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1. Introduction

We consider a Markov process x,n, n = 0, 1, . The random variables x,n belong to
an abstract set X in which a Borel field B is defined, X itself being an element of B.
It is assumed throughout this paper that B is separable; that is, B is the Borel extension
of a denumerable family of sets. The transition law of the process is given by a function
P(x, E) = P1(x, E), this function being interpreted as the conditional probability that
xn+l E E, given x,, = x. The n-step transition probability is designated by Pn(x, E). When
conditional probabilities are used below, it will usually be understood that they are the
ones uniquely determined by the transition probabilities. The sets in B will sometimes
be called "measurable sets."

Throughout this paper a "measure" will mean a countably additive set function, de-
fined on the measurable sets, nonnegative, and not identically 0. (The words "countably
additive" will sometimes be repeated for emphasis.) A "probability measure" or "prob-
ability distribution" will be a measure of total mass 1. Notice that we do not require
measure to be finite. A "sigma-finite" measure is a measure such that X is the union of
a denumerable number of sets, each of which has a finite measure.

Various conditions are known which imply the existence of a probability measure
Q(E) which is a stationary distribution for the xn-process; that is, Q satisfies, for each
measurable E,
(1.1) Q (E) =f Q (dx) P (x, E) .

If xo has this distribution, so has xn for every n. Two sets of conditions for the existence
of such a probability measure were given by Doeblin. One set is discussed in Doob (see
pp. 190 ff. in [7]). A more general set is given in [6].

There are many situations where there is no probability measure satisfying (1.1), but
where a solution can be found if Q(X) = o is allowed. The simplest example is the ran-
dom walk where x,, takes integer values, and can increase or decrease by 1, with proba-
bilities 1/2 each, at each step. In this case a solution to (1.1) can be obtained by assign-
ing to any set of integers a Q-measure equal to the number of integers in the set. All in-
tegers are "equally probable."

In this paper a solution of (1.1) will always mean a sigma-finite measure Q which
satisfies (1.1) for every measurable set E. The principal result, contained in theorem 1, is
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that a certain type of recurrence condition on the xn-process insures the existence of a
solution of (1.1) which is unique, and which assigns positive measure to certain "re-
current" sets.

It is helpful to consider some known results for the case where X is denumerable, with
states designated by letters i, j, k, s,*-, which are taken to be integers 0, 1,* - -. Let
Pij = Pi, be the one-step transition probability from i to j, and let P¶ij be the n-step
transition probability. Assume that all states communicate; that is, for each i, j there is
an n such that Pi'j is positive. Assume also that the chain is "recurrent"; that is, with
probability 1, every state is visited infinitely often. (If this is true for any starting point,
it is true for all starting points. For discussion, see Feller, chapter 15 in [9].) Under these
conditions, it follows from a result of Doeblin [5] that there is a set of positive finite num-
bers qj, j = 0, 1,- *, such that

N

iP~
(1.2) liM qj

N-- N qe

n-Inn=l1

Notice that the limit in (1.2) is independent of the starting positions i and k. In case the
mean time for return of the state back to the starting state is finite (under the above
hypothesis of "communication" this will be true for either all or no states) the quantities
qj are a set of stationary probabilities for the Markov chain, provided they are scaled
so their sum is 1. If the mean times of return are infinite (still considering the recurrent
case) the qj are not probabilities since their sum is infinite. However, it was shown by
Derman [3] that even in this case, the qi satisfy the equations of stationarity (1.3), which
are of course satisfied also when the qj are probabilities:

(1.3) qj= I qjPji, i= 0, 1, 2,
i=o

Another proof of (1.3) in the nonprobability case was given by Chung [2], and furnishes
an idea which is very helpful in the present proof.1

There are several applications of infinite stationary measures Q. In the case where X
is denumerable, one can consider infinitely many particles moving through the states
in X, each one moving independently of the others according to the law of the Markov
chain. In such cases Derman showed [4] that if initially the number of particles in statej
has a Poisson distribution with mean qj, j = O, 1,*, this same distribution will be pre-
served as time goes on, and related results are also given. A similar treatment for certain
types of continuous-parameter processes has been given by Doob (see p. 404 in [7]).

