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1. Introduction

The present paper is an enlarged version of the previous paper [1], to which we shall
refer occasionally, but the notation has been changed in places.
The problem is as follows. Let x(t) on - < t < - be a random-valued function,

and let

(1.1.1) y=Ax

be a linear operation which is commutative with translations on the I-axis ("linear
smoothing"). If x(t) is stationary in the sense of Khintchine then y(t) is likewise so. But
the converse does not hold. The function y(t) 0 is certainly stationary, but there may
exist solutions t(t) of the homogeneous equation 0 = At which are not stationary them-
selves. Also, if the inhomogeneous equation does happen to have a stationary solution
x°(t), then by forming a sum x(t) = x°(t) + t(t) a new solution of it will result which
will not again be stationary, frequently.
Now, in the present paper we shall establish a result, in several nonequivalent ver-

sions, to the following effect. If y(t) is stationary, and if there exists a solution x(t) which
is bounded in ¢ in a suitable sense, then some other solution xe(), which need not be x(t)
itself, will again be stationary. More information must not be expected, because for any
bounded t(t) the sum xe(t) + t(t) will be bounded too.
We emphasize that the "boundedness" of x(t) required will in no case be the naive

boundedness in norm (that is "in second moment"), but always a more refined notion,
as it were. We shall introduce three types of it, but more composite ones could be de-
vised and utilized.

The principal notion is what we call "V-boundedness." It has come up in analysis be-
fore, as we shall describe. The next one in importance is termed "CT-boundedness," and
it is suited to the needs of the simplest version of almost periodicity for Banach-valued
functions. We also note that stationary functions which are almost periodic were first
studied by Slutsky [2]. The last one, finally, is what we have termed "L2, 2-boundedness,"
and introduced not only in [1] but prior to it (see p. 154 in [3]). We think it is a promising
concept (it subsumes the so-called "Wiener process" more readily than any other sto-
chastic process sufficiently general), but not necessarily so for the present context, and
we shall deal with it but briefly here.
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of the Air Force Research and Development Command.
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8 THIRD BERKELEY SYMPOSIUM: BOCENER

We shall also pay some attention to a multiple time variable t = (t,**, tk), and in
this connection we note that the space variable of statistical turbulence would be the
three-dimensional time variable of the present paper, and the time variable of the equa-
tion of turbulence from which the inertia force has been omitted would be the parameter
e of section 2.6 of the present paper and of the corresponding section of our earlier
paper [4].

Most of our statements could be upheld for many group spaces other than the Euclid-
ean (tl, -, tk), but we will not formulate them for such, not even for discrete time
points of the familiar kind, for which it could be done easily.

The problem we are dealing with is not new. Wold [5] already has it in some form, and
it may be older than that. But our results are apparently novel, and we do not think
that the papers [61 and [7], for instance, have anticipated our paper [1] and the present
one to an appreciable extent.

2. Stationarity
2.1. We shall consider in-X < t < - functions x(t) with values in a Banach

space B. Such a function will be called "Banach-valued," or "vector-valued" or "ran-
dom-valued" indiscriminately. If B is the space of complex numbers we shall call the
function "numerical," or "number-valued," or "complex." Unless othernvise stated, the
space B will be a Hilbert space, and denoted by H. In keeping with the stochastic view,
the inner product of elements x, y inH will be denoted as the "expectation"

(2.1.1) E{xy}.

But we shall have no occasion to view a random-valued function as a random function,
that is, as a randomized family of numerical functions.

For any B the function x(t) will be always assumed to be measurable. The norm in B
will be denoted by || 11, and bounds and limits are always meant to be in norm. Thus
x(t) is bounded if

(2.1.2) jix(t) 115 M -o <t<co

It is continuous, if lim lIx(t + h) - x(t) = 0, and differentiable if
h_*O

(2.1.3) 1,i 11 x (t+ h) -x (t) _dX (t) 01

2.2. We denote by Ax a difference-differential operator

(2.2.1) dc x(t-T)
p uOaO

with constant complex coefficients c,p and arbitrary (real) spans Ta, for some r> 0; or
the more general operator

(2.2.2) I x(R) (t-r) dCp ( T)
in which Co(T),**, Cr(.T) are complex functions of bounded variation: f IdCp(7) I < X,

p = 0, , r. We note that it would be possible to characterize (2.2.2) as a linear
operator commutative with translations t - t - T, subject to suitable closure properties,
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but doing so would not be enlightening to our problems.
We denote by T(a) the functions

(2.2.3) z z c,(2wia)Pce2eia
pO au0

or more generally
r rc

(2.2.4) 1 (21ria).efODe2TiavdC(),

and call it the generator of Ax. Obviously
(2.2.5) At e2riat = T(a) . e2viat

We consider T(a) always for real values of a only, even if it is analytic in the complex
a-plane as is (2.2.3). However some vestiges of analyticity will be assumed present.
The function T(a) as defined by (2.2.4) is bounded and continuous, but we are adding

the assumption that T(a) E C(2), that is, has two continuous derivatives in -c <
a < C. (Somewhat less differentiability would suffice.)
To this we shall frequently add the assumption that there are at most countablymany

points I a.} at which T(a) is 0: T(am) = 0. We shall then usually single out the case in
which the set {a.} has finitely many points at most.
We also note that for a pure differential operator~~~~~~~~~~r

(2.2.6) Ax= c, x(R) (t) T (a) = C ((2Tria) '
P-0 p-0

we have
(2.2.7) T(a) 0 (IaI), |a |,

and that this is also so for the general operator (2.2.1) provided

(2.2.8) inf I c. e2 Ta, >0.

