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1. Introduction
We consider a probability model that has proved to be useful in various applied fields.

Statistical problems that arise in the analysis of data obtained in these fields are dis-
cussed. The basic model is that of a stochastic process {y,}
(1.1) yt= Xt+mt

where mg = Eyt is the mean value of yt and xi, Ext =0, is the residual. The residual xt
is assumed to be stationary with respect to the parameter t, that is,

(1.2) xt').. l xt.
have the same probability distribution as

(1.3) Xt,+hy.., XXt,+h

for all possible values of t.1..*, t,, h. In other words, the probability distribution of xi is
invariant under t displacement. This implies that the set of possible values of t, which
we shall call T, is a group or semigroup under addition. Typical examples of the parame-
ter set Tare the set of all points in Eucdidean k-space or the set of lattice points in Euclid-
ean k-space. These are in fact the examples of greatest interest and they will be discussed
in some detail.

The process {ytI may be vector valued. An example of interest in which the vector-
valued case is appropriate will be described.
A usual situation is that in which t is thought of as time. The parameter t will then be

a point of the form kh if the observations are taken at discrete time points with h seconds
between each observation. If the observation is continuous, t will be any real number.

The case in which m =0 is of considerable importance. Such a model is appropriate
where the phenomenon studied consists of random fluctuations which are of a stable
character.

Some of the fields in which such a model has been used will be discussed in section 2.
These fields are in the physical sciences. They are discussed to give some motivation to
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the development and because the methods considered have been successful in some de-
gree in their application. Before going on to consider the statistical questions of interest,
we shall develop some of the probability theory required. We want to give a survey of
some of the results that have been obtained in the past five years and indicate that there
are many problems of interest that still remain open. We shall therefore sketch out some
of the older results and try to motivate them. Proofs will be given only when they are
relevant to the discussion or when they relate to new results.

The paper discusses a spectral representation of the residual {xil. We are basically
concerned with the statistical problem of estimating the spectrum from a time series or
partial realization of the process. The estimation of the spectrum is of great interest for
various reasons. First of all, knowledge of the spectrum gives us information about the
structure of the process. Knowledge of the spectrum is also essential in the linear prob-
lems of prediction, interpolation and filtering.

2. Some fields of application
One of the earliest fields of application is in the study of random noise. In electrical

or electronic circuits noise of random character sometimes arises. This may be due to
the random drift of electrons in the circuit or perhaps from shot noise due to tubes in the
circuit. Another example is clutter on a radar scope or a television screen due to reflection
from surrounding buildings or snow. In the first example t is time and yt is a number. The
residual xg can be thought of as the noise which masks the message mg which one would
want to estimate. A detailed discussion of some of the problems that arise in this context
can be found in Lawson and Uhlenbeck [10].

Another field of application is in the study of turbulence. Consider a fluid forced
through a rectangular grid. Let the kinematic viscosity of the fluid be small. The velocity
field v(.r, u) of the fluid behind the grid seems to be random. Here T is the time and u is
the point at which the observation is taken. The velocity field of the fluid fluctuates even
though the macroscopic conditions are the same. It then seems reasonable to consider
the velocity field as a stochastic process. Assume that energy is fed in at the same rate
at which it is dissipated. At an intermediate distance from the grid the distribution of the
velocity field appears to be invariant under space displacement. Homogeneous turbulence
is an idealization in which one imagines all of space filled with a turbulent fluid whose
velocity field has a probability distribution invariant under space displacement. Let us
also assume that the turbulence is also stationary in time since the energy fed in balances
out that dissipated. Here t = (T, u) is 4-dimensional while x, = v(T, u) is 3-dimensional.
One then looks for a stationary process satisfying the equations of motion, that is, the
continuity equation (assuming incompressibility) and the Navier-Stokes equation. A de-
tailed discussion of homogeneous turbulence can be found in Batchelor's book [3].

Various meteorologists are now studying the atmosphere, considering it as a turbu-
lent fluid. The assumption of local homogeneity and stationarity which they make may
not be a bad one (see Panofsky [12]).