Another application was discussed by Harris and Robbins [14], where the application
of an ergodic theorem due to Hopf [16] shows that if f and g are real-valued functions
such that the right side of the equality in the bracket in (1.4) below is defined, then,
assuming a suitable recurrence condition holds, it will be true that for almost all
starting states xO
(1.4) Pr[lim f(xo) +--+f (x") ff (x)Q(dx)] 1*1.4) PrIn.2o g (xo) + + g (xf) fJg (x)Q(dx)

l As mentioned in section 6, there is some connection with a procedure used by Halmos [11]. The
"A-process" introduced later was used for discrete X by L6vy [18].
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The statement "almost all" is with respect to Q-measure. In some cases, such as the one
discussed in the present paper, the exceptional set is empty.
The analogue of (1.4) for discrete Markov chains was proved by Chung [2] without

the use of ergodic theory.
A question which will be discussed only briefly in this paper is whether the analogue

of (1.2) holds for the more general state space X introduced above. That is, is it true that
if 0 < Q(F) < - then

N N

(1.5) P- (x, E) / Pn (y, F) Q (E) IQ (F)
n-I n=l

holds for all x and y in X and all measurable E and F in B? Conditions have been found
under which this is true; however, they seem to be less general than those under which
theorem 1 holds.

Finally it may be noted that even in case Q(X) is finite, the result of the present paper
applies to certain cases where one of the results of Doeblin mentioned above is not appli-
cable (however, the conclusions are weaker than they would be if Doeblin's result could
be applied) and where Doeblin's other criterion seems difficult to apply.

2. Recurrence condition; "process on A"
We consider Markov processes as defined in the first paragraph of the introduction.
CONDITION C: A countably additive sigma-finite measure m(E) is defined on sets E of

B; m(E) > 0 implies
(2.1) Pr (Xn E E infinitely often xo) = 1

for all starting points xo in X.
Now let A be a measurable set with m(A) > 0. Let xo be any point in A. Then al-

most all sequences xo, xi, - * will have infinitely many elements in A. Let yo = xo, yi,
y2, * * be the successive members of the sequence which belong to A. It can be verified
that the yn form a Markov process2 and we can write down its transition function
PA(X, E) = Pr(yn+l E Ejy. = X):
(2.2) PA (x,E) =P (x,E) +J P (X dy)P (y, E)

+ f P (X, dy)P (y, dz)P (z, E) + .

We shall refer to the y,,-process as the process on A, or the A-process.

3. Motivation for proof of theorem 1
It is evident from (1.2) that in the discrete case the quantities q, are proportional to

the expected number of times the state is j, over a long time interval. It follows from a
proof of (1.2) by Chung [2] that the ratio qj/qi is equal to the expected number of visits
to j between two visits to i, where i # j. Hence we might think of taking Q(E) propor-
tional to the expected number of visits to the set E by a "particle" which starts at some
point x, before returning to x. The difficulty is that in general the particle does not have
probability 1 of returning to the state x. It then seems natural to take some reference set

'This intuitively obvious statement perhaps needs proof. It can readily be shown that the joint dis-
tribution of yi, y2, --, y. corresponds to what would be obtained by iteration of PA, for all n.
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A, with m(A) > 0, let the particle have some initial probability distribution on A, and
take Q(E) to be the expected number of visits to E before returning to A. In general
there would be difficulties with this procedure, but the situation becomes simple if there
is a stationary probability distribution for the A-process; if the particle has this distribu-
tion initially, it will have the same distribution each time it returns. This type of argu-
ment suggests the reason for lemma 1 below. (See also Chung [1], Harris [12], Levy [18].)

