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1. Introduction
Estimates of the regression coefficients which are unbiased and linear in the observa-

tions are discussed in this paper. The residual is assumed to be a stationary process. Two
specific estimates are discussed, the least-squares estimate and the Markov estimate. I
call the estimate which is computed under the assumption that the residual is an orthogo-
nal process the least-squares estimate. The Markov estimate is the linear unbiased esti-
mate with minimal covariance matrix. The basic assumptions made in the paper are dis-
cussed in section 2 and are held to throughout the paper. In section 3 some remarks
about the approximation of a continuous positive definite matrix-valued function by
finite trigonometric forms are made. These remarks are used in section 4 to obtain the
main results about the asymptotic behavior of the covariance matrices of the least-
squares and Markov estimates. The next section discusses the many interesting cases in
which the least-squares estimate is asymptotically as good as the Markov estimate. The
first really systematic discussion of some of these problems was given by U. Grenan-
der [1]. Further work was carried out by U. Grenander and M. Rosenblatt in [2], [3],
and [4]. The author considers some of these problems in the case of a vector-valued time
series in [5]. Some of the results of this paper are a generalization of some of those ob-
tained in [5].
A few cases in which the least-squares estimate is not asymptotically efficient in the

class of linear unbiased estimates are discussed in sections 5 and 7. Some small sample
computations for a linear regression with a residual which is a first order autoregressive
scheme are carried out in section 6 to test the asymptotic theory.

2. Assumptions and notation
I assume that the observed process yt is a vector-valued process (a k-vector)

(2.1) yt=x+m, t= * * -1, 0, 1,***,

where m, = Ey, is the mean value sequence and xt, Ex= 0, is the sequence of residuals.
The residual xt is assumed to be weakly stationary, that is, the covariances

(2.2) rt , = rt- =Extx7 =E (yt -mt) (yT-mT) 2

depend only on the difference t - r. For mathematical convenience, in sections 3 and 4,
I assume that the components of the vector observations are complex valued. The real-
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valued case is the one of statistical interest and will be examined in detail later on. The
mean value mg is assumed to be of a regression form

(2.3) +=S 1)+ o2)+* s

where the regression vector sequences

(2.4) P (') s", --,y7 j= 1 s

are assumed known and the regression coefficients #I,* , J are unknown. I shall discuss
the problem of estimating the regression coefficients by unbiased estimates linear in the
observations

(2.5) Yi), ., yYn.
Two specific linear unbiased estimates will be discussed in some detail, the "least-
squares" estimate and the Markov estimate. The least-squares estimate is obtained by
treating the residuals as if they were orthogonal, that is,

(2.6) Extx', = At tI

where At, r is the Kronecker delta and I is the identity matrix. The Markov estimate is
the optimal linear unbiased estimate in the sense of minimal covariance matrix of the
estimate.

The covariance sequence r, of a weakly stationary process has the representation

(2.7) rt = .teitxdF (;<)

where F(X) is a nondecreasing matrix-valued (k X k) function, that is, AF(X) _ 0.' I
shall assume that F(X) is absolutely continuous, that is,

x

(2.8) F (X) =f f (A) dI
so that

(2.9) r =f eiXf (X) dX.

The function F(X) is called the spectral distribution function of the process while f(X) is
called the spectral density of the process. The spectral density is a nonnegative function
of X since

(2.10) f (X) dF(X) > 0
dX=

I shall assume that f(X) is a continuous function of X [each element of f(X) is a con-
tinuous function of X] and that f(X) is nonsingular for all X.

For convenience I introduce the following notation. Let

(2.11) Y= x= .

' Given a square matrix A, A 2 0 means that the corresponding quadratic form is positive semidefi-
nite. A > 0 means that the corresponding quadratic form is positive definite.
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Let

(2.12) s s() -s()

and

(2.13)

Equation (2.1) can then be rewritten in the form

(2.14) Y = sop+ x.

The matrix R is the covariance matrix of y (or x). Here

(2.15) =

The matrix R is nonsingular since f(X) is continuous and nonsingular for all X. The ma-
trix s°'sp is also assumed to be nonsingular.

The "least-squares" estimate PL is the vector P that minimizes the quadratic form
(2.16) (y - 0o) (y -0)
and is given by
(2.17) fL = [O 'I'PY -

It is clearly an unbiased estimate and has covariance matrix

(2.18) E (OL- ) (OL-) '= [("Py] 1PRI [f f] 1

The linear unbiased estimate with minimal covariance matrix or Markov estimate is
given by

(2.19) Om [,p'R-1I -Ip'R-ly
Its covariance matrix is given by

(2.20) E (Om-O (M-)'= I<'R1']±.