Still another field is the study of storm generated ocean waves. Consider a storm on
the ocean surface. Let h(-r, u) be the vertical displacement of the ocean surface at time T
and position u with respect to .the undisturbed surface. Well within the storm area
h(T, u) can be considered stationary with respect to displacement in u along the sea sur-
face. If the period of observation is small with respect to the duration of the storm, the
disturbance can be considered stationary with respect to time. Here I = (T, u) is 3-di-
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mensional and xt = k(T, u) is 1-dimensional. See Pierson [13] for a discussion of this ap-
plication.

3. Spectral representation of the process

Assume that mt_ 0. We shall now consider a basic representation of the process xi.
In effect, we are carrying out a random Fourier analysis of the process.

It is reasonable to assume that the process is real valued or has real-valued compo-
nents. The covariance matrices'

(3.1) Rt . =Rt-, =Extx'
depend only on the difference t- r of the parameters because of the stationarity. Con-
sider the case in which t is integral and xt possibly vector valued. The results cited in this
section are still valid with appropriate modification if t is continuous or vector valued.
If xi is k-dimensional and { ct is any finite sequence of k-vectors

(3.2) CtRt-,cT20

since {R,J is a sequence of covariance matrices. The process xg has the Fourier represen-
tation

(3.3) Xt = f eilxdZ(X)

where Z(X) is an orthogonal process, that is,
E [dZ (X)] O

(3.4)
E [dZ (X,) dZ (u']=6x,,dF (v

where bxy is the Kronecker delta and F(X) is a nondecreasing matrix-valued function
(see Cramer [4]). The differential notation occasionally used in the discussion is to be
understood in the usual way. Here dF(X) denotes the increment of the function F(X)
over a small X-interval. In (3.3) xt is expressed as a superposition of harmonics exp (iX)
with corresponding random amplitudes dZ(X). The random amplitudes dZ(X) are orthog-
onal and the covariance matrix of the random vector weight dZ(X) is dF(X) _ 0. The
process Z(X) with orthogonal increments is given by

(3.5) Z(X)= 21_ too

-it eit+ 1 (?+ )

that is, Z(X) is the integral of the formal Fourier series with Fourier coefficients xt. The
process Z(X) is introduced because the formal Fourier series referred to does not exist.
The function F(X) is usually called the spectral distribution function of the process xi.
The representation (3.3) of x, implies that

(3.6) R, =feitxdF (X) .

From this one can see that knowledge of the covariance sequence R, and knowledge of
the spectral distribution function F(X) are equivalent. Nonetheless, in many fields, es-
pecially those referred to in section 2, it is much more natural to think of the process in

1 xg is a column vector. If A is a matrix, A' denotes the conjugated transpose of A.
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terms of its spectrum rather than its covariance sequence. Moreover, the statistical
problems that arise are answered much more naturally and elegantly when looked at
from the point of view of the spectrum of the process rather than the covariance se-
quence. Note that dF(X) = dF(- X) since the process xt has real-valued components.

In the representation (3.3) of the process xt, Z(X) has complex-valued components in
general. Because of this unpleasantness it is convenient to introduce the auxiliary proc-
esses

Z1 (X1) =Z (X) -Z(-X)
(3.7)

Z2 (X) = i [Z (X) +Z (-X) -2 Z (0)]

with real-valued components. We then have the following real representation for xt

(3.8) xt= cos tX dZ1 (X) +f sin tX dZ2 (X) .fo o

The case of greatest practical interest is that in which F(X) has no singular part, that
is, F(X) has an absolutely continuous part and jumps. In the remainder of this paper we
shall assume that F(X) is absolutely continuous, that is,

(3.9) F(X) = f (u) du.

The matrix-valued functionf(X) is called the spectral density of the process. Let us con-

sider the case of a two-dimensional process xt = (xt) in some detail.2 Then

dF(X)f( (fii (X) f12(X).0
(3.10) d f f21(X) f22(X) 0dX f2l ( X) f22 (\

The functions f11(X), f22(X) _ 0 are the spectral densities of lXt, 2Xt, respectively, while
f12(X) is the cross-spectral density of ixt and 2Xt. Nowfiu(X) = fi1(-X),f22(X) = f22(-X),
andfi2(X) = f2l(- X) = f2(X) since xig and 2Xt are real valued. In the real representation
(3.7) of xt let

(Z1 (X) Z12 ( )
(3.11) Z1 (X) =Z2(X) .