2.3. We say that a function x(t) is K-stationary ("K" for "Khintchine") if it is "sta-
tionary wide sense," that is, if it is continuous and its covariance function

(2.3.1) R,, (u, v) =E I x (u) x ( v) I
has the invariance property
(2.3.2) R,(u+h, v+h) =R.(u, v), -co <h< o

A function x(t) is K-stationary if and only if there exists a continuous function of one
variable
(2.3.3) R (t) =_R.z(t) , -co <t< (D,

so that Rs(u, v) = R(u - v) for all u, v.
A very particular property of a K-stationary function is that it is bounded, since

in fact

(2.3.4) |x (t) 112 =R (t - t) =R (0) = x (0) 11|2
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As known, a K-stationary function and its covariance function are characterized one-
one by Fourier transformations

(2.3.5) x (t) J-'j e2TitadE (a)

(2.3.6) R (t) =f,00 e2ittadA (a)

(2.3.7) dA (a) > O,00 dA (a) _R (0) <co

of the following description. There is defined on all Borel sets {S} of (- c, co ) a finitely
additive function E(S) with values in H, having the orthogonality property

(2.3.8) E{E(Si) E(S2) }=O if S1n S2= 0 -

The nonnegative function on {S},

(2.3.9) A (S) _EIIE(S) 121,
which by (2.3.8) is finitely additive, is then even o-additive, and for any two complex
continuous functions ,61(a), ,2(a) with compact support we have

(2.3.10) E l ,1 (,) dE f-* A (7) dE (7) f
_00 _co _co

Also, if

(2.3.11) so (t) = fc3 e2rita4, (a) da

then (2.3.5) implies

(2.3.12) f co (- T)x (T) d r= J
c

(a) dE(a),

in the sense that if, for instance, A(a) is C(1) and has compact support, then the right-
hand integral has the value

(2.3.13) fJ- dt(a) E(a) da

precisely.
2.4. Relation (2.3.12), with the interpretation (2.3.13), can be considerably expanded

(compare [8] and p. 536 in [9]).
THEOREm 2.4.1. If x(t) is K-stationary and has r continuous derivatives, then these

derivatives are also K-stationary, and so is the function y = Ax. Also

(2.4.1) y (t) ~J e2riatT(a) dE(a)

(2.4.2) Ry (t) =fJ e2riat T (a) 12dA (a).

The meaning of the last two formulas is as follows. Since the function y is K-stationary
there is a representation
(2.4.3) y (t) f'00 e2riatdF (a)

(2.4.4) Rs (t) = Cc e2TiatdB (a),
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and the assertion is that we have

(2.4.5) dF (a) = T (a) dE (a), dB (a) = IT (a) 12 d A (a),

in the sense that, for any Borel set S,

(2.4.6) F(S) =JT(a)dE(a), B(S) =j IT(a) I2dA(a)
fs s

A particular case of theorem 2.4.1 is the following.

THEOREm 2.4.2. If x(t) is K-stationary, and J o(t) di < C, say, then the function
_cc

(2.4.7) X, (t) = ef (t- ) x ( 7) dT

is also K-stationary, and

(2.4.8) XI (t) fIm e2riat + ( a) dF (a)

where

(2.4.9) (a) f ee-2rit ('S (t) dt.

Next a lemma (compare pp. 536-540 in [9]).
THEOREm 2.4.3. If for a K-stationary function (2.3.5) we have

(2.4.10) J a2rdA(a) <co,

then x(t) has r continuous derivatives (all K-stationary).
We shall denote by W the Euclidean space: - - < a < -, and later its k-dimen-

sional generalization: - co < a' < n, j = 1,* * *, k; and by Q the point set on which
T(a) = 0, in one or k variables, no matter how small or large the point set.
THEOREm 2.4.4. If x(t) and y(t) are as in theorem 2.4.1, then "dF(a)" vanishes on Q,

meaning that

(2.4.11) F(SnQ)=0,

for any Borel set S. Also

(2.4.12) JWQ IT(a) 2
and also

(2.4.13) I a2p dB <c p r,fW-Q IT(a) 12
for r > 1.

Remark. If (2.2.7) holds, then (2.4.13) is a formal consequence of (2.4.12) and
B(W) < -.
THEOREm 2.4.5. Iffor a K-stationary function y(t) the spectrum has the property (2.4.11)

and (2.4.12), and also (2.4.13), then there exists a K-stationary solution of the equation

(2.4.14) Ax = y .

One such solution is the function
(2.4.15) xO (t) ' ix e2ri.t dF(a)

(1 Q T (a)

(2.4.16) R.xo(t) e2=1 d a

f-- Q IT(a) 121
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that is to say, the function
(2.4.17) xI (t) -t e2vialdE0 (a)

for which
(2.4.18) EO (S n Q) = 0, EO (S) = f dET(a)

Q T(a)
2.5. Assumption (2.4.13) in theorem 2.4.4 was necessary in order to insure that the

function (2.4.17) have r continuous derivatives with which to form the expression Ax
literally. Now, in this and related theorems condition (2.4.13) and the mention of deriva-
tives of x(t) can be omitted by introducing so-called weak solutions of the equation
(2.4.14) instead of "strong" ones as tacitly envisaged till now (see [10], and also p. 158
in [11]). Weak solutions are very well suited to linear operators Ax(t) which are commu-
tative with translations on the t-axis as ours are. Every strong solution is a weak solution,
and "many" weak solutions are strong solutions automatically. But whether they are
so or not, the weak solutions are conceptually very pertinent to our context and we will
work with them exclusively.