These remarks on the least-squares and Markov estimates are well known.
The techniques used in the paper can be considered a sort of generalized harmonic

analysis. In order to carry out the analysis, various assumptions on the asymptotic be-
havior of the regression vectors are introduced. These assumptions are broad enough to
include most of the usual types of regression, such as polynomial and trigonometric re-
gression. They do not include the case of exponential regression.

Let

(2.21) n7 = o) j= 1, -s .

t=1
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It is assumed that

(2.22) 4)

as n ,j = 1,c , s. It is also assumed that

(2.23) lim n+h 1

for every fixed h. Consider the k-vectors

(2.24) o)

Let the limits
n (j) (I)

(2.25) lim E = mX * q)

exist, j,I= 1, *, s and p, q= 1, ,k [if t < 0set q((1) = 0]. Set

(2.26) p,Mh= {,jmh ; P, q= 1,, k}

and
(2.2 7) MA= { lMh; j,I= 1,,s}.

The matrices Mh, h = , -1, 0, 1,- * * form a positive definite sequence, that is, given
any finite collection of ks-vectors { a,)
(2.28) a'M,,a, 2 O.

It then follows that the matrices MA have the representation

(2.29) MA = fei'dM (X)

where M(X) is a nondecreasing matrix-valued (ks X ks) function of X. In accordance
with the notation introduced in (2.26) and (2.27) I write

(2.30) M(X) =I{jM(X); .j,=1, .,sI
and

2IM(X) = {,1M, (X); p, q= 1,-, k},
(2.31)

Ml' (X) = {MN (X); j, I = 1,-, s£.
Note that

(2.32) Mo=f= dM(X) =M(i() -M(- r) .

It will be convenient to introduce some additional notation. Given a k X k matrixf and
a form M = iim..; i,j = 1,- ,s;U, v = 1,, k, let

(2.33) (f *M) = iSfjUV'mij; u,v,= 1, .
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By the integral
(2.34) J [f (X) *dM (X) ]

I shall mean
(2.35) fffij(X)dvqMij(X); p, q=1,* *,s
The matrix
(2.36) T= (I-Mo)

is assumed to be nonsingular. This means that the vector sequences

(2.37) P(') * .(j) ...

are asymptotically linearly independent in a sense which is relevant in this context. Con-
ditions (2.22) and (2.23) are introduced to ensure that the estimates of the regression
coefficients converge to the true regression coefficients in the mean square.

It will also be convenient to introduce the matrix
-bP(I) I/2 0

(2.38) D [= . . .

3. Remarks on approximation
The arguments used to obtain results on the asymptotic behavior of the covariance

matrices of the least-squares and Markov estimates are approximation arguments. They
make use of finite trigonometric polynomials that uniformly approximate the matrix-
valued spectral densityf(X).
LEMMA 1. Let f(X) be a continuous positive definite matrix-valued (k X k) function of X.

Given any e > 0, there is a positive definite matrix-valued trigonometric polynomial

(3.1) g (X) = e
u--P

with coefficients gu Hermitian k X k matrices such that

(3.2) EZZ> Z' [f (X) -g(X)] z >-ez'z

for every k-vector z.
There are finite trigonometric polynomials gi,(X) such that

(3.3) gi5 (X) = g,i (X)

and

(3.4) 1f,,(X) -gi(X) I<b a <0,
where i, j = 1, *, k. But then on setting g(X) = Igii(X); i, j = 1, k},

(3.5) z[f(X) -g(X)] z5z8 zi IsI A k5z'z.

If 5 > 0 is chosen sufficiently small

(3.6) z' [f (X) -g (X) I z< ez'z .
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One can show similarly that

(3.7) -ez z< z' [f (X) -g (X) ] z .

Note that p is the maximal order of the polynomials pij(X).
LEMMA 2. Letf(X) be a continuous positive definite matrix-valued (k X k) function of X.

Given any e > 0 sufficiently small, there are positive definite matrix-valued trigonometric
polynomials

g CX) = E u
u'--P

(3.8)
h(X)=, e

us--P

with coefficients gu, hu Hermitian k X k matrices such that

(3.9) 0< f (X)-eI < g (XA) < f (X) < h (X) < f (X) +e

where I is the identity matrix (k X k).
Since f(X) is a positive continuous function of X, for all sufficiently small e> 0

(3.10) 0< f(X)-eI

and clearly
(3.11) f (X)-EI < f (X) .

By lemma 1, there is a trigonometric polynomial g(X) such that

(3.12) -IEI < f (X))-IeI-g (X) <ieI.
But then

(3.13) 0 < f (X))-eI < g (X) < f (X) .