4. Proof of existence of stationary measure

THEORE1 1. Assume the Markov process satisfies the conditions of paragraph 1 of the
introduction, and that condition C holds. Then (1.1) has a solution Q which is unique up to
a constant positive multiplier, and is stronger than m.

[The precise meaning of "solution" is given in the introduction. The statement that
Q is stronger than m means that m(E) > 0 implies Q(E) > 0.]
A series of lemmas will be needed for the proof. The assumptions of theorem 1 will

be made for each of them, although lemma 1 actually is true under wider conditions.
LEMMA 1. Let A be a measurable set with 0 < m(A) < co. Suppose the "process on A"

has a stationary probability measure QA stronger than m on A, satisfying

(4.1) QA (E) =JQA (dx)PA (x, E)

for every measurable E in A. Then (1.1) has a solutionQ which assigns the same value as QA
to subsets of A, and is stronger than m on X.

PROOF. The function PA(X, E), which we defined before as the transition function
for the A-process, can be defined by means of the right side of (2.2) for every x in X,
and for all measurable E, whether or not E is a subset of A. The function so defined is
clearly, for each x, a countably additive measure. An argument similar to the one we shall
use below to show that Q is sigma finite shows that PA is a sigma-finite measure. Note
that if E is a subset of X - A, then PA(X, E) is the expected number of visits to the set
E before a visit to A, if the starting point is x. (If x E A, the initial position is not
counted as a "visit" to A.) Now let A' denote the set X - A. From the definition of PA
it is clear that the following functional equation is satisfied

(4.2) PA (X,E) =P (x, E) + PA (x, dy) P (y, E) .

Motivated by the considerations indicated in section 3 above, we now define, for every
measurable E in X,
(4.3) Q (E) = fQA (d x)PA (x, E) .

A

Notice that for E c A, Q(E) = QA(E). Using (4.1), (4.2), and (4.3), we have

(4.4) fQ(dy)P(y, E) = fQA(dy)P(y, E) + ,[QA (dx)PA (x, dy)]P (y, E)

-JQA (dx) [P (x, E) +f PA (x, dy) P (y,E)]

fJQA (dx)PA (x,E) =Q (E) .

Hence Q satisfies (1.1), and is clearly a countably additive measure.
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To show that Q is sigma finite, we note that QA(A) = Q(A) = 1, so it is sufficient to
show that A' is the union of a denumerable number of sets, each with finite Q-measure.
Define Sii for every pair of positive integers i and j by

(4-5) Sij !x:xE A',Pi (x, A) >J{ i, j= 1,2,* .

From condition C it follows that the union of the Sij contains A'. Since Sii C A', Q(Sij)
is just the expected number of visits to Si, between visits to A, if the "process on A"
has the stationary probability distribution QA. It is therefore clear that Q(Sij) is finite.

It remains only to show that Q is stronger than m. Since QA is by assumption stronger
than m on A, and Q coincides with QA on A, it will suffice to show that Q is stronger than
m on A'. Hence let E be a measurable subset of A', with Q(E) = 0. Suppose the x,,-
process, n 2 0, has the initial distribution QA on A, xo being assigned probability 0 of
being in A'. Since Q(E) is the expected number of visits toE between visits to A, Q(E) =
0 evidently implies that with probability 1, x. does not belong to E for any n. Hence
m(E) = 0.

This completes the proof of lemma 1.
We next consider the absolutely continuous parts (with respect to the measure m) of

P(x, E) and its iterates. For each positive integer n, let

(4.6) Pn (x, E) =ff (x, y) m (dy) +P- (x, E)

where JR(x, y) is the density, and Po is the singular component. Our original condition
that the field B should be separable implies that the representation (4.6) is possible with
f a function which is measurable in the pair (x, y), measurability being defined with
respect to the product space (X, X). (See Doob, pp. 196 and 616 in [7].) We shall hence-
forth assume that all densities are chosen to satisfy this measurability condition.
LEmmA 2. Let r be any real number strictly behteen 0 and 1. There exist a measurable set

A, a positive number s, and a positive integer k, such that 0 < m(A) < -, and for every
xE A

(4.7) m{y: yE A, fl (x, y) + + fk (x, y) > s} > rm (A) .

