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1. Introduction

The object of this paper is to discuss some of the general points that arise in
common statistical problems when a prior probability distribution is used. Most
current statistical thinking does not use such a distribution but we feel that some
illumination and understanding can be gained through its use, and, in our more
enthusiastic moments, we even feel that only a completely Bayesian attitude
towards statistical thinking is coherent and practical. The purpose of this paper
is not to present propaganda in favor of the Bayesian attitude but merely to
explore the consequences of it.

The first two sections of the paper deal with the large-sample problem where
the effect of the prior distribution is small and the inferences and decisions made
using a Bayesian approach correspond fairly closely with current practice and
are similar to those given by Le Cam [7] using the usual approach. If we empha-
size any differences that do exist it is because they are of interest: the most
important point is the similarity. In the final sections of the paper the problem
of small samples is discussed. Here the prior distribution is important and much
of the discussion centers around the choice of it. Some tentative rules are sug-
gested for the choice and comparison is made with the work of Jeffreys. The
discussion here is fragmentary and incomplete: but it is hoped that the argu-
ments, unsatisfactory as they are, will stimulate others to produce better ones.

Throughout this paper only the problem of the analysis of an experiment is
discussed. Design problems are not considered.

2. Large-sample problems of the estimation type

We first formulate the mathematical model following, apart from the prior
distribution, the usual pattern. A sample space X of points z supports a s-algebra
B of sets X. For each point 0 of a parameter space O there is defined a probability
measure over (X, 9B). It will be assumed that each of these measures is dominated
by a o-finite measure over (X, B) ; from which it follows that there exist probabil-
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ity densities p(2]0) deseribing the probability measures by integration with
respect to the dominating measure. Such an integration will be denoted by / dz

followed by the function to be integrated. These densities considered as func-
tions of @ for fixed z will be termed lzkelzhoods.

In the present paper only the case where the parameter space 0 is a subset of
Tuclidean space of a finite number, k, of dimensions will be considered. A point
of the space can be written in terms of its coordinates; 8 = (61, 62, - -+, 6;). A
prior probability distribution is a probability distribution over this space with
the usual Borel s-algebra. Again the distribution is described by a density =(6)
with respect to some o-finite measure. The problem will be called of estimation
type if this o-finite measure is Lebesgue measure, and integration with respect

to it will be written / d@ followed by the function to be integrated. Such a

prior distribution implies that no values of 6 are of a higher order of prior belief
than others. This is perhaps not the case with problems of the testing type con-
sidered in the next section.

Next there is a deciston space D of points d. (The distinction between inference
and decision problems will be discussed briefly in section 4.) The relationship
between the decision space and the parameter space is described by means of a
utility function which is a real-valued function U(d, 8) defined on © X 0O, and is
supposed to represent the utility to the experimenter of taking d when the true
parameter value which determined the probability distribution of the observed
sample point (or observation) x, was 8. Most writers use loss functions: any
reader who wishes to do so can use the negative of the utility. A decision func-
tion, denoted either by & or d(-), is a function with domain % and range in .

The problem is to determine the best decision function. If the decision func-
tion 8:d(-) is used the expected utility is

2.1) f dx / 6 Uld(z), 6]p(z)6)x(6).

That decision function is judged best which maximizes (2.1). It will be assumed
that (2.1) is finite for all decision functions. This will certainly be true if U(d, 6)
is bounded and 7(0) is a normed probability distribution, that is one for which

f d0 =(6) = 1. The assumption that U(d, 8) be bounded seems desirable in order

to avoid paradoxes like the St. Petershurg one (sce [3]). We shall have oceasion
later to use unnormed distributions.
By Fubini’s theorem the double integral (2.1) may be written as a repeated

integral / dx { / dé Uld(x), O]p(xlﬂ)r(o)} and the maximization may be carried
out for each z separately. The optimum decision function is defined by taking
for each « that d which maximizes

(2.2) Md, @) = [ 6 U(d, 8)p(x|0) ().
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Although it is usual to start from (2.1) it is arguable that the optimum decision
procedure should be defined as that which maximizes (2.2). For, by Bayes theo-
rem, the posterior probability of @ has density

