n; > n,. Then its error probability is bounded away from
zero since we again have a situation where the independence of “letters” obtains.

The region B may be called the capacity region for such a recoverable state
channel. It is readily shown that B has the same convexity properties as had
the capacity region G for a memoryless channel. Of course, the actual evalua-
tion of B in specific channels is even more impractical than in the memoryless
case.

17. Generalization to T-terminal channels

Many of the tricks and techniques used above may be generalized to channels
with three or more terminals. However, some definitely new phenomena appesar
in these more complex cases. In another paper we will discuss the case of a
channel with two or more terminals having inputs only and one terminal with
an output only, a case for which a complete and simple solution of the capacity
region has been found.

O O O O O

APPENDIX. ERROR PROBABILITY BOUNDS IN TERMS OF
MOMENT GENERATING FUNCTIONS

Suppose we assign probabilities P{z;} to input letters at terminal 1 and P {x,}
to input letters at terminal 2. (Notice that we are here working with letters, not
with words as in theorem 2.) We can then calculate the log of the moment
generating functions of the mutual information between input letters at ter-
minal 1 and input letter-output letter pairs at terminal 2. (This is the log of
the moment generating function of the distribution p;; when n = 1.) The expres-
sions for this and the similar quantity in the other direction are

_ ijlz T2, 22}_' )
(54) wm(s) = log ;MZ!M P{x, xs, y2} exp (s log Pl Pz, v}

_ ijlz T2, ﬂzt"“
log :lgm P {xl} *p {x21 y2} s

P 1. T s+1
55 =1 LPloy, o, g}
(55) pa(s) = log xlgw P{zs}*P{z:, 1}

These functions u; and u, may be used to bound the tails on the distributions
p1z and pz; obtained by adding 7 identically distributed samples together. In
fact, Chernoff [4] has shown that the tail to the left of a mean may be bounded
as follows:

pu[nui(s))] < exp {nfm(s) — suu(sn)]}, 5120,

50 pa[nps(se)] < exp {n[ua(ss) — swmz(s2)]}, s £ 0.
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Thus, choosing an arbitrary negative s;, this gives a bound on the distribution
function at the value nui(s;). It can be shown that u'(s) is a monotone increasing
function and that u/(0) is the mean of the distribution. The minimum u’(s) cor-
responds to the minimum possible value of the random variable in question, in
this case, the minimum I(x;; 72, 2). Thus, an s; may be found to place pi(s)
anywhere between I'min(21; 22, ¥2) and E(I). Of course, to the left of Imin the
distribution is identically zero and to the right of E(Z) the distribution ap-
proaches one with increasing ».

We wish to use these results to obtain more explicit bounds on P, and P,
using theorem 2. Recalling that in that theorem 6, and 6, are arbitrary, we at-
tempt to choose them so that the exponentials bounding the two terms are equal.
This is a good choice of 6, and 6 to keep the total bound as small as possible. The
first term is bounded by exp {n[u(s1) — swi(s1)]} where s; is such that wi(s;) =
Ry 4 61, and the second term is equal to exp (—n6;). Setting these equal, we have

(67) m(s) — spi(s) = —6;, Ry + 6 = pi(sy).
Eliminating 6;, we have

(58) Ry = m(s1) — (81 — Dpi(sy)

and

(59) E(Pa) = 2exp {n[m(s) — swi(s)]}

This is because the two terms are now equal and each dominated by
exp {n[wm(s;)) — siwui(s1)]}. Similarly, for

(60) Ry = po(se) — (82 — 1) p3(s2)
we have
(61) E(Pes) =2 exp {n[u2(82) - 82#4(82)]}.

These might be called parametric bounds in terms of the parameters s, and ss.
One must choose s; and s, such as to make the rates B; and R, have the desired
values. These s; and s, values, when substituted in the other formulas, give
bounds on the error probabilities.

The derivative of R, with respect to s; is —(s; — 1)u1’(s1), a quantity always
positive when s, is negative except for the special case where p”/(0) = 0. Thus,
R, is a monotone increasing function of s, as s; goes from —< to 0, with B, going
from —Iin — log P{Imin} to E(I). The bracketed term in the exponent of
E(P.), namely ui(s;)) — sju(s1), meanwhile varies from log P{/min} up to zero.
The rate corresponding to s; = —oo, that is, —Inin — log P {/inin}, may be posi-
tive or negative. If negative (or zero) the entire range of rates is covered from
zero up to E(I). However, if it is positive, there is a gap from rate B, = 0 up
to this end point. This means that there is no way to solve the equation for rates
in this interval to make the exponents of the two terms equal. The best course
here to give a good bound is to choose 6; in such a way that n(R; + 6,)
is just smaller than I, 58y I'min — €. Then pp[n(R: + 6;)] = 0 and only the
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second term, exp (61n), is left in the bound. Thus exp [—n(Imin — K1 — €)] is 2
bound on P. This is true for any e > 0. Since we can construct such
codes for any positive ¢ and since there are only a finite number of codes, this
implies that we can construct a code satisfying this inequality with e = 0. Thus,
we may say that

(62) E(Pel) =< exp ["‘n(-[min - Rl)]; R, £ L.

Of course, exactly similar statements hold for the second code working in the
reverse direction. Combining and summarizing these results we have the fol-
lowing.

THEOREM 7. In a two-way memoryless channel K with finite alphabets, let
P{x:} and P{xs} be assignments of probabilities to the input alphabets, and suppose
these lead to the logarithms of moment generating functions for mutual information
pa(81) and ps(sy),

P{x:, 3, yo} **!
$) = lo e
(63) ﬂl( 1) g xl’;z,m P{xl} ‘P{x‘z; y2}s

P{xy, x5, y1}*H!

=1 Play, xp yi}t!

walse) =108 2 Dl Pl

Let M, = exp (Rin), My = exp (Ren) be integers, and let s, s, be the solutions
(when they exist) of

Ry = m(s1) — (81 + Dpi(sy)

(64) /
Ry = pa(s2) — (s2 + 1)pa(se).
The solution s, will exist if
(65)  —Imin(21; 2 y2) — log P{Imin(x1; 22, y2)} = B1 S E[I(21; 23, y2)],

and stimilarly for s,. If both s, and s, exist, then there is a code pair for the channel K
of length n with M, and M, messages and error probabilities satisfying

Py = dexp {+n[m(s) — 81#4(31)]}
P = 4exp {+nfu(s:) — samz(s2)]}.

If either (or both) of the R is so small that the corresponding s does not exist, a code
pair exists with the corresponding error probability bounded by

(66)

(67) Pa = 2exp {—n[I(x; z2 y2) — Ril}
or
(68) Po = 2exp {—n[l(x; 21, y1) — Rel}.

Thus, if s1 exists and not ss, then inequalities (66) would be used. If neither exusts,
(67) and (68) hold.
REFERENCES

[1] C. E. SuanNoON, “Certain results in coding theory for noisy channels,” Information and
Control, Vol. 1 (1957), pp. 6-25.



644 FOURTH BERKELEY SYMPOSIUM: SHANNON
(2]
(3]

, “Channels with side information at the transmitter,” IBM J. Res. Develop., Vol. 2

(1958), pp. 289-293.

, ‘““Ceometrische Deutung einiger Ergebnisse bei der Berechnung der Kanal-
kapazitat,” Nachrtech. Z., Vol. 10 (1957).

[4] H. CHERNOFF, “A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations,” Ann. Math. Statist., Vol. 23 (1952), pp. 493-507.