Then

E dZn1 (X) dZll() =E dZ12 (X) dZi2(p) = 2 ,fn (X) dX

E dZ21 (X) dZ21(,u) =E dZ22 (X) dZ22(M) =26XAf22 (X) d X

(3.12) E dZll (X) dZ12() =E dZ2 (X) dZ22() =0

E dZ11 (X) dZ21 (CM) =E dZ12 (X) dZ22 (,u) = 2 x, Re f12 (X) d X

E dZ11 ()X) dZ22 (,) =-E dZ21 (X) dZ12 (A) = 2 bxp Im f12 (X) dX.

The real part of the cross-spectral density Ref12(X) is often called the cospectrum
of ixi and 2xI while Imfi2(X) is called the quadrature spectrum of ixi and 2Xt. The co-
spectrum measures the dependence of the in-phase harmonics of the two processes ixi

2 The discussion in the remainder of this section and in section 8 was suggested by conversations one
of the authors had with W. J. Pierson, Jr. of the Department of Meteorology and L. J. Tick of the Re-
search Division of N.Y.U.
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and 2x,, that is, the dependence between cos IX dZ,1(X) and cos IA dZ21(X) or sin tX dZ12(X)
and sin AX dZ22(X). The quadrature spectrum measures the dependence of the out-of-
phase components of the two processes cos A7 dZ11(X) and sin A) dZ22(X).

If the class of admissible distributions in a nonparametric problem is parametrized
or labeled in a natural way, one is led to an infinite-dimensional parameter space. It
seems natural to think of a statistical problem characterized by such an infinite-dimen-
sional parameter space as a nonparametric problem. It would be natural to parametrize
the class of processes we deal with by their covariance sequences. Since this parameter
space is infinite-dimensional, the techniques we employ in the statistical analysis of time
series would be nonparametric techniques in the sense described above.

Note that the normal processes are determined by their spectra since they are deter-
mined by their first and second moments. The representation (3.3) of the process x, is a
linear representation and thus is especially natural in the case of a normal process. Many
of the statistical techniques employed are linear techniques since they are based on this
linear representation. Nonetheless, they are still quite useful in obtaining information
about the linear structure of nonnormal processes.

If the time parameter t is continuous, the range of the X integration in (3.3) is from
- - to oo. If the parameter I ranges over the lattice points in k-dimensional Euclidean
space, the analogue of representation (3.3) is

(3.13) x= fi e"f ' dZ (X)
k

and the spectral distribution function F(X) is a function of the k-vector X. When I is a
continuous parameter, the X integration in (3.12) ranges over all k-space.
The representations of the process xi given here are valid if the weaker assumption of

weak stationarity of x, is made (see Doob [5]). Strong stationarity of xt has been assumed
because it is really made use of later on.

4. Moving averages and linear processes
We shall now motivate an assumption on the distribution of the stationary processes

xi dealt with. Consider the representation

(4.1)
EdZ(X) dZ(p)'=6xf(X) dX.

Note thatf(-X) = f(X). Assume thatf(X) 2 0 is a nonsingular matrix for almost all X.
We can then write

(4.2) f(X) a2 (X<) a(X)' a (- X) =a(X)

where a(X) is nonsingular almost everywhere. Let

(4.3) M= a-' (X) dZ (X).

Then

(4.4) Ett=
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and

(4.5) Ettt= ei(t7)x a-' (X)E [dZ (X) dZ (X)'] [a-' (X)1'

= 1L f ei('~T)XIdX= I 5,,.2sr

The process {xtI can be expressed in terms of the process {it ,

(4.6) xt = eitx a(X) [a-' (X)1 dZ(X)

= , ajf,eiW')xa-i ()) dZ (X) = iattj,

where aj = (1/2wr) fr exp (ijX)a(X) A. This representation is a moving average repre-
sentation of the process xt. The assumption that f(X) be nonsingular for almost all X is
not really necessary. It was assumed so that a simple and intuitively appealing derivation
of the moving average representation could be used.
We shall assume that the processes xt we deal with have such a moving average repre-

sentation where the {t's are independent vectors with independent components. Such a
process is called a linear process. We shall also assume that f(X) is continuous and non-
singular for all X. These assumptions are made so that the process xg will satisfy the cen-
tral limit theorem, that is,