23) ~(0l) = ﬂ%%"—),
where
@24) p() = [ dop(l6)n(o),
so that (2.2) may be written
A\d, x)
2.5) —(—L—p o - / d6 U(d, 8)(8]c),

the expected utility, given z, of taking decision d. Once x has been observed (2.5)
and not (2.1) is the relevant expression to consider. The sample space is only
necessary before experimentation, that is before z has been observed, in order
to choose between experiments, a topic which will not be discussed in the present
paper. In the approach using (2.5) we again assume the utility function bounded
and the posterior distribution normed. '

We now derive an approximation for A(d, ), equation (2.2), valid for large =,
when the sample point is that of n» independent observations with the same
probability distribution. We write £ where we have previously written z and
p™ instead of p, p now denoting the density of a single observation. Let
™ = (&1, T3, *++ , ) and

2.6) p®(a|e) = II p(26).
L(x:|6) = log p(xl6),
2.7 L®(z™|0) = log p‘”’(a:"“[ﬂ) = il L(zi|0).

Since the utility function and the prior density occur so frequently as a product
it is convenient to introduce the notation

(2.8) w(d, ) = U(d, 0)7(6)
when (2.2) becomes
(2.9) Md, =) = [ d6w(d, 8) exp [L®(=™]6)].

Let 8™ denote the maximum likelihood estimate of 8 and suppose sufficient
regularity conditions obtain to ensure that this maximum can be obtained by
the usual differentiation process. Furthermore write

62
36,90;
assuming this to exist. (The left side depends on z™ also but for notational

(2.10) ney(0W) = — Lo (zm]d),



456 FOURTH BERKELEY SYMPOSIUM: LINDLEY

simplicity this dependence has not been indicated.) Then we may write (2.9) in
the form

(2.11) Ad, z™) = / dé w(d, 8) exp I:L(")(x(")lé("))

= 5 % (6= 06 = By ®) | + o),

the order of the remainder following from the fact that the derivatives of the
likelihood function are O(n). Now if w(d, 6) is a “smooth” function of 6 and
bounded away from zero in the neighborhood of 6‘"> it too may be expanded
and, to the order being considered, only the first term w(d, 0(">) is relevant.
There is no loss in generality in supposing this, since a constant may be added to
the utility function. On practical grounds, the prior probability should not van-
ish. It therefore follows that

(212)  \(d, ™) ~ w(d, §™) exp [L™ (x™]§™)]
/ de exp[— g %} (8; — &™) (0, — é}”))c;,-(é‘"))]
~ (2m)*2w(d, B™)p™ (z™[d™) A2

where A, is the determinant of the matrix whose typical element is nes,®™).

The optimum decision function when =™ is observed is to take that d which
maximizes A(d, ™), and hence a possible approximately optimum decision func-
tion is to take that d which maximizes the right side of (2.12). But in that
expression d only appears in w(d, 8») = U(d, 8™ (™) and hence only in the
utility function. Consequently the suggested approx1mately optimum decision
function is equivalent to taking the d which maximizes U(d, §m). It is easy to
see that this approximating function has asymptotically the same expected
utility as the optimum decision function; for the expected utility using d is
A(d, z™)/p(z™), equation (2.5), and an asymptotic form for p(z™), equation
(2.4), can be obtained in the same way as for A(d, ™) by putting U = 1 iden-
tically. Hence,

(2.13) PE™) ~ (2m)H2r (@) pm (™) A7 Y2

and so the asymptotic expected utility of any decision d is the ratio of (2. 12)
and (2.13), namely U(d, 0(")) the same as with the approximation.

We have therefore the following large-sample optimum decision function:

If the prior probability has a density with respect to Lebesgue measure and if the
Uikelihood function behaves respectably then choose that decision which maximizes
the utility at the maximum likelthood value of the parameter. Or, act as if the maxi-
mum likelthood value were the true value.

Thus in large samples the exact form of the prior distribution is irrelevant and
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maximum likelihood estimation (in the broad sense considered here) is optimum.
In the particular case of point estimation this has already been remarked by
Jeffreys (see section 4.0 in [6]) and in the general case such a rule has been
advocated by Chernoff [2]. Comparable results have also been given by Le Cam
[7]. Any BAN estimate, in the terminology of Neyman [12], could be substituted
for 8™ since such an estimate, by the argument of Fisher [5], must be asymp-
totically perfectly correlated with the maximum likelihood value and the error
committed in replacing one by the other is of smaller order than 8™ — @, that
is it is o(1/V'n).