The definition is as follows. If a numerical So(t) in C(r) has compact support, then

(2.5.1) f p (t) -Ax (t) dt= f A',p (t) *x(t)dt,
_co _co

where

(2.5.2) A' s(t) = (- 1)Pf o(P) (t-r) dCp(T),
P-0

so that equation (2.4.14) is equivalent to the system of equations

(2.5.3) fJ A',p (t) - x (t) dt=f p (t) *y (t) dt,

the latter formed with all such functions (p(t). However this system of equations (2.5.3)
can be set up without regard to differentiability of x(t), and a weak solution of (2.4.14) is
by definition a solution of the system (2.5.3), subject to such assumptions on x(t) and
y(t) as may be called for.

Now, the following statement can be readily established.
THEoREm 2.5.1. (i) If x(t) and y(t) are two K-stationaryfunctions which satisfy (2.4.14)

weakly then (2.4.11) and (2.4.12) hold.
(ii) If y(t) is K-stationary and if (2.4.11) and (2.4.12) hold, then there exists a K-station-

ary solution x°(t) weakly, and (2.4.15) is such.
(iii) If T(a) has property (2.2.7) then the latter solution is also a strong solution, and

if in addition to that T(a) has only finitely many zeros I am} then (by theorem 3.3.2 to fol-
low) every weak solution of (2.4.14) is a strong solution.

2.6. Weak solutions can be set up in terms of objects x(t), y(t) which are more gen-
eral than point functions, for instance, "distributions" in the terminology of L. Schwartz,
which, however, we prefer to call "symbolic functions" following P. L6vy. The adapta-
tion, especially to random-valuedness, can be done in different ways. An adaptation
closely following Schwartz was recently done by K. It6 [12], and he defined K-station-
arity in such a manner that an object x(t) is K-stationary if and only if one can associate
with it spectra dE(a), and dA (a) of the following kind. As in section 2.3 there is a finitely
additive set function E(S), with values in H, which is defined over Borel sets S, and has
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the orthogonality property (2.3.8) there. However it is defined for bounded Borel sets
only. The resulting nonnegative set function A (S) is definable for all Borel sets {S) and
is a-additive on them, but its value may be + - if the Borel set S is unbounded. How-
ever, there is some (nonfixed) integer g such that

(2.6.1) < Co.

A little earlier than Ito, we ourselves (see [4], also [3], p. 166) introduced a class of
K-stationary symbolic functions in a somewhat different manner, and our class does in
fact include all 1t6's functions and others as well. We introduce x(t) as the (would-be but
nonexistent perhaps) limit as e 4 0 of "ordinary" K-stationary functions x'(t), 0 < e <
Co, whose expansion is of the form

(2.6.2) xe (t),-j e2tiLteE1rL'dE (COO)
(2.6.3) Re (t) = I e21iat e-2cIr'dA (a)

The "common" function E(S) is defined as just described, and (2.6.1) is replaced by

(2.6.4) |je 2--'dA(a) <Co, O<e< Co

so that our class does indeed include the class which Ito introduced afterwards.
In either case it is possible to define weak solutions of (2.4.14) and the result is as

follows.
THEOREm 2.6.1. Parts (i) and (ii) of theorem 2.5.1 also hold for symbolic functions of

either kind.
2.7. Our operators and the statements about them can be extended from the line

- co < I < - to group spaces, more or less, but we will deal with multidimensional Eu-
clidean space only.

Let t, r, h, etc. be the vector points (t1, tk), (Ti,r, k* ), (h',*, hP), etc., for any
k . 1; but x(t), y(t), (p(t), etc. shall continue to be functions of one component. The
operator Ax is an expression

(2.7.1)f aP1++PkX(t- T)

Pl-O P -0

where "dC.,... ,(r)" indicates integration with respect to a a-additive complex set
function over the Borel sets of W. We replace 27rita by
(2.7.2) 2iri (t, a) _ 2ri (t'a'+*+ a')

and the generator T(a) is of course
r? rt

(2.7.3) , (2ria2)ni ... (27riak)Pkfe2Ti(a T)dCp(...r(T) .

P1-0 p-O

The "one-dimensional" assumption that T(a) is always C(2) has to be generalized to
mean that it is always C(k+1).

Next, K-stationarity of functions X(t) in several variables is readily defined and very
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well known (as for instance in the theory of turbulence). For any k _ 1 there is a repre-
sentation

(2.7.4) x (t),. e2iC(a, t)dE(a), R(t) e2lri(a, I)dA (a)
w

in which "dE(a)" signifies integration with respect to an additive set function E(S) with
values inH over the Borel sets of the Euclidean W: (a', - -, ak), and the property (2.3.8)
and the definition (2.3.9) of A (S) remain literally as before.
Weak solutions carry over easily, and parts (i), (ii) of theorem 2.5.1 remain. "Sym-

bolic functions" also carry over, although in places their Fourier analytic treatment re-
quires more sophistication, and theorem 2.6.1 remains.

But there are occasions on which multidimensionality calls for special comment, and
in order to avoid misunderstandings we shall be thinking of the one-dimensional situa-
tion as a rule, and deal with multidimensionality expressly.

3. Boundedness

3.1. We shall denote by 4)n, n = 0, 1, 2,- , , the class of complex functions (p(t)
presentable as an integral
(3.1.1) (p(t) =fJo e2tiatPc(a)d a

in which *p(a) belongs to C(n) and is 0 outside a finite interval.
For each n, p(t) E C(X), and, for n FD X

(3.1.2) d = I

for p = 0, 1, 2,- - -.

If sp(t) E V, then f l so(t) dt < c, and hence the following statement.

THEOREm 3.1.1. For any Banach space B, if x(t) is bounded and so E 1 2 we can form
the smoothing (2.4.7), and if two such bounded functions x(t), y(t) satisfy the equation
Ax = y weakly, then their simultaneous smoothings satisfy it strongly,

( 3.1. 3) Ax,O (t) = y,, (t) .