(4.7) xt

is asymptotically normally distributed (see Moran [11]). Some of the results cited will
depend on this asymptotic normality. Some such restriction has to be made since not all
stationary processes do satisfy the central limit theorem. The linear processes are a fairly
broad class of processes including most of those processes one usually encounters, for ex-
ample, the normal processes, and the autoregressive schemes and moving averages of
finite order with independent residuals. The results cited probably hold for almost all
stationary processes satisfying the central limit theorem. However, most of the theorems
on the central limit theorem for dependent processes are not very clear or well adapted
for use in this context. It would, in fact, be of some interest to get a result indicating the
class of stationary processes that satisfy the central limit theorem that is useful and
meaningful in statistical work. Nonetheless, it is clear that any physicist would believe
that a process whose correlation time is small compared to the time interval of observa-
tion satisfies the central limit theorem.

5. Estimation of the spectral density
First consider the problem of estimating the spectral density f(X) when xt and t are

1-dimensional. Let t be integral and assume that one has observed the time series xi,
X2,* , xN. The statistics

C, 1 X*
(5.1) "V* =NN~== N '

= r*r. -5.,v<N
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are good estimates of the covariances r,. Sincef(X) is formally given by

(5.2) f() 2! E re-i
p--c

one might then be tempted to estimate f(X) by

(5.3) IN(X) _e__ 2 NIE x,e-i|

the periodogram. The periodogram is an asymptotically unbiased estimate

(5.4) lim EIN (X) = f (X)
N-+0

but unfortunately it is not consistent. In fact, the variance

(5.5) D2[IN(X)I-f2(X) >0

as N -X c. The periodogram IN(X) is asymptotically normally distributed with mean
f(X) and variance f2(X). Moreover, IN(X) and IN(/A), X #! i, are asymptotically inde-
pendent. This suggests that one might obtain a consistent estimate off(X) by smoothing
IN(G) by the law of large numbers. It should be noted that this is a statistical context in
which there are in general no unbiased estimates of f(X).

Let WN(U) > 0 be a nonnegative weight function of total mass 1,

(5.6) fWN(u)du= 1,

that is highly peaked in the neighborhood of u = 0. As N a-+, we want WN(U) to con-

centrate its mass more and more highly in the vicinity of u = 0. This will follow if for
every e > 0,
(5.7) WN (U) 0

uniformly for u ee as N - . Consider

(5.8) fN(XA) JfwN(U X) IN (x) dx

=-I r *W(ff) e-iv

as an estimate of f(X). Here

(5.9) W(N)= I (u) ei-dx.

Let xg be a linear scheme

(5.10) X= E a,
,--Co

with
Et2= 1

(5.11) t4<0c
and
(5.12) ak=O(Ik2+6), 5>o.
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If x8 is a normal process, the condition on the sequence ak will surely be satisfied iff(X)
has a third-order derivative. Let vN(u) = wN(u) * wN(u) where the * denotes convolution.
We assume that
(5.13) |ZVsN ( -) I1-|O
as N - for I u . A/N where A is any positive constant. One can then show that
fN(X) is asymptoticaly normally distributed with bias

(5.14) bN(X) =Ef (X) -f((X) ffwN(U) [f (U)- (X)] du+O (log N)

and variance

'(U - X)2f2f W()f2((5.15) D2[f*(X)1I N WN(- 2(u) du-2P X W2(u) du.
N -'- N JN\ d.

The estimatefN*(X) is clearly consistent if

(5.16) W2 (u) du = o (N).

This result is also true for a variety of weight functions wN(u) that are not necessarily
nonnegative everywhere (see Grenander and Rosenblatt [9]). The estimates fN(X),
fN(A), X, A > 0, X = A, off(X) and f(p), respectively, are asymptotically independent as
N - co. It is clear that there is an infinite class of weight functions WN(U) that lead to
consistent estimates of the spectral density f(X). Bartlett [1], [2] and Tukey [14] ap-
pear to be the first statisticians who proposed specific estimatesfN*(X) of f(X) of this type.

Typical choices of WN(U) are the Dirichlet kernel

1 sin hN+ )u
WN (U) =sinu

(5.17)
l, if |vI hN

p 0, otherwise,

and the Fejer kernel

Si 2 hN U
WN (U) =2hN hn U

(5.18)
01- lyl, if IvI. hN

W(N) =1 hN

10, otherwise,

where hN -a c as N -- o and hN = o(N). In many cases one prefers an estimate with
a nonnegative weight function like the Fejer kernel since such estimates are nonnegative
with probability one. This seems plausible since f(X) is nonnegative. Note that the Di-
richlet weight function is not nonnegative.