A slight extension of the above argument can provide an approximation to the
posterior distribution of 8 in large samples. The posterior distribution is, equa-
tion (2.3),

(2.14) ™ (Bz™) = ™ (z™|6)7(6)

p(x(n))

and an asymptotic form for the denominator has already been obtained, equa-
tion (2.13). A series expansion of the numerator on the lines of that in (2.11)
shows immediately that

(2.15) ™ (Blz™) ~ (2r) 7+ A7/ exp [—3 2 (6:— 8)(6; — é}"))cef(é<">>],
v

asymptotically normal with means at the maximum likelihood values and disper-
sion matrix |[n—1c#(8™)]|, inverse to ||nc:;®™)||. The result differs only slightly
from a similar result which is widely used in circumstances where a Bayesian
would use the posterior distribution: namely the result that the maximum likeli-
hood estimates are asymptotically normally distributed about the true values
with dispersion matrix the inverse of ||n€:;(8o)|| where &;(6,) is the expectation
of ¢;j(6y) at the true value 6,. This result is useless as it stands since 6, is neces-
sarily unknown, but it may be replaced by . If a Bayesian makes a similar
approximation, and one of the same order of error, and replaces ¢i,(@m) by
c.,(e(">), then the two results are practically equivalent. But we shall see below
that the latter approximation is unsound in principle.

We conclude this section by showing how better asymptotic approxunatlons
may be obtained by an extension of the argument leading to (2.12). I am indebted
to Professor H. E. Daniels for helpful discussion on the form of the expansions
used here. To avoid complicated notations only the case of a single parameter
(k = 1) will be discussed and the dependence on anything other than 6, = 6
will not be reflected in the notation. Thus we write the integral in (2.9) as

(2.16) / d6 w(6) exp [L(0)].

Let L;(6) denote the sth partial derivative of L(6) with respect to 6 evaluated
at 8, and define w;(6) similarly. Then (2.16) is
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@.17) / a0 w(8) exp [ LO) + 5 6 = L0) + 37 0 — 0)'La(d) + -+ ]
) ) o o
= exp L(8) / do {w(O) + (6 — 8)un(6) + 3 (0 — 6)2wq(6) + -- }
{14316 - 0L + ;0 = 9L +3[ 5,0 - 91 | + -}
exp [% 0 — 9)2L2(9):|.
The order of the terms needs some care. (8 — §) = O(1/Vxn) and L:(6) = O(n).

In the two sets of braces only the terms up to O(1/n) have been included. Col-
lecting terms of like order together we have for (2.16)

2.18) @ / df ¢/D @=Ly {w(é) + ?% (6 — 6)*La(6)w(6)
+ (6 — Hwi(h) + % (8 — 6)%w,(0) + 3%, (8 — 8)*Ls(0)w,(6)
+ ,ﬁ (6 — 8)*La(Oyw(6) + %[% (6 — é)“Ls(é):r w(é) + - }
= ot [L—z(%’)r]‘” {w(é) _w®) L)

2L+(6) 31Ly(6)?

3L4(6)w(h) _ 5-3Ly(6)w(f) 4 .. }
AL,(0)2  2(31)2Ly(B)?

+

The first term in braces is the one originally obtained in (2.12). The remaining
terms in the braces are all O(1/n).

As an illustration of the use of this asymptotic expansmn for A(d, ™) con-
sider the case where the decision space is also Euclidean of one dimension and
the problem is one of point estimation of the parameter. Suppose that the
prior probability is uniform in the neighborhood of 8 (that is, the density is con-
stant) and that the utility function is approximately quadratic there, so that
w(d, ) « U — (d — 6)? say, where U is the utility of the correct decision, sup-
posed constant. Then in (2.18)

w(@) o« U — (d — 6)?,
(2.19) wi(f) < 2(d — 0),
’wz(é) o« —2,

If we attempt to maximize (2.18) over d, only the part in braces is relevant and
we have to maximize (writing L:(6) = L;)

ey W-@-0(1+g5- 50)+2a-0[&]+ 1
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Differentiation with respect to d gives the optimum d, d, as the solution of

(2.21) —2(d — O[1 + 0] + —3‘%2 = 0,
2
hence,
5 Ls(®)
(2.22) d=10+ 6L35)

In the sense of having smaller mean-square error this estimate is to be preferred
in large samples to the maximum likelihood estimate. The correction term takes
account of the skewness in the likelihood function. The result may be compared
with similar corrections for the same purpose considered by Bartlett [1].