PROOF. Since each of the measures P;, n > 0, is singular, we can find, for each x, a
measurable set S(x) with m[S(x)] = 0, such that

(4.8) Pn [X-S (x)] =0, n= 1, 2,

For each x, let T(x) be the (measurable) x-set defined by

(4.9) T (x) = I{y: P (x, y) =0 , n= 1, 2, -.

Then if xo = x, the probability is 1 that there is no n such that x. belongs to T(x) -
T(x)S(x). Hence from condition C, m[T(x)] = 0.
Now let A1 be any measurable set such that 0 < m(Ai) < c. For each x E Al,

define the measurable set Ali = A i(x) for i = 1, 2,* ,by

(4.10) Al x=I(4.10) Ax, (x) = y: y E Al, fl (XX y) + * * + fi (x, y)> .

The remark above that m[T(x)] = 0 shows that
(4.11) m (A1-uiAli) =0



I8 THIRD BERKELEY SYMPOSIUM: HARRIS

Hence for each x E A1 there is a smallest positive integer i = i(x) such that

(4.12) m (Ali) > (+ r) m (A1) = [1- (1-r)I m (Al.
(Note that the Ali are an increasing sequence of sets.) Now define

(4.13) Kj={x:xE A1,i(x) =j},- j=1,2,
Then each x in A1 belongs to some K,. Hence we can find an integer p such that

(4.14) m(Ki+***+Kp) > 2m-(A)4- r

Now define A = K1 + + Kp. Then for every x in A the relation

(4.15) fl (x, Y) +..+fp (x,y) > I

p
holds for all y in A1 with the possible exception of a y-set of m-measure not exceeding
(1 - r)m(AD)/2. But m(Al) < (4 - r)m(A)/2. Hence for every x E A, (4.15) must
hold for all y in A with the possible exception of a y-set of m-measure not exceeding
[(1 - r)(4 - r)/4]m(A) < (1 - r)m(A). Hence (4.7) is true with k = p and s = 1/p.
This completes the proof of lemma 2.
LEmmA 3. Let A be the set of lemma 2, corresponding to a particular value of r. Suppose

that the transition functions for the "process on A" have the decomposition [satisfying the
measurability condition mentioned in connection with (4.6)]

(4.16) PnA (x, E) = efA(x, y) m (dy) +PnA,, (x, E), n = 1, 2, ***

xE A, Ec A.

Then (4.7) still holds, with the same k and s, iffl+ * + fk is replaced byfA+ - *+ fk.
PROOF. We observe that, for E c A, P1(x, E) + + Pn(x, E) is the expected num-

ber of visits to E in n steps, while PA (x, E) + * * *+ PnA(x, E) is the expected number
of visits to E in the first n visits to A. Hence clearly for every x E A and E c A
(4.17) p +... +pn >p +... +pn n = 1, 2,*.

Let A2 be a subset of A with m(A2) = m(A), such that

(4.18) P-A, (x, A,) = 0, n= 1, 2,

Then for E c A2 (A2 may depend on x)

(4.19) [f A (x, y) + + fnA (x, y) I m (dy) > [Ifl (x, y)
+-* +fn(x,y)] m(dy)-

Hence for each x, the relationfA + * * *+ fnA fl + - *+P must hold for almost all y in
A (m-measure). Lemma 3 follows immediately from this fact.
LEmmA 4. Let3 R(x, E) be the Markov transition function defined by

(4.20) R(x,E) = [Pl (x,E) +-+Ppk (x,E) I/k, xE A,Ec A,

S If Doeblin's result is to be used directly, it is sufficient to take r greater than 1/2, which will insure
that the R-process has no cyclically moving subsets.
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where A, PA(x, E) and k are the quantities defined in lemmas 2 and 3 for some r > 1/V2.
Let Rn, n = 1, 2,* , be the iterates of R. Then there is a stationary probability distribu-
tion QA(E) for R, satisfying, for all measurable E c A,

(4.21) QA (E) =JQA (dx)R(x,E).