3.2. If a complex function x(t) is defined a.e. and f l x(t) 2 dt < co, then by Plan-
cherel theory the integrals

(3.2.1) Eo(a)-fCO e-2itafx (t) dt, x (t) f,C0 e2via'Eo (a)da

exist a.e. in a certain sense, and

(3.2.2) f Ix(t) 12dt=f |Eo(a) 12da.
This statement can be easily generalized to functions x(t) with values in H. If inH we
introduce a fixed unitary coordinate system and apply the theorem just stated to each

component separately then we conclude as follows. If f ll|x(t)112dt < , then there

exists a function Eo(a), with values in H, which is linked to x(t) by (3.2.1) and also

(3.2.3) fO 11 X (t) ||2 dt = fJ IlEo (a) I|2 d a.
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Next the formula e-2"ia- 1 r-___ das e2it
(3.2.4) E(a) lx (t) . dt+(E+ ) x(t) . dtf-1 - 27rit -CO 11 -2wit

defines an indefinite integral
(3.2.5) E(a) =J Eo(G) di,

but, by the very theorem of Plancherel, not only the first but also the decisive second
term in the formula (3.2.4) defines a function a.e. if only

(3.2.6) f- 11a,(t) 11dt,<o-

Now if x(t) is bounded, 1Ix(t)|I _ M, this function E(a) need no longer be an indefinite
integral, but if we introduce the association

(3.2.7) x(t) i f.ofe2lriatdE (a)

then a Fourier representation ensues whose properties are known (see [131) and which
we shall name as the occasion arises.

First of all, (3.2.4) implies

(3.2.8) E(3) -E(a) = Ox (t) -2 it dt,
for almost all a and almost all ,B, but it is known in the theory of K-stationary processes
that for a K-stationary x(t), this in substance defines the spectral function E(a) intro-
duced by (2.3.5), except that the latter function is defined precisely everywhere and not
only almost everywhere, and that the additive constant in it might not be the same as
in (3.2.4). Thus our representation (3.2.7) may be used as a generalization of (2.3.5)
from K-stationary functions x(t) to all bounded ones.

Next, ifso E ,2, then for the smoothed function (2.4.7) we have in a well defined sense
co

(3.2.9) Xf (t) , e2riatP (a) dE(a)
_co

and the value of the integral is

cda(3.2.10) _ Jrd[ ellrial , (a) I E (a) d a,

literally. For any A [whose generator T(a) is in C(2)] we also have

( 3.2.1 1) Ax., (t) fOJ e2vial 7, ( a) T ( a) dE ( a),
and if we introduce
(3.2.12) y (t) / T.J e22riatdF(a)
then (3.1.3) leads to the equations
(3.2.13) iA(a)T(a) dE((a) = 4(a) dF(a)

(3.2.14) T(a) dE(a) = dF(a)

from which certain specific conclusions can be drawn.
3.3. The first statement which concerns only a single function is as follows.
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THEOREm 3.3.1. (i) If the transform E(a) of a bounded function x(t) is piecewise con-
stant with saltuses a1,**, a. at finitely many points al, * *, a,,, then

(3.3.1) x (t) = ame2
m-1

(ii) If there are countably many points of discontinuity al, a2,*, with a. I a and
x(t) is uniformly continuous, then x(t) is a uniform limit offinite sums

(3.3.2) b.e

Also x(t) is then an almost periodic function in a well-defined sense (compare definition
5.1.2) and the series

(3..) x (t) -1 am e2ria.t
r-1

with the given saltuses Iam} is its Fourier series.
This will lead to the following theorem.
THEOREm 3.3.2. If a bounded function x(t) is a weak solution of

(3.3.4) Ax= 0,

and if T(a) has at most finitely many zeros {a"1, then x(t) is a finite sum (3.1.1).
If T(a) has countably many zeros and x(t) is known to be also uniformly continuous,

then x(t) is almost periodic with an expansion (3.3.3).
PROOF. Since y = 0 we have dF = 0, and (3.2.14) is therefore

(3.3.5) T(a) dE(a) =0 .

In any interval 9 < a < y in which T(a) # 0 it is permissible to divide through by
T(a), so that dE = 0, the interpretation being that E is constant in such an interval.
Now apply theorem 3.3.1.
THEOREm 3.3.3. If bounded functions x(t), y(t) are weakly connected by

(3.3.6) Ax=y ,

and if in a neighborhood of an isolated zero ao of T(a) the transform F(a) of y(t) is constant
except for a saltus bo at ao then this saltus is zero.

PROOF. Let e > 0 be such that T(a) is 00 in the two intervals

(3.3.7) aO-2e< a < aO X aO< a < aO+ 2e

and that F(a) is constant in each. We replace the equation (3.3.6) by the "smoothed"
equation (3.1.3) where p(t) has a transform 4{(a) which is +1 at ao and 0 outside the
interval ao - e < a < aO + f. If now we denote the transforms of x, and y, by E°(a)
and F°(a) respectively, so that
(3.3.8) dE°(a) =4 (a) dE(a), dF (a) =41(a) dF (a), T(a) dE°= dF°(a),

then our assumptions together with the choice of {1(a) have the following implications.
F°(a) is constant both in (- -, aO) and (ao, - ) with the same saltus bo as F(a) itself; and
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in these half-lines we can also divide through (3.3.8) by T(a) so that dE°(a) = 0 there.
Thus El is also constant, except for a saltus ao at ao. Therefore by theorem 3.3.1 we have

(3.3.9) x,= aoe2li%t , y,= bo e2 t,%

and (3.1.3) gives bo = T(ao)ao. Therefore bo = 0 as claimed.
The preceding theorems lead to the following conclusion which is the one we shall

require.
THEOREm 3.3.4. Let T(a) havefinitely many zeros { a.n} at most. Ifwe are given an equation

(3.3.10) Ax'= y',
in which y1(t) is a finite sum (3.3.2) and xl is bounded, then y1 = 0 and xl is a finite sum
(3.3.1).