3. Large-sample problems of the hypothesis testing type

There are problems in which it does not seem reasonable to take a prior dis-
tribution which is ‘“‘smooth”, or in technical language which is dominated by
Lebesgue measure. These problems are those usually referred to as problems of
testing a null hypothesis. The null hypothesis is usually regarded as occupying
some special position and to a Bayesian this could be reflected in a concentra-
tion of prior probability on the null values of the parameters.

A significance test is first formulated in decision-theoretic language. The null
hypothesis is a subset of the parameter space and as most significance tests are
tests of the null hypothesis that some or all of the parameters take given values,
we shall consider only this case. Furthermore, to simplify the notation we take
k = 2, write 6, = 6, 6 = ¢ and suppose the null hypothesis is that 8 = 0. The
extension to a general number of parameters will be obvious. ¢ is a nuisance
parameter. The decision space contains only two elements, dy and d;, which are
to be interpreted as decisions to accept and reject the null hypothesis respec-
tively. In order to express this interpretation mathematically some assumptions
must be made about the utility function. Clearly these must be that

U(do; 0, ¢) > U(ds; 0, ¢),
U(do; 8, ¢) < U(dy; 0, ¢) for 60#0

The choice of decision function is determined by the maximum of (2.2) and the
optimum function is not affected by subtracting any function of 6 from U(d, ).
In the testing situation we subtract U(dy; 0, ¢) from the utility when 6 = 0 and
U(dy; 0, ¢) when 8 5 0. The effect will be to replace the original utility function
by another (for which the same notation is used) where the inequalities (3.1)
are replaced by

3.1)

U(ds; 6, 6) = 0, for 850
3.2) U(ds; 0, ) = 0

and otherwise
3.3) U(di; 0, ) > 0.



460 FOURTH BERKELEY SYMPOSIUM: LINDLEY

This is equivalent to using ‘“‘regret”’ instead of ‘‘loss” in the usual treatment. It
will not affect the choice of d but it will affect the expected utility by a constant
amount, and so could affect the choice of experiment.

In the Neyman-Pearson theory of tests, the probability of error of the first
kind is considered on a different level from that of the second kind. This suggests
that the null hypothesis is on a different level from the alternative. This can be
interpreted by a Bayesian as meaning that there is a concentration of prior
probability on the null values of the parameter. (It could also be interpreted as
meaning that the utilities for the two decisions are radically different. Because
of the way the utilities and prior probabilities combine, equation (2.8), this
would amount mathematieally to the same results.) We shall therefore follow
Jeffreys [6] and introduce such a prior distribution. Specifically: along the line
6 = 0 there is a density m(¢) with respect to Lebesgue measure on this line, over
the remainder of © there is a density m1(0, ¢) with respect to Lebesgue measure
(area) over 0. The ratio of the integrals

[dom®
J[ dode =6, 4)

over the line 8§ = 0 and over O respectively, gives the prior odds in favor of the
null hypothesis. (Necessarily the sum of the two integrals is one; the distribu-
tion is normed.)

The expressions for the integrals (2.2) are, for the two decisions,

Ndo, @) = [ dg U(d; 0, #)p (10, $)mo(),
My 2) = [[ dodg Ulds; 6, $)p(ale, $)m(6, ).

The former, for example, follows from the fact that U(do; 8, ¢) = 0 off the line
6 = 0, equation (3.2). Both of these integrals may now be approximated, in the
case of independent, identically distributed observations, by the asymptotic
results above. If

(3.4)

(3.5)

wo(¢) = U(do; 0, ¢)mo(e),

30 w6, 8) = Ulds; 0, Oms(8, &),

we have from (2.12)

3.7 N(do, ) ~ V2r wo(@®)p™ (2|0, ) [nex(0, $)]-12
and

3.8 Ady, 2™) ~ 2w, (6™, $™)p™ (zm|hm ) A712

where ¢™ is the maximum likelihood value of ¢ based on z™ and assuming
6 = 0, and the rest of the notation is as before, remembering 6,, 6: in (2.10) and
(2.12) are now 8, ¢.