There is an "uncertainty principle" of sorts that holds here. As a typical example take
the family of estimates based on the Fejer kernel. If the variance of the estimate is made
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smaller, the bias of the estimate is increased and vice versa. It then seems reasonable to
minimize the mean-square error
(5.19) D2 [f* (X)] +b2N (X)

of the estimatefN*(X) of f(X). The asymptotic mean-square error of a number of specific
estimates has been examined in Grenander and Rosenblatt [9]. However, there is much
work that still ought to be carried out in this direction. Each estimate has to be examined
for a detailed evaluation of the mean-square error because the bias in general depends
on the shape of the weight function WN(U).

Note that the specific estimates mentioned above do not make use of all the sample
covariances r*, v = 0, 1,*, N, but only of the sample covariances r*, v = 0, 1,*, hN.
A typical choice of hN is hN = KNa, 0 < a < 1. In the case of the estimate using the
Fejer kernel the best choice of a is a = 1/3. The mean-square error is then O(N-V2) as
N - co. In effect one loses little by neglecting the sample covariances r* of high order v
since they contain little information. The class of estimatesfN*(X) of f(X) discussed above
are consistent because they give little weight to the covariances r* of high order v. The
periodogram IN(X) is not consistent because it gives too much weight to these high-order
covariances. It should also be noted that the truncation at v = hN of the specific esti-
mates mentioned above is convenient for computation because one does not have to
compute many of the r4. In general, since WN(X) behaves more and more like a delta
function at x = 0 as N -C c, w(v) is close to one when I v I is small compared to N.

However, since fw5N (x) dx = o (N) as N - w()I is very small, that is, practi-

cally zero, when I v is large and comparable to N.
We have thus far assumed that the mean value of the process mg = Ey =_0. In

many cases mt cannot be assumed to be identically zero. Consider the case in which the
mean value mg has the form of a regression
(5.20) mg = dlp(l) + d (2) + + dP(p(P)
where (p,(1),. ., P) are known regression sequences and the regression coefficients dv
are unknown. To avoid unnecessary complication we will confine ourselves to a brief
discussion of the case p = 2. The following condition is introduced to prevent the two
regression sequences s(1l) and p2) from becoming linearly dependent in the limit

(5.21) R= lim 1 < 1.
N__J

N

The intuitively plausible procedure in estimating the spectrum of the residual xc would
be to estimate the mean value mg, subtract it from the observation y, and apply the tech-
niques discussed above to the differences obtained. This intuitively plausible procedure
is reasonable. Assume that y, , YN have been observed. Let d*, d* be the "least-
squares" estimate of di and d2. By "least-squares" estimates we mean those estimates
computed under the assumption that the residuals xg are orthogonal. Then m*i=
dSpPt(') + d425 is an estimate of mt. Compute
(5.22) Y - mt* = Yt-d *(p(l) - d *(p2),t 1,* N.
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Now compute an estimatefN*(X) off(X) with y, - m*', t = 1, * * *, N in place of xi,* , XN.
The asymptotic expression (5.15) for the variance of fN(X) is still valid (see Grenander
and Rosenblatt [9]) if

(5.23) max wN(U) =O[fw2 (u) du]

The integral of such an estimate fN(X) of f(X)

(5.24) FN (X) ff (u) du

can be used as an estimate of F(X) = J f(u)du. Grenander and Rosenblatt [8] have
0

obtained the asymptotic distribution of

(5.25) VN max IFN (X) -F (X)

for a large class of these estimates. One and two-sample tests for the spectral distribution
function that are asymptotically nonparametric (with respect to the spectrum) are set
up for normal processes. The form of this statistic looks like the analogue of the Kolmo-
gorov statistic. However, this analogy should not be pushed too far as the asymptotic
distribution is not the same as the Kolmogorov limiting distribution. The context and
the proof are different. The limiting distribution is

(5.26) lim P I maxvN F* (X) -F(?) < a} P max | X1( ) < a
N--+C O;W.. N :5:

where 1(X) is the normal process with mean zero and covariance

(5.2 7) Ef7 (X) 7 (A) = e F (X) F (,U) + 2ir J f2 (u) du.