One can similarly show that there is a trigonometric polynomial h(X) such that

(3.14) f (X) < h (X) < f (X) +eI .

LEMMA 3. Let

(3.15) f (X) =ao+a,cosX+ ++a,cospX+bisinX+ - +b,sinpX
be a positive definite matrix-valued (k X k) function of X with the coefficients a,, b, (k X k)
matrices. Then f(X) can be written in the form

(3.16) f(X) =1 .( cje-i2) ( Ci e-i}WA

where co is nonsingular and

(3.17) f1 a (i cje-ii>) dX= 0

where I > 0.
Since f(X) is a positive definite matrix-valued (k X k) function of X, there is a k-di-
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mensional weakly stationary process xg, Ex, 0, having f(X) as its spectral density.
The covariance matrices
(3.18) rg=Ext+,x'=fr e'f (X) dX

are the null matrix if I t I > p. Let Px, be the projection of x, on the closed linear mani-
fold spanned by xt,_1, X; 2,- - -. Consider ig = xg - Px,. The 7,t are orthogonal to each
other, that is, Eig7t' = 0 when t $ T. Since x, and q,1 are stationary I can write

(3.19) x=f eilxdZz(X), 1,=J ei')dZ, (AX)

where zx(X), z,(X) are processes with orthogonal increments

EdZ. (X) dZ. (u) ' =6f (X) dX
(3.20) 1

EdZ, (X) dZ., (y) '= 2bx-NdX.
Here N = El, i7'. Because rg = 0 for t < -p it is clear that

(3.21) xt= eitxdZs(X) = fh,tj=JZ ei'x( hje-iA) dZ (X),f, 2~~kj'71=0 1=
and ho = I. On approximating the characteristic function of the set [- r, XI in the mean
square by linear combinations of the exponentials exp itX, equation

(3.22) fdZ. (X) = f khe"iAdZ (CX)
-0o

is obtained. On taking the covariance matrix of both sides of equation (3.22)

(3.23) F.(X) N (ki hi e-i)' dX

or

(3.24) f (X) = k1(, hje-iA) N (i hjetf')

is obtained. Since f(X) is nonsingular, the matrix N must be nonsingular. Norm the qg's
so as to get

(3.25) tt= N-1/271
The tt's are an orthonormal process, that is,
(3.26) E , t7 =
I can now write

V

(3.27) x'= cj i-j
i=0

where co = N'12. By using the argument that led to equation (3.22) one can see that

(3.28) f ( ) =1 ( c e-ill) c(ce-iW.A
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Since ~t is weakly stationary

(3.29) f=f iexdZ (X) = f eit( cie-iA) dZ.(X)
i-0

(3.30) EdZt ()X) dZe y = Ax,.2 I M v.2w

By our construction {, is in the linear manifold spanned by xi, x1, *.* so that

(3.31) fe-i (}cje-iA)1dX 0
j=O

when I > 0.

4. The asymptotic covariance matrices
In obtaining the asymptotic form of the covariance matrices of the least-squares and

Markov estimates, it will be convenient to deal with

(4.1) D.E (OL- (L- W D. = DA Iyy(P" D. D_ "tRy DnW Dn [y'y"P D.
and

(4.2) D.E (Om- (Om- ) 'D.= D. [ypR-lp -lD) .

TIEopEm 1. Under the conditions on the spectrum of the process xi given in section 2 and
the conditions on the regression vectors specified there

(4.3) lim DnE(BL- (,OL- )'D.= 27rT-1 [f (- X) dM(X) I T-1.

The conditions on the regression vectors specified in section 2 imply that

(4.4) D.-' [ypty] D.-1 T

as n -* o and the limiting s X s matrix T is nonsingular. I therefore need only consider
the asymptotic behavior of

(4.5) D.-1, R D.-'
Given any sufficiently small e > 0, by lemma 2 there are finite matrix-valued (k X k)
trigonometric polynomials

g (X) = 2LS g eitu
us--

(4.6)
h (X) =i hueiuX

such that

(4.7) 0< f(X) -eI<g(X) <f(X) <h(X) <f(X) +eI .

Let G, H be the covariance matrices of y if xt has the spectral densities g(X), h(X), re-
spectively. Then

(4.8) vn'GpD< poRpo < p'Hp .



TIME SERIES ANALYSIS 173
I shall obtain the limit of (4.5) as n co when the covariance matrix of x is G. The
matrix

(4.9) (P'Gso = ; (<'t gtC-r (Pr..
t, r-1

A typical element of (4.9) is therefore of the form

I: 9P f-r sr
(4.10) t T-1

[n(P)~(Q) 1 1/2

Since there are only a finite number of nonzero gu's, the limit of expression (4.10) is
k

(4.11) 27rJfgi (-X) dpqMij (X)-

Thus
(4.12) lim Dn lep'G qp Dn-' = 2 7rr [ g (-s) *dM (?s)].
Similarly
(4.13) lim Dn ls,pBHp Dn 1= 2xr [h (-a) * dM (X))].