In deriving these results it is assumed that wo(¢) and wi(6, ¢) are bounded
away from zero near the maximum likelihood values. This may not be true for
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w1(0, ¢) as 6 — 0. If not then the difficulty may be avoided by returning to the
original utility function.
The null hypothesis is accepted iff A(dy, z™) > A(d;, z™), that is, iff

3.9) p™ (2™]0, $™) wy (™, ) [2,,..,,622@, $(n)):|l/2.
) PO (z™|fm o) wo($™) A,

Write a. for the right side of this inequality. Then, apart from the way in which
a, is chosen, the test is easily seen to be the usual likelihood ratio test of the
hypothesis § = 0: for the left side is the ratio of the maximum likelihood under
the null, to the maximum likelihood under the alternative hypothesis. It is
clear that this identification with the likelihood ratio test will persist whatever
be the dimensions of the parameter space and null hypothesis.

We have therefore the following large-sample optimum decision function:

If the prior probabulity has a density of the above form and if the likelthood func-
tion behaves respectably, then carry out a likelihood ratio test.

As in the estimation case we have a procedure which is similar to that advo-
cated by standard statistical practice; for it is known (Wald [16], theorem VIII)
that the likelihood ratio test has optimum properties. The difference is apparent
when the choice of a, is considered. Usually a, is determined (if possible) from
the requirement that the probability of rejection of the null hypothesis, when it
is true, be some preassigned small number «, for all ¢. (It is known that this is
asymptotically possible from the known asymptotic distribution of the likeli-
hood ratio on the null hypothesis in large samples: Wilks [17].) In the Bayesian
treatment a, is determined from the utilities and prior probabilities at the maxi-
mum likelihood values, the information matrices evaluated there and, most im-
portant, from the sample size. As in the estimation case, the usual determination
of a, is unsound in principle.

Improvements on the test (3.9) can be obtained by considering the next terms
in the asymptotic expansions of A(dy, ™) and A(dy, z) on the lines used to
derive (2.18). The situation becomes somewhat complex, especially in dealing
with A(di, ™) where two parameters are involved, and the details of this ap-
proach will not be discussed here.

Instead we propose to study the choice of a, and the effect this choice has on
the significance level, in order, thereby, to relate the Bayesian approach to the
usual one. Denote by A,.(x™) the likelihood ratio criterion, the left side of (3.9).
Then the null hypothesis is accepted iff

260 $™) 2wen(0, ™)
(™) n=% A,

(3.10) —2log An(z™) < —log {w } =+ log n.

Now it is known (Wald [16], theorem IX) that in large samples the left side is
distributed as the square of a normal random variable with unit variance and
mean

(3.11) Vn (0o, o) = V'n 6y [511(00, ¢o) — %__I;Ez:: ig]u?.
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In particular when the null hypothesis obtains (8, = 0) it is distributed as x?
on one degree of freedom, and we consider this case. The left side of (3.10) is
therefore O(1) and the expression in braces on the right side tends to a finite
limit as n — @ and differs from this limit by terms O(1/vn). Hence we may
asymptotically replace that expression by its limit, obtained by replacing §™ by
6o = 0 and ¢™ and $™ by ¢o. Here w1(0, ¢v) is to be interpreted as limg—o w1 (6, ¢)
and is assumed greater than zero and finite. That is, there is a definite gain in
utility by taking d; instead of dy by however little the alternative hypothesis
differs from the null hypothesis. The case of a zero limit requires special treat-
ment, the significance level being much smaller, indeed of a different order, from
the expression below. Similar remarks apply if the limit is infinite. With this
assumption we can write (3.10) as

(3.12) 22 < A(go) + logn

with A (¢) finite and x a random variable which is N (0, 1).

If the usual significance level argument had been used (3.12) would have been
replaced by z? < A;, so that the primary difference between the two methods
lies in the addition of the term in log n. The effect of this term is to make the
significance level decrease with increasing sample size. This extra term has been
noted before by Jeffreys (section 5.2 in [6]) and Lindley [9]. The significance
level, using (3.12), is

(3.13) 2 ﬁ :w ogapn V27 e=t/2 gt

Denote by I, the integral f " e—t/2 g, Integration by parts gives
Hn

(3.14) I, = —pne=#/2 | : e~t22 dt > —pemm2 + Yl

A different integration by parts gives

(3.15) I, = pyle— w2 — fw e~tAU2dt > pyle w2 — u?l,,
(3.14) and (3.15) combine to give
—Iln’/2 e"#nz/z
3.16 Bt 7 1, < BT
8.16) P B

so that if un— 0, I, ~ prle=#*/2. With the value of u., = [A(¢o) + log n]V2,
the significance level, (3.13), is asymptotically

A(g0) —1/2
3.17) I:"ez n log n] ’

whereas without the logarithm term it is constant. The decrease in significance
level is achieved at some expense in loss of power. Without the logarithm term

the power reaches a constant value, say 1/2, if u(6, ¢o) is of the order 1/V n,
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whereas, using (3.10), u(6o, o) will have to be of order (log n)/2/ V'n to achieve
the same power.