Here e is the fourth cumulant

(5.28) e=EZ4-3 .

It is curious and interesting that the parameter e which enters into the asymptotic re-
sults here does not enter into the asymptotic results on estimation of the spectral density.
However, it is clear that the magnitude of e will determine the sample size at which the
asymptotic results on estimation of the spectral density are valid. A heuristic derivation
of these results on the distribution of

(5.29) -vN max FN (X) -F (X)

is given in Grenander and Rosenblatt [6], [7] together with tables of the limiting dis-
tribution.

It would be interesting to get a rigorous derivation of the asymptotic distribution of

( 5. 30) SmaSx I fN (s) - f (X))|

or

(5.31) 0mIxax log 1(X) 1
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since one could then set up confidence bands for the spectral densityf(X). There are other
open problems in extending the asymptotic distribution theory of the spectral estimates
discussed above to the case of a continuous time parameter process. It is clear that ana-
logues of the results obtained above will be valid in the case of a continuous time parame-
ter but the tools required for a rigorous derivation may be heavier.

In the usual solution of the linear prediction problem, the spectrum is assumed known
(see Doob [5]). A discussion of the prediction error when the spectral density f(X) is
estimated is given in Grenander and Rosenblatt [9].

6. Another class of estimates of the spectral density
The estimates of the spectral density discussed in section 5 are particularly well

suited for computation on a digital computer. If great accuracy is desired in the compu-
tation, the time series will be discretized if it is not already in discrete form. The data
can then be analyzed by using an estimate of the class discussed in section 5.

In many contexts one has a continuous parameter time series and such great accuracy
in computation is not required. It is then convenient to set up an analogue computer to
compute the estimate. The following class of estimates are convenient to build into an
analogue computer.

Let xt, 0 < t < T, be the observed time series. Here xg and t are real valued. Assume
that xi is normally distributed. First mix the time series with a harmonic of frequency X
so as to get xt exp (itX). The complex form is used here for convenience in exposition.
Then filter the resulting series through the linear filter 4 so as to get

(6.1) zt = O;xteitx .

Let the transient response function of 4 be gT(U) where gT(u) = 0 when u < 0. Then

(6.2) Zt=f x.eia)gT(t-s) ds.

Let

(6.3) FT(U) =J e iusgT(t) dt, Jf% T(U) 12dU=1,

be the frequency characteristic of the filter 4Z. The function I .o((u) is assumed to be
highly peaked at u = 0. The mixing of xt with exp (itX) shifts the peak of JpT(u) to X,
the point at which one wishes to estimatef(X). The estimate off(X) is the average power
of the filtered message

(6.4) i*(X) =_| |ztI2dt.

Assume that |JpT(U) I is more highly peaked at u = 0 with larger sample length T. Under
reasonable regularity conditions on the transient response function (see Grenander and
Rosenblatt [9]) the variance of the estimate

(6.5) D2f[f*(X) f2(X) IfpT(U) 14du, x;O

and the bias

(6.6) bT(X) =Ef* (X) - f e [f (u) -(X)] VT(U ) Id
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A reasonable choice of gT(t) is

( 6 . 7 ) 81-~~~~~~~~t 2! 0,(6.7) {\Lt) ePt,t.r
~. 0, t<o,

where K= KT1/3. The mean-square error is then O(Y1213) as T-OC.

7. Estimation of the spectral density when the parameter is multidimensional
For convenience we discuss the case in which the process is real valued and the param-

eter is 2-dimensional. The parameter set T consists of the lattice points in 2-space. The
process xt, has the representation

(7.1) xt f=f ei`ff+iPdZ (X, A),

where

(7.2) E [dZ (X\, Ad) dZ (X2X d2) ] = 5,, X, a",1 s f (XI, 1X1) dXl dAl .

The spectral density f(X, 1s) is a function defined on the square - rw _ , IA w7r. The
covariances
(7.3) r7 r=f fei"x+i"f (X AX) dX dA.
Since xi, r is real valued it follows that

(7.4) r =rt, -

and
(7.5) fO,i,)=v(-X,-is).
Now assume that a sample xt, t = 1..N,N = 1,*= I , M, has been observed. We

want to estimatef(X, ,u) from this sample. Let us first construct a 2-dimensional analogue
of the periodogram

(7.6) I( is ) 2NM I x e-i e-i
t-1 t-i

Throughout this discussion xt, r is assumed to be a normal process. The results obtained
are valid for linear processes. We restrict ourselves to normal processes so as to simplify
the derivation. One can show that IN, M(X, is) is asymptotically unbiased

(7.7) lim EIN M (AX,I) =f (), ) .