Moreover there is a number t, 0 < t < 1, such that if 4(E) is any probability measure
on A,
(4.22) |QA (E) -f -t(dx) Rn(x,E) |tn- n= 1, 2,*

A

The proof of lemma 4 follows from results of Doeblin (see Doob, pp. 190 ff. in [7]).
However the transition function R satisfies such a strong positivity condition that a
simple direct proof of lemma 4 can be given. Such a proof is indicated in the appendix
to the present paper.
LEmmA 5. The distribution QA(E) of lemma 4 is stationary for PA(X, E); that is, (4.1) is

satisfied.
PROOF. Let us define operators U and V, on any probability measure 4 defined on A,

by
(4.23) UP)(E) =f4)(dx)PA(x,E); V4)(E) =fD(dx)R(x,E).A, A

(Note that U4 and V4 are probability measures.) The nth power of the operator U(or V)
is obtained by replacing PA by P"A (orR by Rn). Note also that, because of the definition
of R [see (4.20)], we have
(4.24) V= (U+U2+---+Uk)/k.
From (4.24) we see that U and V commute: UnVm = VmUn for any positive integers m
and n. Now (4.21), in the present language, becomes

(4.25) QA = VQA ,

and (4.22) states that for any probability measure Ci) defined on A
(4.26) Vn (4 (E) -QA (E) . tn-l n= 1, 2,*.

Using (4.25), (4.26), and commutativity, we have

(4.27) UQA = UVn QA = V (UQA) = QA +en,
where the measures in (4.27) are evaluated for some fixed measurable set E and where
ef is a quantity which is not greater than t-1 in magnitude. This can only be true if
UQA = QA, which is the desired result.

In order to apply lemma 1, we need to know that QA is stronger than m on A. Suppose
that E is a measurable subset of A for which QA(E) = 0. Consider the "process on A"
yo, y..... , where yo has the distribution QA. Because of the stationarity of the y.-process,
we have
(4.28) PrIyn EE =QA (E) = 0, n=1, 2,-.
Because of condition C, (4.28) implies m(E) = 0.
We can now apply lemma 1. There is then a solution Q of (1.1); we recall that a solu-
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tion is a countably additive, sigma-finite measure; lemma 1 shows it to be stronger
than m.

It remains to prove uniqueness. We shall show that, except for a multiplicative con-
stant, there is only one sigma-finite measure which satisfies (1.1), even among measures
which are not necessarily stronger than m. It is convenient to defer the proof of unique-
ness to the next section.

5. Uniqueness and related topics
Throughout section 5, we shall still assume that the conditions of the first paragraph

of the introduction hold, and that condition C is satisfied. Furthermore it will be assumed
that a solution Q(E) of (1.1) has been constructed by use of some fixed set A, as in lem-
mas 1-5; this solution has been shown to be sigma finite and stronger than m, and we
shall reserve the notation Q for it throughout the present section.
LEm1A 6. Let D be a measurable set with 0 < m(D), Q(D) < co. Then Q(E)/Q(D) is a

stationary probability measure for the "process on D," satisfying

(5.1) QQ(E) _ J QQ(dx) PD (X,E), Ec D,
Q(D) IDVQ(D) P(,)

where PD is the transition function for the D-process. It is the only stationary probability
measure for this process. (Lemma 6 was proved in [4] for the case of discrete states, but
the method seems not to apply here.)
We mention explicitly that Q was constructed with reference to the fixed set A, not

with reference to D.
PROOF. For simplicity, take Q(D) = 1. Let D' = X - D. Then, taking (1.1) as our

starting point we obtain

(5.2) Q(E) =jQ(dx)P(x,E) = 1,+1, Ec D.