The arguments of this section extend, without difficulty, to the case of a finite
number of decisions, such as occur in many analyses of variance. The value of
A(d;, ™) for the different d; may be replaced by the approximations.

4. General remarks on the small-sample problem

The large-sample theory has been outlined and seen, naturally enough, to be
insensitive to the form of the prior distribution. For small samples the same
situation does not obtain and the Bayesian argument is usually criticized on the
grounds of this dependence on the prior distribution. We delay until section 5 a
discussion of the form of the prior distribution and here make some remarks
about the general character of Bayesian inferences and decisions which are
relevant in small samples and yet are independent of the precise form of the
prior distribution.

There seem to me to be two processes at work: one is that by which a prior
distribution is changed by observation into a posterior distribution, and this
process I call inference, and it is statistical if the observations are statistical. The
other is the use made of the posterior distribution to come to decisions, which is
called decision theory. It seems useful to distinguish these two because many
decisions can be made on the basis of a single set of observations and the common
part to all these decision processes is the posterior distribution. One need only
glance at almost any statistical textbook to see an example of inference problems
(though not usually tackled by Bayesian arguments) in which the purpose of the
example is to make some concise summary of what the data have to say about
some parameter or parameters. One might, for example, make an interval esti-
mate of the effect of some drug without discussing any decision as to whether or
not the drug should be used. On the other hand the decision problem uses only
the posterior distribution, and once this is known, can be solved without further
reference to the observations.

Thus in either inference or decision problems it is the posterior distribution
which plays the central role. Inferences, like interval estimates, can be made in
terms of it. Decisions can be made by maximizing the expected utility with
respect to it [equation (2.5)]. It therefore follows that the inferences or decisions
made depend only on the observations through the likelihood function p(z|6), a
function of @ for fixed x. Consequently the other observations in the sample
space are irrelevant. If different observations have the same likelihood function
then the inferences or decisions made should be the same. This point has been
made before, perhaps first by Jefireys, see page 360 of [6], and an example in
the binomial sampling situation is given in [11]. But it is worth repeating be-
cause, simple though the point is, it has important consequences which are at
variance with current statistical practice.

Consider first the concept of a significance test. The significance level plays a
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fundamental role and is obtained by integration over part of sample space and
therefore involves other possible observations than the one obtained. The use of
the significance level therefore violates the principle that inferences or decisions
should depend only on the likelihood function, and is at variance with the
Bayesian approach. The test in the Bayesian approach, as we have seen in sec-
tion 3, determines the critical value quite differently. So far as I am aware no
one has explained why the fact that on a hypothesis Hy the probability of the
given observation and others more extreme than it is small, should lead one to
reject Hy. Some explanation can be given if it is known that on H;, some other
hypothesis, the probability of the same event is large. But how often is the
power calculated in making a test? In any case it is not reasonable to consider
such probabilities because they depend on the sample space and the sampling
rule used. It matters whether the observations were come by sequentially or
by a fixed sample size in ordinary testing, but to a Bayesian such information
is irrelevant.

Furthermore there are situations in which it is not clear what the sample
space is. The clearest example is due to Cox [4]. A penny is tossed: if it comes
down heads an observation z is obtained which is N(u, ¢?); if tails an observa-
tion z is obtained which is N(u, ¢3). The result of the toss, z, 3 and o} are
known, u is not and ¢} >> ¢3. Does the sample space consist of two real lines or
of the one real line corresponding to the result of the toss of the coin? The former
gives the better test in the usual sense but Cox argues in favor of the latter.
More familiar but more complicated examples are provided by regression prob-
lems (should the sample space be confined to samples having the same values
of the independent random variable?), contingency tables (should the margins
be held fixed?) and certain confidence interval situations. In the last example 1
have in mind cases where the interval covers the whole line. To a Bayesian only
the likelihood function is relevant, though, as we shall see in the next section,
whether or not only part of the likelihood is relevant is an open question. In the
classical treatment many of these problems have been solved by Lehmann and
Scheffé [8] with the concept of completeness.