However, it is not consistent just as in the 1-dimensional for
(7.8) D2 [INM(X,M s)] >f2AI X, i)

asN,M w.

Let WN, M(U, v) be a weight function

(7.9) WN,M (U, V) = (21 IWN M) e-i u-i
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highly peaked at u, v = 0. Let WN, m(U, v) be nonnegative and of total mass one

(7.10) f WfNM , m(u, v) dud v= 1.

We also assume that for every e > 0

(7.11) wN M(U, V) -0

uniformly for u I, v eE as N, M - . Consider the following estimate

(7.12) f, M (\X) f fWN, M (U -XI v-) IN,M (u, v) dud v

of f(i, IA). Then

(7.13) f *,m (X,M - 1 :7 w)e IAN ~~~(2Ti) 2 j r,. k WjNk' ) e t-k(2w2,.N kc--M

1) (N M) e'7'-i
t,-*i,-

Here
1 N-f M-k

1 r, k =IXt Xt+j,v+k, k_0,tM-I 7-1

is the sample covariance and is analogously defined forj, k with different sign. We shall
obtain the asymptotic variance of the estimatefN~,M(X, M) under fairly mild assumptions
on the weight function and the spectral density. Now

(7.15) NMD2[f*,M(X, &)]
1

(2wr) 4NM t CO (X t, 71 tj+j7 + Xt2, tI + 7,
5,, in tt, $I, 71,72

*W('V' M)wfXN, ) e-i:'-ik;te-irX-i*W

(C2wj) 4NAI 9'tat,,tj-,72tj-t,+j-1, 71-71+k-Mn) Mj, k, 1, m tt t2, 71 72 t,^,rt- jl +

+ t,-t1l, * -,r,mrt,-t,+j, T?-7,+k) WjN, M)WffM M) e-i)k-ikpe-i-iim
= SI + S2 .

Both of the terms S1, S2 can be treated in the same way. We shall consider the term S2.
Now

(7.16) S2 (2T)4 E .E(1 NX M
i, k, 5, in v.

r-1 a-r+, qW('bM)W| N, M) e-ij'-iipe-ilx-sm;sp-i, q-m +,qk ,k i

N if
(21r) Jr2 sin2 Isi22IUsi- f ( )If, f(U N sin2 u 2fVMsin2 jV}fduv

.wN,M(u-X, V-/A) 1* 1f(U, V)WN,M(UX,I v-) dudv
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where the * denotes convolution with respect to u, v. Assume that f(u, v) is continuous
and positive. Let

(7.17) VN, M (U, V) WN M (u, V) *WN M (U, V).
We also assume that

(7.18) | VN,M(U V) lIVN.M (0,0)
as N, M- co when I ul < A/N, I vI < A/M where A is any positive constant. It then
follows that
(7.19) S2,- (27r) {f (u, v)WN M(u X, v-/) }

*f (u, v) WN M(U , v-A) }U, V-O

= (2r)2ffJf2 (u, v) w2N,M(u-X, v-,y dudv

(27r) 2f2 (X, )f WNM(U, v) dudv

as N, M -s c. The same sort of argument shows that Si = o(S2) if (X, ,u) 5 (0, 0) and
SI - S2 if (X, j) = (0, 0). But then

(7.20) [fyM(~N-,M (ir)I - f2 (X, #)f fw m (u, v) dudvNM W

if (X, ,u) P (0, 0) as N, M -+ c. The asymptotic expression given in (7.20) should be
doubled when (X, I) = (0, 0). ThusfN^, M(X, IA) is a consistent estimate of f(X, A) if

(7.21) Nf fW2N, M(u, V) dudvO

as N, M- co.

These estimates are well suited for computation on a digital machine. It is rather
doubtful whether one could build useful analogue computers making use of the 2-di-
mensional counterparts of the estimates discussed in section 6.

The following problem is interesting and has not yet been answered satisfactorily.
Suppose that xt, T iS a continuous parameter process andf(X, JA) is known to be circularly
symmetric about zero. What would then be an efficient estimate of f(X, ,A) making use
of the known symmetry? There are, of course, many higher dimensional analogues of
this problem.