For a T(a) with countably many zeros, if y1(t) is an almost periodic function with ex-
ponents {a.}, and xl is bounded and uniformly continuous, then y1 = 0 and xl is almost
periodic with an expansion (3.3.3).

3.4. The next theorem has a different trend, and the link with theorem 3.3.4 will be
established in section 4.
THEOREm 3.4.1. For any T(a), let y(t) be K-stationary and let x(t) be a bounded func-

tion which is a weak solution of (3.3.6).
If (p E c2 is such that its transform At'(a) is zero outside a compact subset of the open set

W - Q on which T(a) 0 0, then x,(t) is uniquely determined by {A, y, p I and is also
K-stationary:

(3.4.1) X, (t) -C e2Xi ' T(a) dF(a)
14, (a) 12 2T (a

(3.4.2) f dB (a) = Ix (0) j2 =| 9o (-t) x (t)dt

PROOF. The function

( 3-4-3) ,( a) = {+ ( a) T ( a) -1, a E W-Q,
0 , a EQQ,

is such that

(3.4.4) so (t) =f e2ai4 (a) d a

belongs to V2, and that (3.2.13) implies
(3.4.5) +(a) dE(a) = (a) dF(a)

in the sense that

(3.4.6) x, (t) = yf (t).

But this readily implies all parts of theorem 3.4.1.
3.5. In contrast to theorem 3.4.1 the preceding theorems 3.3.1 to 3.3.4 do not involve

K-stationarity, and can, as a matter of fact, be upheld for an arbitrary Banach space.
However, if B is not H, Plancherel's theorem is not available, and the second integral
of (3.2.4) cannot be readily defined for a bounded x(t). However we can operate with a
"higher" Fourier transform

e2riat d2E2(a)(3.5.1) x)da
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in which E2(a) is an indefinite integral of E(a) whenever the latter exists, and otherwise
is defined by

(3.5.2) fx(1) e-21iat-1 +2lrict dt+(f +f ) x (t) e- -2- dt.f-1 ( - 2xrt) 2 -C 1 (- 27rit)2
Piecewise constancy of E(a) is to be replaced by piecewise linearity of E2(a), and the
saltus at a point is a difference of slopes.

Actually the integrals defining E2(a) are easier to handle and E2(a) is continuous.
In our book [14] it is this type of generalized Fourier transform that was elaborated
whereas in the earlier paper [13] the more complicated theory based on Plancherel's
theorem had been developed. We note in passing that one can also introduce generalized
transforms using local Lp-norms, and an interesting statement on such has recently been
made by Blackman [15].

3.6. If we turn to several variables t = (tl, tk) the syllogistic discrepancy between
theorems 3.4.1 and 3.3.4 widens considerably.

Theorem 3.4.1 carries over easily in both wording and proof. If 4,(ai,* , ak) E C(k+l),
and if it isO outside a compact subset of the open setW - Q over which T(a', *, ak) F!
0, then the function

(3.6.1) x (t) =i,(l 1 *, XkTkr(xT'* T*) dv

is again K-stationary, and analogues to (3.4.1) and (3.4.2) arise.
However, theorem 3.3.4 is much less easily adjusted. It continues to hold, even for an

arbitrary B (compare L. Schwartz [16], text beginning with line 5 from the bottom of
p. 509), but the analysis required is rather more recondite than in the one-dimensional
case, and generalizations to locally compact commutative groups other than Euclidean
ones are even in doubt.

4. V-boundedness
4.1. DEFINITION 4.1.1. For any B, we say that x(t) is V-bounded if
(i) it is (measurable and) bounded in the ordinary sense,

(4.1.1) jjx(t) 1| Mi,
and, what is decisive, if also

(ii) there is a finite constant N > 0, such that

(4.1.2) ||f o(-t)x(t)dt|| N- sup IA(a)|

where 9p(t) is a complex function a.e. for which f
c

vp(t) dt < , and

(4.1.3) A(a) = f e-2viat.p (t) dt
is its Fourier transform.
We note that for complex-valued functions x(t), that is, if B is one-dimensional, this

concept of boundedness has been first introduced in our paper [17] where the following
theorem has been featured.

In order that a function x(t) have a representation

(4.1.4) x (t) =f e2riatdV (a)
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with

(4.1.5) jI dV(a) <

it is (necessary and) sufficient that for any points I,, t., nn_ 1, and any numbers
cl,*, c. we have

n I~~~~~~~ -2i,

(4.1.6) CX(Tm) | N * sup I E Cm e

Soon afterwards, I. J. Schoenberg [18] replaced the "discrete" condition (4.1.6) by
the present condition (4.1.2) and showed that the theorem holds likewise. Also, Schoen-
berg required locally only Lebesgue integrability of x(t), whereas in [17] continuity of
x(t) was demanded. This point attracted the attention of R. S. Phillips [19] and he
proved that even in the discrete version (4.1.6) the measurability of x(t) is sufficient. He
also considered Banach-valued functions x(t) and he could then validate the assertion
under a certain requirement of conditional compactness explicitly added.

Recently, V-boundedness was introduced into abstract harmonic analysis in general,
first by H. Helson [20], and then more systematically and directly by S. Helgason [21],
and interesting properties were revealed. Our own paper [1] has reintroduced it then
from its own context, and with a result which had apparently not been obtained in the
papers [6] and [7] that had come closest to it.

4.2. We note that the "discrete" condition (4.1.6) immediately implies the condition
(4.1.1) of ordinary boundedness, but for our present purpose it is necessary, or at any
rate suitable, to demand (4.1.1) explicitly for the following reason.