The second term on the right side of (5.2) can be written as

(5.3) fDQ(dy)P(y,E) =fD [fJQ(dx)P(x, dy)]P(y,E)

=JQ(dx)f,P(x,dy)P(y,E) =ff +f,f.
Hence we have

(5.4) Q (E) =JQ (dx) [P(x, E) + J P (x, dy) P (y, E)]+ f,
or
(5.5) Q (E) 2tfQ (d x) [P (x, E) + JP (x, dy) P (y, E)].

This process can be continued, replacing Q(dx) in the last term in (5.4) by

(5.6) fJQ (dy) P (y, dx).

Hence we obtain, by continued operation of this sort,

(5.7) Q (E) fQ (dx) [P (x, E) +,,P(x, dy)P(y,E)+

fQJ (dx)PD (x,E), E c D
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Now Q(E) is a probability measure on D [we have taken Q(D) = 1]. Since PD is a Mar-
kov transition probability function, the right side of (5.7) is likewise a probability meas-
ure on D. Hence (5.7) can only be true if the equality (5.1) holds.

At this point we observe that the only property ofQ of which we have made use is the
fact that it is a solution of (1.1). The above argument will then go through for any
measurable set D such that 0 < Q(D) < , and such that Pr(xr, E D infinitely often
l xo) = 1 for all xo. For uniqueness, we shall need to use condition C.
Now consider a "process on D" with variables z,n n = 0, 1, -, where for each n,

z,, has the stationary distribution Q on D. Suppose D is the union of two disjoint non-
empty measurable sets D, U D2. Since m(D) > 0, either D1 or D2 must have positive
m-measure. It follows that the two statements in (5.8) cannot simultaneously be true:

(5.8) Pr Zn E D,, n = 1, 2, *lzo= zI = 1,, all z E D1,
Pr {z E D2, n = 1, 2,* zo= z1= 1, all z E D2 .

The fact that two such statements cannot be made is stronger than mere ergodicity and,
in conjunction with the fact that Q is stronger than m, implies the following proposition.
Let E be a measurable subset of D and let g(z) be the characteristic function of E. Then
for all (not just almost all) z in D we have

(5.9) Pr lim g (zo) + +g( n-) =Q (E) zo= z 1 .

(See the discussion of a similar situation in Doob, theorem 6.2, p. 220 in [71.) Now any
stationary probability distribution Q' defined on D for the D-process will correspond to
an ergodic4 stationary process zn, where Zn has the distribution Q'. The ergodic theorem
of Birkhoff then implies that (5.9) holds, with Q(E) replaced by Q'(E), for almost all
(Q'-measure) z in D. (We cannot say all z at this point since a priori we do not know that
Q' is stronger than m.) This is a contradiction unlessQ' andQ are equal. HenceQ is unique
among stationary probability measures for the D-process. This completes the proof of
lemma 6.
We can get some additional information from (5.9). We know that Q is stronger than

m, and it may be strictly stronger; that is, there may be sets E with m(E) = 0, Q(E) > 0.
It can be shown from (5.9) that Q(E) > 0 implies
(5.10) PrI x, EEinfinitely oftenI xo = 1, all xoE X.

We can now conclude the uniqueness proof for the solution of (1.1). Suppose Q is our
solution and that Qi is any different solution. Then there must be a set D such that

(5.11) 0 <Q(D) , Qi(D), m(D) < -

[for convenience let us take Q(D) = Q1(D) = 1], and such that for some subset E of D,
we have Q(E) 6 Q1(E). From the discussion above it follows that both Q and Qi must
be stationary probability distributions on D for the D-process; the fact that Q is such a
distribution was proved; the fact that Qi is such a distribution follows from (5.10) and
the remark made in the course of the proof of lemma 6, to the effect that any solution
of (1.1) provides a stationary distribution for the D-process under the indicated condi-
tions. Since from lemma 6 the stationary distribution is unique, we have a contradiction.