8. Estimation of the cospectrum and quadrature spectrum

Let x, = (I) be a process with real-valued components and t integral. The spectrum
is assuimed to be absolutely continuous with a continuous and nonsingular spectral den-
sity. The sample xi, I = 1, *, N, has been observed and we want to estimate the co-
spectrum Refi2(X) and the quadrature spectrum Imfi2(X) (see section 3).
We first discuss estimation of the cospectrum. Let a be any real number. The time

series ixt + a 2xt then has the spectral density

(8.1) fil (X) + 2a Re f12 (X) + a2f22 (X).
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Now

(8.2) f WN(U-X)2NI (Ixt+a 2xg) ei'sl du

is a reasonable estimate of the spectral density (8.1) if the weight function WN(U) satis-
fies the conditions cited in section 3. This implies that

(8.3) J WN(U- ) Re X2Nz xteiu82xTeiI du
t1I

N

-2r wN12r*cosvX

is an estimate of Refi2(X), where

(8.4) 12=N 2X,

But an argument similar to that of section 7 implies that

(8.5) covf WN (u-X) JIT Ilxt ei'udu,

X WN (U- X) 2wN 2xtei'u du

NIfl2() 12 W2 (u) du

= I [Re f12(X)P+ [Imf12(X)]2}fw2N(U)dU.
It then follows that the asymptotic variance of (8.3) is

(8.6) N tf11(X)f22(X)+ [Re f2()122-[Imf(X)] 2 w2(u)du.

One can see that a reasonable estimate of Imf12(X) is

(8.7) I (u X-) Im 2 eitu x,e i u du

2szw(N)12r* sinvX.2w_N

An argument similar to that given above indicates that the asymptotic variance of
(8.7) is

(8.8) {fll(X)f22(X) + [Imf12(X)]2- [Ref12(X)]21 w2, (u)du, X$O.

This expression for the asymptotic variance should not be taken seriously very close
to X = 0 as the estimate and Imf12(X) are zero at X = 0.

9. Prefiltering of a time series
The results given above are asymptotic results. Here asymptotic must be interpreted

not only in terms of the magnitude of N but also in terms of the variation of the spectral
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density. If, for example, one has a rapidly changing spectral density, one must expect a
certain amount of contamination in the estimation of the spectral density at such a point
from the immediate neighborhood. In many cases one will not know this beforehand.
However, one may be led to this belief from rapid change in the estimated spectral den-
sity. Tukey suggests that if one suspects this at a point one should prefilter the series so
as to smooth out the spectrum in the neighborhood of the point and estimate the spec-
trum of the filtered process. Assume the weight function WN(U) is rectangular for con-
venience, that is,

(9.1) WN (U) = {2h if ul h,

O, otherwise

(see [9]). Then the bias is asymptotically proportional to f"(X). Let us see what effect
such prefiltering has on an estimate of the spectral density and how it should most ad-
vantageously be set up.

Let so(X) be the frequency characteristic of the prefiltering. The spectrum of the
filtered process is then

(9.2) g (X) = js(X) 12f ()

Let the estimate of the modified spectrum be g*(X). Then f*(X) = g*(X)/ Io(X) 12 is
the natural estimate of f(X). The variance off*(X) is still asymptotically

(9.3) 2 fw(X)fw (u) du

so that it has no effect on the variance.
Let us see what effect it has on the bias. The estimate f*(A) now has bias propor-

tional to

(9.4) [=so(X) 1 2f() = ( ) + 2 ( (X) 12)' , ) + ( (X) 1 2)
I Pf\ 12 - ( 1(X) 12 1( 1(X) 12 -

In the case of a minimum at X

(9.5) f(X) >0, f'(X) =0,

andf(X) is small so that the bias is proportional to

(9.6) f (X) + ( I 1(X) 12 (X)

In smoothing the spectrum we would have | so(X) 12 high at X. If we have a maximum of
I (X) 12 near X then [I (p(X) 1 2]" < 0 so that if p(X) is expeditiously chosen the bias would
be less. It would then be best to choose (p(X) 12 So that

7
I p (X) 121 f f=(X)

(9.7) ljw(X)Do2 =- f (X)
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