Suppose we do not require (4.1.2) for all functions So(t) which are integrable over
(- X, co) but only those among them which are 0 outside a finite interval each. For such
a function So(t) the expression
(4.2.1) f o(-t) x(t)dt

_co

can be set up for any function x(t), with values in any B, which is Lebesgue integrable
over any finite interval (a < t < b) but is not restricted at all as t . Now, for any
a and any h the function: So(t) = 1/2k in a < t _ a + 2h, and =0 at other points is
such that i(). 1, so that (4.1.2) implies

(4.2.2) 11 hfJ x (t+ ) dT|1< N
for all h > 0 and all t, and this implies IIx(t)JI < N, in almost all t. Actually, it would
suffice to stipulate (4.1.2) for functions So(t) with compact support which are C(O) and
this would have the added advantage that, to start with, condition (4.1.2) could be set
up for "symbolic" functions in general. The result would still be that it is bounded a.e.,
and thus a "concrete" function automatically.

However, in our applications, the functions tp(t) available are those belonging to 42
[whose transform *(a) has compact support] and such a function P(t), being analytic,
can never be 0 outside a finite interval. Of course, if the boundedness condition (4.1.1)
is already known, then the condition (4.1.2) can be extended from such Sp(t) to all in-
tegrable so(t)-this extension will not even be needed-but the boundedness (4.1.1) it-
self cannot be easily inferred from it at first.

As a comment on what actually can be inferred we will state a certain criterion, which
however will not be needed as such.



20 THIRD BERKELEY SYMPOSIUM: BOCHNER

THEoREm 4.2.1. If x(t) is Lebesgue integrable on every finite interval and

(4.2.3) 1x(t) dt < c for some s> O,

and if (4.1.2) holds for all sp in 4V (or only in 4P) then (4.1.1) holds a.e. (with M = N,
for instance).

PROOF. We take an element ep(t) in 4,2 for which J ,p(t)dt = 1. The function Son(t) =
n<o(nt) likewise belongs to 42, and if we put

(4.2.4) x. (t) = nJ p. (t- T) X(Tr) d Sr,
then (4.1.2) implies

(4.2.5) |x (t) ||- N, n= 1, 2,*-.
Now, we have

(4.2.6) X. (t) -x (t) = nJ-C0SanT X (t+ r) -x (t]dT,

and our assertion will follow if we ascertain that
(4.2.7) lim [X. (t) -X (t)] = 0

in almost all t. It follows from (3.1.2) that given t and for any a > 0 we have

(4.2.8) f n (T) [X (t+ T) -x(t) d T = ( f x (t+ T)+I11 x d T

and for s> 1 this tends toO asn co. The same holds for f and it now suffices to
estimate the integral

(4.2.9) fon(rT) [ x(t+ T) - x(t)] dT
0

and the analogous integral f
Now, if for fixed t we introduce the function

(4.2.10) X() [x (t+u) -x (t)] du

then (4.2.9) is

(4.2.11) np(n5)X(56) -n2f o(nr)X(r)dr
and this tends to 0 as 5 -O0, uniformly for n > 1, provided X(r)/T -O0 as T -0. But
the latter takes place for almost all values of t, and this completes the proof of the the-
orem.

4.3. If a complex function Z(t) is V-bounded, then so is the function ct(t) for any ele-
ment c in B. Also, the sum of V-bounded functions is again V-bounded. Hence the first
part of the following theorem.
THEoREm 4.3.1. For any B, a finite sum

n

( 4.V3.1e) e2iama.

is V-bounded for any real a. and any c.n in B.
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Also, if x(t) is V-bounded then so is also any smoothing x,(t) as defined by (2.4.7).
The second half follows immediately from the fact the Fourier transform of 'P2(t) =

J 1(t- Tr)I2(7)dT is +2(a) = 44(a)4(a).
THEOREm 4.3.2. If x(t) is such that for its covariance function R(u, v) = E{x(u)x(v)

there exists an absolutely convergent Fourier representation

(4.3.2) R (U, V) = J COfJ e2ri(---Ou)dr (a, 8),

(4.3.3) f fL dr(a,B) I <
co _co

then x(t) is V-bounded.
PROOF. We have

(4.3.4) IIf 'o(-t)x(t)dtII=E |f f'o(-u).p(-v)x(u)x(v)dudvt

=f p(-u)p(-v)R(u, v) dud v,

and if we insert (4.3.2) we obtain for this

(4.3.5) J Jf +(a) ()dr(a, B) N2 -supI1k(a) 12,-co -c a

as claimed. The functions of theorem 4.3.2 were introduced by M. Loeve, under the name
"harmonizable."
THEOREm 4.3.3. Every K-stationary function is V-bounded.
PROOF. Every K-stationary function is harmonizable, and the set function r(S', SP)

occurring in (4.3.2) is concentrated on the diagonal line a = j3 for it.
4.4. IHEOREm 4.4.1. (i) If we are given a K-stationary function y(t) with an expansion

(2.4.3), and if there exists a weak solution x(t) of

(4.4.1) Ax=y

which is V-bounded, then we have

(4.4.2) dB (a) < X,W,-Q IT(a) 12
whatever the point setQ on which T(a) is zero. Therefore there exists a K-stationaryfunction
with the expansion

J4r- Q T (a)
and we have

(4.4.4) Ax0= Y°
weakly, where

(4.4.5) Y°J e2ridF (a).