Confidence intervals and unbiased estimates are open to the same criticism,
because they both involve an integration over sample space. Maximum likeli-
hood estimation is free from this criticism because it obviously uses only the
likelihood function, but the use of the inverse of the expectation of minus the
second derivative to obtain the variance of the estimate uses integration over
sample space. But here the criticism is little more than a quibble because the
difference between the expectation and the actual value of the derivative is
small. In small samples, if maximum likelihood could there be justified, the
criticism could have more content.

We repeat that the remarks on the irrelevance of the sample space do not, of
course, apply to the design of experiments. Before x has been observed the
average utility (2.1) is relevant, after z has been observed the average utility,
conditional on that x, (2.5), is relevant.
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Not much of statistics seems to remain free from this Bayesian criticism, and
it might appear that most of modern statistics is unsound. But fortunately this
is not so. Most of the common statistical methods are unaffected by changing
from the usual to the Bayesian approach. An example will illustrate the point.
Student’s ¢-distribution gives the distribution of (£ — u)Vn/s (the notation is
surely well established) in random samples of size n from a normal distribution
and provides a basis for the confidence interval statement
4.1) p(f—ﬁi<u<f+‘ﬁ-

=1-

vn Vn #> *

for all u, the probability referring to T and s. Under reasonable assumptions on
the prior distribution of x and o the posterior distribution of u is such that
( — »)V'n/s has Student’s {-distribution on n — 1 degrees of freedom (note
that p is the random variable here, T and s are fixed). Consequently

(4.2) 7r<z——“—'i_<u<z+

ﬁs—fs =1—«a
vVn V|’ )

To a practical man (4.1) and (4.2) probably mean the same thing. Thus a
Bayesian will agree with standard practice. The similarity arises because of the
intimate relationships between operations in sample space and parameter space
that arise when dealing with the normal law. A treatment of many statistical
situations using Bayesian methods is given by Jeffreys [6]. Interestingly the
Fisher-Behrens test and the exact test of Fisher’s for the 2 X 2 contingency
table can be justified by such arguments, though the latter involves a slight
approximation. : .

6. Choice of the prior distribution

Because they avoid integrations over sample space and the resulting distribu-
tional problems, Bayesian methods are often easier to apply than the usual
methods, but they do involve the serious difficulty of the choice of the prior
distribution. Some Bayesian writers, for example Savage [15], advocate a sub-
jective point of view and consider that the prior distribution reflects only the
beliefs of the person making the inference or decision, and that therefore no
prior distribution is more correct than any other. The value of an objective
theory would be so great that it seems to the present writer well worth trying
to see whether some objective and natural choice of a prior distribution is pos-
sible. To do this we consider some indirect and direct attacks on the problem.

Some clues on the nature of a prior distribution can be obtained from state-
ments that are commonly made. We deal with just one such type of statement
here, namely where it is said that such and such an observation gives no infor-
mation about a parameter. For example it is often said that a sample of size
one from a normal distribution of unknown mean and variance gives no informa-
tion about the variance or that the margins of a 2 X 2 table give no information
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about association in the table. (We might note in passing that if a Bayesian
could give a meaning to a parameter being unknown he would have the required
objective prior distribution, that of ignorance.) To a Bayesian this presumably
means that the prior and posterior distributions are identical. Now if
there is just one real parameter 6 it is easy to see that this can only happen if
the likelihood function does not involve 6: a trivial case. The situation is more
interesting however if there are two parameters 8 and ¢. In the notation of sec-
tions 2 and 3 the posterior distribution of 6, say, is

(5.1) /dqs,r(e, r) = /dd: p(z]6, ¢)n(6, ¢)

p(z)
and the prior distribution of 6 is

(5.2) w(0) = [ do 7(6, 9).

So we can say that x gives no information about 8 if (5.1) and (5.2) are cqual;
that is if

(5.3) [ ds p(al6, 9)m(910),

where 7(¢|6) is the conditional prior distribution of ¢ given 6, is a function of
only, namely p(z). Hence the prior distribution should be chosen so that (5.3) is
satisfied. I have been unable to make any substantial progress with this equa-
tion, but it is interesting to note that it gives a condition on the distribution of ¢
for fixed 6, only, and not on the distribution of 8. In the normal case a single
observation gives no information if the mean is uniformly distributed over the
whole real line independently of the variance. Such a distribution is unnormed
but can be treated by the methods of Rényi [13].