This completes the proof of theorem 1.
4 Ergodicity follows as for the Q-process.
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6. Remarks

Theorem 1 is sometimes helpful in the finite case, Q(X) < co. It is useful to know in
advance whether the finite or infinite case prevails. The following criterion will be stated
without proof. More general ones could clearly be found.

Suppose the conditions of theorem 1 are satisfied, and suppose we can find a set A,
0 < m(A) < C, and a positive number d such that the density f(x, y) satisfies

(6.1) f(x, y) > d , x E A, y E A .

Let p be the recurrence time to A; that is, p is the smallest positive integer such that
xp E A. Then if E(p xo = x) is bounded independently of x for all x E A, we have the
finite case.

Although some conditions have been found under which (1.5) is true (see [13]), the
author has not been able to prove this under the conditions of theorem 1 alone.

It does not seem easy to apply the general ergodic theorems of Halmos [10], [111,
Dowker [8], and Hurewicz [17] to the present problem. (See Hopf, pp. 46-53 in [16]
also.) However, it would be interesting to explore possible connections. As mentioned
in the introduction, the idea of extending a finite measure on a subset to an infinite
measure on the whole space is related to a procedure used by Halmos [11].
Some recent results of Edward Nelson, in a thesis at the University of Chicago, may

have connections with the present problem. The author has as yet been unable to see
this work.

APPENDIX

Consider R(x, E) defined by (4.20), and let g(x, y) be its density with respect to m.
Then there is a positive number, say b, such that for all x E A,

(A.1) mIy: g(x,y)> b I>rm(A) > m.27
where r is the number of lemma 2, taken here to be > 1/d2. Now define

M. (E) = sup[R"(x,E) -R"(y,E)1,
(A.2) =.v

Wn = I (u,v) :R'(u,E) -Rn(v,E) >0

where all points in the definitions are in A, or in (A, A). Furthermore let A2 denote the
product space (A, A), and let m2 denote the product measure in this space constructed
from m. Let G(x, y) be the subset of A2 defined by
(A.3) G(x, y) = I (u,v): g (x, u) g (y,v) > b21.

Then m2(G) > r2m2(A2) = r2[m(A)12. Now for each pair (u, v) where the expression de-
fining W. is positive, there is a corresponding pair (v, u) where the expression is nega-
tive, and since the measure is product measure, these two mutually exclusive sets have
equal m2-measures. Hence m2(A2- Wn) 2 m2(A2)/2. Hence

(A.4) m2 [G (A2-W,W) ]> (r2-D)m2 (A2).
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With these preliminaries we can write

(A.S) R-+1 (x,E) -R-+1 (y,E) = f~R(x dU)Rn(U E) -JR(Y d t,)R- t, E)
=ff R(x, du)R(y, dv)[Rn(u,E) -Rn(v,E)]

5ffR (x, du)R(y, d v)[Rn(u,E) -Rn(v,E)]
WI,

.M. (E) ff"R(x, du)R (y, d v).

Hence
(A.6) M.+, (E) S Mn (E) supffR (x, du)R (y, d v).

z, V Wn

Now, using (A.1) and (A.4),

(A.7) R (x, du)R (y, d v) ff g (x, u) g (y,v)m (du) m (d v)fA,-wn ff.-W
2bs(r2-i)m2(A2) = c>O.

Note also that the double integral on the right side of (A.6) would be 1 if it were taken
over the whole space A2. Hence, from (A.7) we have

(A.8) supf JR (x, du)R(y, dv) :.1- c, 0<1-c<1
X, V, Wn

It follows that
(A.9) Mn (E) :!, (I1-c) n-, n = 1, 2,**.
The same type of argument shows that the absolute value of the infimum on x and y of
the quantity Rn(x, E) - Rn(y, E) satisfies the inequality in (A.9). The desired result
follows readily from this.
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