On letting e 0, it is clear that

(4.14) lim Dn 1sptRqpD,-1= 2rJ[f(X) * dM (].
n-a+o f"

Note that the expression
(4.15) [f(-X) *dM (X)]

is nonsingular for f(X) > el if e > 0 is sufficiently small. But then

(4.16) f [f (-_X) .dM(X) ] >ef [I-dM(X)] =e(I Mo)

which is nonsingular.
TIEoRE1 2. Under the conditions on the spectrum of xt and the regression vectors as-

sumed in section 2

(4.1 7) lim D.E (# 'f,)(Ma)tDn = 21ir ( [ f-l (-X) *dM (X) ])

By lemmas 2 and 3, for every sufficiently small e > 0 there are finite trigonometric
polynomials

V

g (X) = E gueeiu
u-0

(4.18)
h (X) = k.e-u

u-o

with go, ho nonsingular and satisfying relation (3.17) and such that

0< f() I < 1 g- (X) g-1 (X) '< f (X) < 1 h-, ()) h-, () < f (X) +-eI
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Let G, H be the covariance matrices of the vector x if the process xg has the spectral
densities (1/27r)gr1(X)g-1(X)', (1/27r)k1r(X)hk(X)', respectively.

In obtaining our result it will be sufficient to consider the asymptotic behavior of
D.-lso'R-luoDW1. Now
(4.19) ° < po'H-lsp < pR-', < p'G-Ip
Assume for the moment that xi has the spectral density (1/27r)g-1(X)g-1(X)' and con-
sider the asymptotic behavior of D;lso'G-lsoD;1 as n -- -. Now carry out a Gramm-
Schmidt orthogonalization procedure with respect to xl,, x, starting with xl. The
first p equations are

dlix, = ti

(4.20) d21xi+d22x2= 2

dplixi + ***+ dppxp = (

The residual {'s are orthonormal. At the next step I have

(4.21) gpxl + * * +goxP+i=1 +1 =- p+i
since xg satisfies the difference equation

p

(4.22) E gu X-= nt
U=O

with the ni's orthonormal. From then on we have the equation
(4.23) gpXk+ +go Xk+p,= k+p=7 k+p k 1, n -

Let the matrix
di,
d2id22 °

d,ldp2 ... d,pp
(4.24) gpgp-l- gl go

gp ...g2 gl1gO

0

Then

(4.25) Ax=

where t is a vector of orthonormal random vectors. A is a nonsingular transformation
taking x1,' * *, xn into ti,, t. On taking the covariance matrix of both sides of equa-
tion (4.25) I have

(4.26) AGA' = I
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so that
4.27) G- 'A.

Let {g-; u, v = 1, *, n} = G-1. Then

(4.28) gyp g+g+U
u=-co

if ;' or ,u is greater than p. Here g, is understood to be zero if v < 0 or v> p. But

(4.29) _g,+.g,+u= e2wI ei(V-# g (N)i 'g (X,) d X.

Now the (p, q)th element of D.-1o'G-AoD;-1 is

E (qt,)r -p

n

'

in+ +

(4.30) (4c.(v),(Pnq) 1/2 =~. .v ~ +~
m-O e-1 --I u-m+l 1 n

Here 7m = (1/27r)f ei-g(X)'g(X)dX.
Now 6, is the sum of at most 4p2 terms of the form

-1 (q)
(4.31)

Since every element of g-,l, is smaller in absolute value than 51 for some small but
fixed 5> 0, the elements of

() -1 (q)

(4.32)

converge to zero as n - . But then
n

n4.3¢Pb2)lim"2r-'1 g (-X) 'g (-X) } sid,,Mij (A

I have now shown that
(4.34) lim Dn-I'G- (oDp = f [g (-?)'g (- X) .dM(X)].