If the observations can be written (z, y), so that p(z, y|8, ¢) = p(y|x; 0, ¢)p(z|0, ¢)
and if p(z|8, ¢) and w(¢|6) satisfy (5.3), then instead of the likelihood p(z, y|9, ¢)
we may use p(y|z; 6, ¢). For example, in the 2 X 2 contingency table in the form
of two binomials where we are interested in testing the equality of the two
proportions, if y refers to the interior of the table and x to the margins, and if

54 o — D1, _ P
( ) D2q2 ¢ 0192

(so that we wish to test § = 1), then (5.3) can be satisfied, at least for small
enough tables. In this case we also have the important fact that p(y|z; 6, ¢) does
not involve ¢. Hence provided only that w(¢|6) satisfies (5.3) the explicit form
of it need not be considered and the posterior distribution of 8 can be obtained
from p(y|z; §) without considering the nuisance parameter ¢. Similar remarks
generalize to densities of the exponential family.

Suppose that we have a density p(z|6) dependent on a single real parameter 6.
The following considerations suggest a way of obtaining an objective prior dis-
tribution. In scientific work we progress from a situation where 6 is only vaguely
known, by experimentation to one where it is fairly precisely known: but it is
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rarely exactly known. Usually there comes a point where it is known to within
an amount §(6), which may depend on 8. For example it may be known to six
decimal places, §(8) = 108, or to six significant figures, §(f) = 107°9. The func-
tion 8(6) is often known objectively or may be found from some decision prob-
lem. Hence we may effectively replace the continuous range of 6 by discrete
values of 8 at mesh 6(6). Knowledge of 6 means that it is known which point of
the mesh obtains: therefore a possible meaning for ignorance is a distribution of
probability which assigns equal probability to all points of the mesh: or return-
ing to the continuous case a prior density, =(6), proportional to é-'(6). In a
sense such a density would correspond to ignorance of 8 and could be used as such.

Apart, however, from location parameters (or parameters transformable
thereto, such as scale parameters) there seems no reason for any particular 5(6)
outside of a specific decision problem, and an argument for inference problems
would be useful. Jeffreys has given one in section 3.9 of [6] and we now give an
alternative justification for his prior distribution. Essentially we obtain the
function 4(6) in terms of the density function p(z|6). Knowledge of § means
knowing the form of the density for z and the amount by which one value
of 9 differs from 8 + 8(6) can be measured by how much p(z|6) differs from
plz|6 + 5(6)]. The difference can be measured by how much information is
available in the experiment for distinguishing between 6 and 6 4 8(4), the more
information the further they are apart. Information can be measured in a way
suggested by the author [10]; namely the expected information is

(5.5) / dx {f do =(8|x) log r(ﬁlx)} p(x) — / dé =(0) log =(6)

= / / dz do p(x|6)(6) 1og[ zf:(vx;))]_

The justification for this has been given in the paper referred to: further discus-
sion of the use of Shannon’s measure has been provided by Rényi [14]. Now if
we consider only 6 and 6 + 8(6) and they have equal prior probabilities (repre-
senting ignorance), namely 1/2, 1/2 then as () — 0 it is easy to establish
that (5.5) is

(5.6) 22(0)8 {[91—0%)&(9—)]2} — 282(6)1(6),

to order 8%(6), where I(6) is Fisher’s information function. Hence arguing as
before a possible prior distribution is

(5.7) m(0) o< I(6)1/?

which is the one suggested by Jefireys. He gives several examples of the use of
it. Notice that in (2.12) A, */?, in the case of a single parameter, is approximately
I(§™)-v2 and therefore if this prior distribution were used (2.12) could be

written
(5.8) Ad, ™) ~ V2r U(d, §™)p® (z™|§™),
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When more than one parameter is involved the.above argument seems less
satisfactory because no natural mesh suggests itself and Jeffreys extension, using
the determinant of Fisher’s information function in place of (), produces
ridiculous answers, for example with the {-distribution. A way out of the dif-
ficulty when there are two parameters 6 and ¢, and ¢ is a nuisance parameter is
to derive w(¢|6) for each 6 by the above reasoning. This then enables one to

calculate p(z|6) = f d¢ p(x|0, $)7(¢|6) and then find =(6) in the same way

from p(z|6). This removes the difficulty in connection with the ¢-distribution,
but it remains to investigate it in more detail.
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