In other words, if in the equation (4.4.1) for a K-stationary right side y(t) there exists
a solution x(t) which is V-bounded, then after omitting from the spectrum of y(t) those
frequencies which are in resonance with the zeros of T(a) there exists a solution x° which
is likewise K-stationary.
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PROOF. The theorem is essentially a remark to theorem 3.4.1. In relation (3.4.2) we
restrict the function {(a) there occurring to be 146(a) _ 1, and we take the maximum
for all A(a) thus admissible. It is easily seen that we have

(4.4.6) sup< (a) 12 dB (a) = dB (a)

On the other hand, by the very definition 4.1.1 we have for 1,6(a) < 1,

(4.4.7) | X 0
(-t) x (t) dt _ N2

and thus (4.4.6) is <N2, which verifies (4.4.2). The second part of the theorem is then
obvious.

In theorem 4.4.1, the point setQ on which T(a) vanishes was unrestricted, but ifQ con-
sists of isolated points only then y° must of necessity be y itself. In fact, if we put y1 =
y - y°, xI = x- , then theorem 3.3.4 can be applied, and the following conclusion
ensues.
THEOREM 4.4.2. If T(a) has countably many zeros at most, and if for a K-stationary

function y(t) there exists a weak V-bounded solution x(t) of Ax(t) = y(t), then for the same
y(t) there exists another solution xe(t) which is K-stationary itself.

If x(t) is uniformly continuous also, then the difference xl(t) = x(t) - x°(t) is almost
periodic with an expansion (3.3.3), and if T(a) has finitely many zeros only, then the as-
sumption of uniform continuity need not be made.
We remark that x(t) may indeed fail to be K-stationary itself. In fact, if to a K-sta-

tionary x°(t) we add a finite trigonometric sum as introduced in theorem 4.3.1, then V-
boundedness is preserved, but the K-stationarity may be disturbed indeed.

Furthermore, it follows from what we have stated in section 3.5 that theorems 4.4.1
and 4.4.2 both carry over to several variables. But theorem 4.4.1 does it easily and uni-
versally, whereas theorem 4.4.2 does it more reluctantly, and because of the Euclidean
character only.

5. CT-boundedness

5.1. DEFINITION 5.1.1. For any B, a function x(t) is CT-bounded ("CT" for "continu-
ous and totally") if it is continuous and if every infinite sequence of real numbers I }
contains an infinite subsequence hn I such that the sequence of functions

(5.1.1) x.(t) x (t+ h.)

is convergent towards a function x*(t) uniformly in every finite interval - to < t _ to.
We note that a complex function x(t) is CT-bounded if (and only if) it is uniformly

continuous and bounded in the ordinary sense, as is well known. For any B, the ordinary
boundedness is to be replaced by the requirement that the range of values in B has a
compact closure, but this characterization will not enter our context.

DEFINITION 5.1.2. For any B, a function x(t) is almost periodic (in the sense of H.
Bohr) if it is continuous and if every infinite sequence h' contains an infinite subse-
quence {h.} for which the sequence of functions (5.1.1) is convergent uniformly in the
entire infinite interval - - < t < -.

This is not Bohr's original definition but an equivalent one due to ourselves. The fol-
lowing statement is a principal theorem which however for certain conclusions need not
be invoked.
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THEOREM 5.1.1. A function x(t) satisfies defi Pition 5.1.2 if and only if it is a limit, as
p -* w, uniformly in - < t < -, of finite exponential sums

(5.1.2) 1 ap e2iant
n

for some real { an} -

Definitions 5.1.1 and 5.1.2 readily generalize to several variables, and theorem 5.1.1
holds then also, if, as usual, ant is replaced by (a., t).

5.2. We recall the definition of Ax and T(a), and we also recall that T(a) is always
C(2), and, for k variables a = (a',* - *, ak), more generally C(+1).
THEOREM 5.2.1. For any B, in one or several variables t = (tl,***, tk), if Ax is such that

T(a) has countably many zeros {an} at most; if y(t) is almost periodic, and x(t) is CT-
bounded; and if we have
(5.2.1) Ax=y

weakly; then x(t) is likewise almost periodic.
For complex numbers and one variable we proved this theorem in [22] for an operator

A which was there specified to be a difference-differential expression of the form (2.2.1).
On the other hand, for any B and several variables we have proved in [23] a theorem
which after minor adjustments of wording subsumes the present theorem for a Ax hav-
ing the property that any weak CT-bounded solution of the homogeneous equation
Ax = 0 is of necessity a constant, x(t) = x(to). For one variable this applies then in
particular, by a theorem of P. Bohl, a forerunner of H. Bohr, and H. Bohr himself, to
the operator dx
(5.2.2) Ax-

and more generally to Ax = dPx/dtP, p = 1, 2,*, say. And for several variables it can
be shown that this is so for the Laplacian

(5.2.3) Ax~a (tl) 2 + +a (tk) 2

All these are very interesting and satisfactory particular cases of theorem 5.2.1, and
we shall not give here a proof of the entire theorem in the general version stated. But we
note that the subsequent theorem which is based on the previous one is not rendered un-
certain by this, because we may assume added to theorem 5.2.2 the restriction that the
operator Ax occurring in it shall be one to which theorem 5.2.1 is known to apply.
THEOREM 5.2.2. In one or several variables, if T(a) has a finite number of zeros { an} at

most; if y(t) is almost periodic and K-stationary, and x(t) is CT-bounded, and if we have
(5.2.1) weakly, then there is another solution x°(t) which is both almost periodic and
K-stationary.

Also, if we introduce the Fourier expansion

(5.2.4) y (t) be2vi(B. t) b. F6 ,

then each P3m must be di.fferent from each a., and

(5.2.5) x°(t) b. eTiri8' t)

for instance.
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PRooF. For general B, and countably many la.}, x(t) is almost periodic by theorem
5.2.1 and if we introduce the expansion

(5.2.6) x (t)-Ic.cme2Ti(7m t)

then we have

(5.2.7) y (t) T(,y) c. e2it '

But since T(ym) = 0 if ym is an a", it follows that each ym must be different from each a".
Next, if there is only a finite number of zeros { a.), it follows that we can put

(5.2.8) x (t) = xO (t) + ddne21ti(a, t)

where x0(t) is an almost periodic solution of Axe = y whose expansion is (5.2.5).
A function y(t) is K-stationary and almost periodic if it is a K-stationary function

whose spectrum is purely discontinuous; and if (5.2.4) is its expansion then

(5.2.9) E{bmbn} =Oif m$n, and 1IIbmI12< .