In the same way one can show that

(4.3 5) lim D.-I(p'H-'(Ls Dn1 =|[h X-) 'h X-) * dM (XA) I

On letting e I 0 the desired result

(4.36) lim D,j1(pR-1$°Dl= j [f-(-X) * dM (X)

is obtained. The matrix (4.36) can be seen to be nonsingular by using the argument used
at the end of the proof of theorem 1.
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5. Asymptotic efficiency
It is interesting to investigate those types of regression for which the least-squares

estimate is asymptotically efficient in the class of linear unbiased estimates for all ad-
missible spectraf(X). In most cases the covariance matrix R is unknown and a reasonably
large sample size is required to get adequate precision in estimating it. For this reason it
would be convenient if one could use the least-squares estimate instead of the Markov
estimate since the least-squares estimate does not require knowledge of R. Even if R is
known, it may be difficult to compute R-' which is required for the Markov estimate.
In view of the results already obtained, the least-squares estimate will be asymptotically
efficient if
(5.1) T-if [f(-X) dM (X)]Tf [f-l(-X) dM(X) =I

for all admissiblef(X). The case of interest is that in which the process xt and the regres-
sion vectors have real components. Because of thisf(X) and M(X) must satisfy the addi-
tional restraints

(5.2) f(X) =f(-X)

dM(X) =dM(-X).

When k = 1, asymptotic efficiency of the least-squares estimate has been discussed in
U. Grenander [1] and U. Grenander and M. Rosenblatt [2], [3].

In the one-dimensional case it is convenient to set

(5.3) T(X) =M(X+) -M(-X-)

and rewrite (5.1) in the form

(5.4) T-.if f (X) dT (X) T-if f-l (X) dT (X) = I.

Equation (5.4) is satisfied for all positive continuous f(X) if and only if T(X) increases
only at a finite number of points 0 S XiX <... < Xl . 7r, q < s, and the jumps
(5.5) Ti=AT(X,)
satisfy the relations
(5.6) T, T-1 T, =611 Ti .

These conditions are satisfied if one has a polynomial regression
(5.7) mg = go+ + #.-I
a trigonometric regression
(5.8) mg= 01 cos tX+*** + . cos tIX,, + P,1+1 sin tXl+ + P.,+., sin tX,,
(with the points X, distinct), or more generally a mixed polynomial and trigonometric
regression

(5.9) qtn P-L cos uA + p-l sin A.
u-i w-1 u-i v-1

(with points Xi distinct) [3]. Obviously the sine terms in this last regression form dis-
appear if Xi = 0. Notice that these regression sequences include most of those used in
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standard statistical work. It is easy to construct a regression sequence where the least-
squares estimate is not asymptotically efficient. Consider

(5.10) mL=ft(aO+ascos1Xi+ +akcostXk), O<Xl< ... <XAk,
where the constants ai are known. Such a regression has a form similar to the pulse
trains encountered in communication theory. In the case of such a regression T(X) in-
creases only at the points 0, Xi..*., Xk. The jump of T(X) at 0 is

2

(5.1 1) a0ao
a2 +2

and the jump at X,j= 1, Xk, is

jaj2
(5.12) k

a2+ 'kEao+j a~
j-1

The asymptotic efficiency of the least-squares estimate #L in the class of linear unbiased
estimates is

( 2S

(5.13) -1.

[aof (°) +2 a2f (?Xj)] [ aO +Jl

In section 7 I shall discuss the question of how much additional information about the
spectrumf(X) is required to construct an estimate with the same asymptotic mean square
error as the Markov estimate.

In the case of multidimensional time series, new phenomena arise. Consider first the
case of a polynomial regression. If each component of the time series has a polynomial
regression, that is,

(5.14) imkEiSt'-',i ,-, k ,
k-I

the least-squares estimate L is still asymptotically efficient. However, if the different
components have polynomial regressions of different orders, the least-squares estimate
is no longer asymptotically efficient [5]. A simple example is that in which the mean
value of the first coordinate of a two-dimensional time series is unknown while the mean
value of the second coordinate is known to be zero. Then

(5.15) ~~~~~mt= Art, Pft = o0
The function M(X) increases only at zero and the jump at zero

(5.16) AM(0)= Ml()A 2(0 I0.CM11 (0) AM12 (0) \ O O(5.16) AM(O)=M21(0A22 (0)) °°
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Thus

X" [f X ) -dM (X) ]=fil (°)
(5.17) [f-(-X) dM(X)] =f(0)(0)/f1 122(0)0

The asymptotic efficiency of the least-squares estimate is

( 5. 1 8) 1 _ f12 (0)
(5.18) '111~~~~fll(0)f22 (0)

If there is a mixed polynomial and trigonometric regression (5.9) not only must the
same regression form occur in each component, but one must also have 1s. = 2s. if
X. d 0. Thus, the least-squares estimate will be asymptotically efficient in the case of a

regression

(5.19) mt = 1so(l)++2P29++i33+t+ 4

= (cos tx) + ,2 (sin t) + (co°tX) + P.4 (it)' A 0,°O

but not in the case of a regression

(5.20) mg=(l)'t +0l2'P p(c( ) +X (02 )(CoO
It is worthwhile examining this last regression in a little more detail. The function M(X)
increases at two points, X and -X. The jumps

