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1. Introduction

In astronomy statistical distributions or frequency functions are often estab-
lished empirically from observational data that are affected by appreciable meas-
uring errors. The problem of correcting frequency functions for the effects of ob-
servational errors is therefore of great importance and has received considerable
attention. In the following we shall briefly summarize the solutions applicable un-
der various conditions.

2. One variable directly measured

For a given population or sample of stars we want to study the distribution
according to one variable x. We assume that for each individual of the population
a measured value { of the variable is available and that we have established the
frequency function Fo(£) from these data. To find the frequency function F,(x) of
the true values x we have to know the statistical distribution of the measuring
errors e. In the most general case the error distribution may vary with x, the
quantity measured; it must be considered as an array distribution

& (¢|x)

where x is to be treated like a parameter.
The three variables x, £, e are subject to the condition

E=x+e,

and the corresponding relation between the frequency functions can be written in
the two forms

+o
(1) Fo(6) = [ Fu(@)®(¢—x|2)ds

=/;:mF¢(E—e)<I>(e|E—e)de.

When Fy(£) and ®(e|x) are known this is an integral equation (Fredholm’s first
kind) for the determination of F,(x).

The most important special cases are:

(a) The error distribution is independent of x.
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(1) All measures are of equal accuracy and the errors have a Gaussian distri-
bution

(2) d(e) =

1
—— g (¢/0)?/2
oV2r ¢
where ¢ is the so called mean error of the observations. The solution of the integral
equation (1) is accomplished by means of interpolation formulae or interpolation
series or by numerical methods. When the errors are relatively small, the Edding-
ton series

3) FU(E) =Fol§) =S RO + SR () — ...,

where F,(£) is the value of F,(x) for x = £, generally gives a good approximation.

(2) The measurements £ are not of the same accuracy and are assigned different
weights. The individuals of the population are divided into 7 groups according to
the weight w; or the corresponding mean error o;. The fraction of the population
having £ measurements of a mean error o; is designated as »(s;) and we assume
that the weight distribution »(s;) is independent of x. The error law

1 < 7 ——emz
4 ¢<e>=\/2—7;2”(:.) g (elo) /2
i=1 [

is no longer of the Gaussian form, but the series (3) can still be used with average
values of ¢% and ¢*

(5) ;E=Ev(a,-)af; F=iv(m)v§.

i=1 i=1

(b) When the error distribution varies with x, the variation is usually of the
following two types, the second being more general and including the first as a
special case:

(1) The mean error of measurement changes with x; in the error law (2) the
dispersion ¢ must be replaced by a function ¢(x).

(2) The weight distribution changes with x; in the error law (4) we have to re-
place »(a;) by »(a:|x).

The solution of the integral equation (1) in these two cases is somewhat more
complicated but can be obtained by numerical methods. When the variation of o

or »(o;) with x is very slow so that the derivatives o’ (x), EEE v(o:|%), . . . are
negligible, the series (3) can still be used by substituting variable values o2(%),

o*(®), D ot(oil ), D] o(oilB) for a2 ot L. .

3. Two variables directly measured

Between the true values #, y of two variables, the measured values £, 4 and the
errors ¢ of £ and e of 5, we have two conditions

E=x+4 e, =19+ e.

In the most general case we have to consider a bivariate error distribution which
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may vary with x and y
6) ® (e, €2|x, y) .

The true distribution F,(x, y) of the two variables is obtained from the distribution
Fo(&, ) of the measured values by solution of the double integral equation

+o +oo )
(M Fgm) = f [ Fux @ -5 0—y|x, y)dxdy.

a) The simplest case, most frequent in practice, is that where the two errors ¢,
€2 are independent of each other and independent of the variables x, y. The error
function (6) is then reduced to

@, (&1) P2 (e2)

and the double integral equation (7) can be solved in two steps

+c
(8) Folt,m) = f H(z,m)&(§—)dx,

B = [ Fs o=y dy.

By the first equation we correct the £-distribution of each g-array for the errors
in £ and obtain the distribution H(x, n) of the true x-values and the measured
n-values. By the second equation we correct the 5-distribution of each x-array for
the errors of 5. The solution of the bivariate problem is thus resolved into a series
of solutions each of which involves only one variable.

For small errors with Gaussian distributions the solution can be given in the
form of a series similar to the series (3).

af 9%F, o 0 Fo

9) Ft(f: "l) =F0(£,7]) 76_52—7 e S0

A generalization of this series using the even order moments of the bivariate error
distribution will also cover the cases where ¢; and e; are correlated but independent
of x, v, and where the observations are of unequal weight.

b) When the two errors are independent of each other while the distribution of
€ varies only with #, that of e; with y or with both x and y the frequency function
of the errors has the form

&1 (e1] %) B2 (e2]x, y)

and the correction for observational errors can still be made in two separate steps
similar to equations (8).

4. One variable calculated from several observed quantities

We are often interested in the distribution of a variable ¢ which is not directly
observable but is a known function

t=f@y..)

of several observable quantities #,y, . .. . The problem then is to find the true
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frequency function G(f) from measured values £, 7, . . . of these quantities, the
measurements £, », . . . being affected by observational errors e, €, . . . .

a) Therigorous method consists in first establishing the distribution Fo(%, 7, .. .)
of the measured values and correcting this distribution for observational errors
by one of the methods discussed under section 3. The true distribution F(x, y, . . .)
is then transformed to a new set of variables which includes ¢ defined by ¢ =
f(x, 9, ...); the most convenient is usually to eliminate one of the variables—say
x—and express it in terms of ¢, ¥, ... . By integration over all variables other
than ¢ we obtain

(10) G, (1) =f°°Ft[x(t, gy ) Py .16’“—(”%'—) dy
The difficulty with this method is that it requires a very large population, since
we have to establish a bivariate or multivariate distribution.

b) More direct but approximate methods based on series developments may be
used, provided the observational errors are relatively small and have independent
Gaussian distributions with mean errors o1, o2, . . . . From the measurements £, »,
... we calculate

r=f(&m,...)

for each individual and establish the frequency function Go(7). If we neglect terms
of fourth and higher orders in o1, o9, . . . the true distribution G,(¢) is found from
Go(T) by

O'i (_i2_A1 dBl)_O'g d2A2—de) %
2\drr dr/) 2\de dr/)

—Ga(f)3§(2 %_Bl)+f2_§(2 d—dA72—Bz)+ o

(1) Gi(r) =Go(n{1-

2

2
~6i( 4G 4+ F At ]

The functions A4,(7), As(7), . .., Bi(7), Bs(7), . . . are means.formed for succes-
sive intervals of 7:

A:(r) =E[(g—£ ’ ] A =E[(%§ ' o
Bi(r) =E[§£—f2] By(r) =E[-‘;—nf2 o

The regressions A;, By, . . . can be established empirically from the observational
data even for a population of moderate size. Often, however, it is possible to derive
some of them from theoretical considerations.