Conversely any expansion (5.2.4) whose coefficients are of this kind is the Fourier series
of a function which is K-stationary and almost periodic.

Therefore, in order to prove our theorem we only have to verify that we have

(5.2.10) xO) 112 T() 12

For a finite expansion (5.2.4) this is trivial. However, we must extend this to an infinite
expansion (5.2.4), but without the benefit of V-boundedness by means of which this was
achieved in section 4.4.
By the theory of approximation for almost periodic functions, for any sequence of

exponents { %.} there exists a matrix of real numbers { Xrm,}, r = 1, 2, 3, * * *; m = 1, 2, 3,
* * *, having the following properties: for each r only finitely many Xrm are #0; Xrm |.S 1;
lim ),rm = 1; and the functions
rn+ oD

(5.2.11) x°, (t) = rm T (bm. e2TiBm,

(5.2.12) Yr(t) = b. e2bim e)

are uniformly convergent to x0(t) and y(t) respectively. In particular therefore

(5.2.13) lim x°,(0) =x°(0).
r-+co

Now, by what we have already stated we have

(5.2.14) Xrm.2 ITi(P.l) I2 =Ixr() 112,

and by letting r we obtain (5.2.10), as claimed.
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6. L2,2-boundedness
6.1. If X(A),Aa-A,.: j p < t <a},-O < p < af < , is a finitely additive inter-

val function with values in any vector space then for a numerical function yo(t) the Stielt-
jes integral
(6.1.1) Jf o (t) dX (t)

can always be set up, as a finite sum
n

(6.1.2) 1 'P. X (A-) ,

mn1

for any function <4(t) which has constant values { p.m} on finitely many nonoverlapping
intervals Am}-, and is 0 on the complementary set. Now, if the vector space is H, then
as in [3] (see p. 153), and in [1], we now define as follows.

DEFINITION 6.1.1. We say that X(A) is L2, 2-finite if there is a finite constant M,
such that for the functions so(t) just mentioned we have

(6.1.3) (t) dX (t) < M2. f I p (t) 12dt

If this is so, then the very inequality permits us to extend the definition of the integral
(6.1.1) to all functions <p(t) in L2(-, o ) and the inequality (6.1.3) remains in force
then.

If there is a numerical finitely additive interval function A (A) such that X(A) =
xo.A(A), for some xo E H, then (6.1.3) holds if and only if A(A) is absolutely con-

tinuous, so that A (A) = f a(t)dt, and the function a(t) belongs to L2(- c, co) it-
self. But in general the function X(A) need be neither an indefinite integral nor, in any
manner, small at infinity, a so-called "Wiener process" being a case in point (see p. 153
in [3]).
The Plancherel theorem for numerical functions qp(t) dualizes into a theorem for

L2, 2-bounded interval functions X(A) in the following manner. With each such func-
tion X(A) on the t-axis there is associable one-one a such-like function E(A) on the
a-axis, in symbols
(6.1.4) dX(t) f.'e2riadE(a)X
such that for any numerical L2-function .p(t) and its Plancherel transform (4.1.3) we have

(6.1.5) f o(-t) dX (t) =f4J (a) dE (a),
_co _co

the integrals being as just defined.
We now take another such function

(6.1.6) dY(t) J e2vistdF(a)dt -c

and we assume that X(A) and Y(A) are connected by the equation
(6.1.7) AX= Y
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in the following sense, suited to the occasion. If T(a) is the generator of the operator A
then we have

(6.1.8) f '4 (a)T(a) dE(a) fJo A(a) dF()
the integrals being as previously defined. We wish to point out that T(a) is bounded
and that therefore 4'(a)T(a) is an L2-function if +(a) is one.

6.2. We are now introducing K-stationarity into the context, the definition being as
follows [3], [1].

DEFINITION 6.2.1. An L2, 2-bounded function X(A) is K-stationary if, for any L2-
function sp(t), the "second moment"

(6.2.1) E[f ,p(u+t)dX (u)f%p(v+-t) dX(-v)
is independent of t.

If E(A) is the transform of X(A) then this is equivalent with the following properties.
We again have
(6.2.2) E{E (Al) *E (/A2)} =0 for Al n A2 =0

and the nonnegative (additive) interval function

(6.2.3) A (A) =E{ JE (A) 121
is the indefinite integral of a density which is likewise bounded,

(6.2.4) A(A) =f b(a)da, Ib(a) l_ N.
p

We note that E(A) is continuous in the endpoints of the interval A, among other prop-
erties.

Now, property (6.2.4) produces a great simplification of the equation (6.1.7) or the
equation (6.1.8) alternately. If we write (6.1.8) in the form

(6.2.5) T(a) dE(a) =dF(a),
then this can be inverted to

(6.2.6) dE(a)=T dF(a)

in the following sweeping manner.
THEOREM 6.2.1. If in equation (6.1.7) the function Y(A) is L2, 2-bounded and K-station-

ary and X(A) is L2, 2-bounded, then X(A) is also K-stationary.
Note that the assertion of the theorem refers to X(A) itself and not to some other

L2, 2-bounded solution XO(A) of the equation. In fact, if X'(A) is any L2, 2-bounded so-
lution of the homogeneous equation X1(A) = 0 then X1(A) = 0.
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