(5.21) 1

IvM12 (X) = /M12 (- ) = 0

(5.22) ~~AM21 (X) = AM21 (-X) = 0* °)(5.22)
AM22 (X) =AM22 (-X) = 0 )-

Thus
(5.23) J [f (-X) *dM (X)] = (Re f (X) Re2(f ) )

and
(5.24) ft1[f-1(-X) *dM(X)]

1 {~~~f22 (X) -Re f12 (X)
fii (X) f22 01)-I f12 (X) 12 ( (-Ref212 (X) Jf1(X )

It is worthwhile noting that one does have asymptotic efficiency of the least-squares esti-
mate if Imfl2(X) = 0.

In the multidimensional case k 2 2 set

(5.25) N(X) = T-1/2 j1M(X)T-1/2; j, = *, S}.
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Then equation (5.1) can be rewritten

(5.26) [f (-X) * dN ()] [f-1(-X) *dN (X) ] =I.

I have not been able to get simple necessary and sufficient conditions on N(X) for equa-
tion (5.26) to be satisfied for all admissible f(X). However, one can get simple conditions
of this type when N(X) is known to increase only at zero. This corresponds to the inter-
esting case of a polynomial regression. Equation (5.26) can then be written as

(5.27) (f*N)(f-1N) =,

where
(5.28) f = f (0) >0

and

(5.29) N=AN 2- 0 .

Set

(5.30) Nij=tNp J; P, q=1,--,s
and

(5.31) Wij = Nii+ Nsi, ioj .

Sincef = f(O) and N = AN(O), the elements of f and N are all real.
TIiEoRE1m 3. Letf and N be positive definite and positive semidefinite symmetric matrices,

respectively. The equation

(5.32) (f *N) (f-1 N) =

is valid for all positive definite symmetricf if and only if
NiiNjj= BijNii; i, j= 1*,k,
z Nii = I

Wij Wit = Njj Wjk= Wjk Nkk, j # k,
(5.33) N+

W2j = Nii+ Njj
Wij Wki = 0 i0k, I j 0k, I

Wij Nkk = Nkk Wi,j=O,=i, I k.

Consider first the case in which f is a diagonal matrix

(5.34) f=( I Xi>°

Equation (5.32) then becomes

(5.35) Xi NiiN3...X_i'Nj;= I.
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This equation is valid for all positive Xi if and only if

(5.36) NiiNjj= bijNii
and z Nii = I. Since N is positive semidefinite and Ni,Njj = bi,Ni,, it follows that

(5.37) WijNkk = Nkk Wij = O

if i, j 0 k and
(5.38) Wij WkZ = 0

if i o k, I and j p k, 1. Now consider the case in which

(5-39) f = (f2 f3)

and is positive definite. On differentiating equation (5.32) with respect tof2 twice, equa-
tion

(5.40) 12 = Nll+ N22
is obtained. On differentiating equation (5.32) first with respect to fi and then with
respect tof2, equation
(5.41) N11W12 = W12N22

is obtained. Now let
fflf2 1f3

(5.42) f= 1A f 01\f3 fs, fe
0 1

and be positive definite. Differentiate equation (5.32) with respect to fi, f2, and f5. I
now get

(5.43) M11T13 = T12T23.

All the other equations (5.33) are obtained by taking some subscripts other than 1, 2, 3
or interchanging subscripts.
By using the conditions (5.33), one can readily verify that equation (5.32) is satisfied

with any positive definite symmetricf.

6. Some computations
It is worthwhile looking at a process with a stationary residual of a special and simple

form to see how good the asymptotic theory considered is for finite samples. Consider a
process

(6.1) Yt = xi+ #I+ f2t
where the residual xt is a first order autoregressive scheme with covariances

(6.2) rn= 1pi2l < p <
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Here p is the correlation coefficient of the scheme. The regression coefficients j%, 12 of
the scheme are unknown and to be estimated. The covariance matrices of the least-
squares estimate #L and the Markov estimate PM are considered. I have already noted
that

(6.3) E (#L- 3) (1L-P)'= (o'Po) 1 RI (9') 1

and

(6.4) E(M-) (1-*1)'- (S'R-1Sp)-

Here when the sample size is n

(6.5) V =C Ii~
(6-5) 99 (~~~~~12 ..n)
so that

/2(2n+1) -6
In(n-l) n(n-l

(6.6) (,P" ) -
-6 12

n(n-i) n(to-l)

Straightforward but tedious manipulations lead to

(n-2) (I-p)2+2(1-p) 2 p)2+(n+p) p)

(6.7) ptR-lso = (n-l)n(_) (n-1)n(2n-1) (_p
2 6

+(n+p) ( -p) +n2 (-p)-p2+n p

One can similarly show that

n _ 2p(1-pn) n(n+1) (n+l) p(I - pn)
(i-p)2 (l-p2) (1-p)2 2(I-p)2 (l-p2) (1-p)2

= n(n+l) (n+l) p( _-pn) n(n+l) (2n+1) n(n+1) p
(6.)s Rs =2 (1-p)2-(I-PI) (I -p)2 -6 (1-p)2 (lp) (1-p)S

2p +2(n+1) 2+P(1-pn+l)
(l+p) (1-p)4+ (+p) (i-p)6.

The covariance matrix as given by the asymptotic theory is

4 6\
1 n n

(6.9) ~~~~~(1-p)2 _ 6 12
ng

to the first order.
The (i,j)th elements of the covariance matrices of both the least-squares and Markov

estimates, i, j = 1, 2, are given in Table I for the sample sizes n = 10, 15, 20, 50 and cor-
relation coefficients p = -.8, -.6,* - *, .8. The approximation suggested by asymptotic
theory is also given.



TABLE I

COVARIANCE MATRICES OF THE LEAST-SQUARES AND MARKOV ESTI-
MATES (AND AN ASYMPTOTIC APPROXIMATION OF THE COVARIANCE
MATRICES) OF A LINEAR REGRESSION, RESIDUAL FIRST-ORDER AUTO-
REGRESSIVE

MAThX ELENXXTS

R 1,1 (1, 2)-(2, 1) (2, 2)

n-10

(a) 0.65196 -0.091312 .016602
+.2 (b) 0.64406 -0.090046 .016372

(c) 0.62500 -0.093750 .018750

(a) 0.35898 -0.052116 .0094753
-.2 (b) 0.34109 -0.049425 .0089863

(c) 0.27778 -0.041666 .0083333

(a) 0.99189 -0.13464 .024880
+.4 (b) 0.94826 -0.12785 .023245

(c) 1.11111 -0.16667 .033333

(a) 0.29685 -0.043812 .0079656
- .4 (b) 0.27749 -0.040614 .0073844

(c) 0.20408 -0.030612 .0061224

(a) 1.69108 -0.21501 .039090
+.6 (b) 1.54892 -0.19421 .035311

(c) 2.50000 -0.37500 .075000

(a) 0.27142 -0.040923 .0074402
-.6 (b) 0.22345 -0.032950 .0059909

(c) 0.15625 -0.023438 .0046876

(a) 3.48150 -0.35878 .065229
+.8 (b) 3.17040 -0.32391 .058893

(c) 10.00000 -1.50000 .30000

(a) 0.32541 -0.051326 .0093318
-.8 (b) 0.18379 -0.027257 .0049559

(c) 0.12346 -0.018518 .0037037

(a) 0.42883 - .040942 .0051178
+.2 (b) 0.42456 - .040469 .0050587

(c) 0.41667 - .041667 .0055556

(a) 0.21958 - .021498 .0026873
-.2 (b) 0.21716 - .021227 .0026534

(c) 0.18519 - .018519 .0024692

(a) 0.68983 - .064546 .0080684
+.4 (b) 0.66268 .061576 .0076970

(c) 0.74075 .074075 .0098767

(a) 0.17508 - .017363 .0021704
- .4 (b) 0.16642 - .016383 .0020478

(c) 0.13606 - .013606 .0018141

(a) 1.29297 - .11604 .014505
+.6 (b) 1.18142 - .10428 .013034

(c) 1.66669 - .16669 .022223

(a) Least-squares, (b) Markov, and (c) Asymptotic.

I82



TABLE I-Continued

MATIX ELEMENTS

p (1, 1) (1, 2)-(2, 1) (2, 2)

n-1S-Coniied

(a) 0.15221 - .015363 .0019204
- .6 (b) 0.13159 - .013023 .0016278

(c) 0.10417 - .010417 .0013889

(a) 3.16763 - .24715 .030894
+.8 (b) 2.76763 - .21008 .026261

(c) 6.66675 - .66675 .088890

(a) 0.15817 - .016409 .0020513
- .8 (b) 0.10665 - .010598 .0013247

(c) 0.082305 - .0082305 .0010974

n-20

(a) 0.31940 - .023130 .0022033
+.2 (b) 0.31679 - .022912 .0021821

(c) 0.31250 - .023438 .0023438

(a) 0.15777 - .011650 .0011097
- .2 (b) 0.15640 - .011532 .0010983

(c) 0.13889 - .010417 .0010417

(a) 0.52774 - .037659 .0035871
+ .4 (b) 0.50996 - .036167 .0034445

(c) 0.55556 - .041667 .0041667

(a) 0.12341 - .0092078 .00087707
- .4 (b) 0.11854 - .0087887 .00083702

(c) 0.10204 - .0076530 .00076530

(a) 1.03889 - .071960 .0068545
+.6 (b) 0.95601 - .065169 .0062066

(c) 1.25000 - .093750 .0093750

(a) 0.10438 - .0079058 .00075303
- .6 (b) 0.092934 - .0069183 .00065888

(c) 0.078126 - .0058595 .00058595

(a) 2.84008 - .17755 .016913
+.8 (b) 2.45270 - .14856 .014148

(c) 5.00000 - .37500 .037500

(a) 0.10458 - .0081673 .00077794
- .8 (b) 0.074810 - .0055867 .00053206

(c) 0.061728 - .0046296 .00046296

#50

(a) 0.12612 - .0037310 .000146311
+.2 (b) 0.12565 - .0037140 .000145648

(c) 0.12500 - .0037500 .000150000

(a) 0.058456 - .0017433 .000068360
- .2 (b) 0.058229 - .0017352 .000068045

(c) 0.055555 - .0016667 .000066666

(a) 0.21807 - .0064149 .000251554
+ .4 (b) 0.21442 - .0062866 .000246535

(c) 0.2222 - .0066667 .000266667

I83
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TABLE I--Continued

MATRIX ELEMENTS

p (1, 1) (1, 2)-(2, 1) (2, 2)

n-5O-Conti,sued

(a) 0.044081 - .0013209 .000051799
-.4 (b) 0.043302 - .0012933 .000050719

(c) 0.040816 - .0012245 .000048979

(a) 0.46697 - .013595 .00053312
+.6 (b) 0.44575 - .012856 .00050415

(c) 0.50000 - .015000 .00060000

(a) 0.035245 - .0010643 .000041737
-.6 (b) 0.033457 - .0010010 .000039256

(c) 0.031250 - .00093751 .000037500

(a) 1.61368 - .045419 .0017810
+.8 (b) 1.43485 - .039365 .0015437

(c) 2.00000 - .060000 .0024000

(a) 0.031137 - .00095752 .000037549
-.8 (b) 0.026625 - .00079766 .000031281

(c) 0.024691 - .00074074 .000029629

7. Some special examples
In section 5 a few special but interesting types of regression sequences were considered

where the least-squares estimate of the regression coefficient was not asymptotically
efficient in the class of linear unbiased estimates. I now consider two of these regression
sequences to find out what information about the spectrumf(X) is required to construct
an estimate of the regression coefficient with the same asymptotic mean square error as
the Markov estimate.

The first example is that of a one-dimensional process

(7.1) y = Xt+s#P

where x, is stationary and

(7.2) y, = aO+ al cos tXl+ * + ak cos tXk, ° < X1i< .. <Xk .

Note that

(7.3) (a2+ a

An estimate of P which has the same asymptotic mean square error as the Markov esti-
mate is

(7.4) * (ao +I

a, y, ao + ajv costx,

for

(7.5) E(*+O )
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and

(7.6) a(j* s)

Notice that the only information about the spectrum f(X) required for the construction
of ,* is knowledge of the ratios

(7.7) f(0) f(0)
f(Xi) f(Xk)

The second example is a two-dimensional process

(7.8) 'V X= t+j

with xt stationary and
(7.9) (0)
An estimate of ,B which has the same asymptotic mean square error as the Markov esti-
mate is

(7.10) ( *2y(0) 2Yt)
n ~~f22(0)

where lyt, 2yg are the components of yi. Note that

(7.11) E,* = 0
and

(7.12) <2(**) 1f_f2(o)] -

8. Final remarks
There are many interesting open problems. It is clear that one ought to be able to

obtain analogues of the results obtained thus far in the case of a continuous time parame-
ter. It is likely that such a program would require heavier tools.
The results obtained thus far have an immediate implication for various types of non-

stationary processes, specifically processes which are integrals or sums of stationary proc-
esses. Consider as an example

(8.1) Zt= E Xr
7-1

where xt is a stationary process. Results on estimation of regression coefficients with Zs
as a residual can be obtained from corresponding results with xt as a residual.
A much more detailed investigation of specific types of regression sequences would be

worthwhile pushing through. It is worthwhile noting that all the main results obtained
can be derived for processes with a vector time parameter in the same way.

I wish to thank M. de Groot and the computing staff of the Statistical Research Cen-
ter at the University of Chicago for carrying out the computations in section 6.
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