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1. Introduction
Let Q be an abstract space of points w, and let Pr{ * } be a probability measure

definDed on some Borel field of w sets. The sets of this field will be called measurable.
A family of (real or complex valued) random variables, that is of measurable w
functions, is called a stochastic process. We shall use the notation {x(t), t E T} to
denote a stochastic process. Here T is the parameter set of the process, and x(t) is
for each t E T a random variable, taking on the value x(t, w) for given t, w. For
fixed w, x(t, w) determines a function x(., co) of t E T. The functions of t determined
in this way are called the sample functions (or sample sequences if T is finite or
denumerable) of the process. The random variable x(t) can also appropriately be
denoted by x(t, *), but the latter notation will not be used. The phrase almost all
sample functions will mean for almost all w.

Suppose that our old friend Peter is playing a fair game with his old friend Paul
(or suppose that the classical situation is modernized, so that a SCIENTIST plays
NATURE). Suppose that at time t our protagonist has fortune x(t). One mathe-
matical version of a fair game is obtained by supposing that x(t) is a random
variable, and that our protagonist's expected fortune at time t, in view of his pre-
vious fortunes up to time s < t, is simply x(s). More precisely our mathematical
version of a fair game is a stochastic process {x(t), t E T) for which T is a simply
ordered set, for which

E I x (t) I} < Et T,
and for which

E {x (t) I x (r), r < s}= x (s)

with probability 1, if s < t. A stochastic process satisfying these conditions is called
a martingale.

If x is a random variable, it will be convenient to denote the X set where
x(X) E A by {x E A). Here and in the following, in this connection, it will be
understood that A is a linear set if the random variable x is real and a plane set
if x is complex. The co measure of the indicated set will be denoted by Pr{x E A },
if this w set is measurable. The corresponding conventions are made if more than
one random variable is involved. The integral of a random variable x on a meas-
urable set A will be denoted by

fAxdPr.
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Let {x(t), t E TJ be a stochastic process, let I be a parameter value, and let A be
a Borel set. The w set {x(t) E A I is then a measurable set. Every w set in the Borel
field of X sets generated by those defined in this way, for all t E T and all A, or
which differs from a set in this field by at most an co set of probability 0, will be
said to be a set determined by conditions on the x(t)'s.
We can rephrase the definition of a martingale as follows, using the terminology

of the preceding paragraph. A martingale is a stochastic process {x(t), t E T}, for
which T is a simply ordered set, for which

(1.1) E {Ix (t) } < tE T,
and for which
(1.2) ft.x(t)dPr= Ax(s)dPr, s< t,

for every w set A determined by conditions on the x(r)'s for r <_ s. In this version of
the definition it is obvious that if the random variables of a martingale are com-
plex valued, their real and imaginary parts determine stochastic processes which
are also martingales. Using this fact it is possible to reduce theorems on complex
martingales to theorems on real martingales.

The concept of fairness of a game is of course rather vague, and the martingale
equality (1.2) cannot be expected to embody all our notions of fairness, or even to
be consistent with all of them. However the intuitive notion of a fair game is help-
ful in the theoretical analysis of martingales.

The results of this paper are for the most part contained in a forthcoming book,
and the justification for their publication here is the infinite time required to
write the book. Previous work on martingales has been done by Levy [1], [2],
Ville [3], and the author [4]. The "known theorems" referred to below can all be
found in the last reference.

2. Examples
(a) Let {x(t), a < t _ b} be a stochastic process with independent increments,

that is, it is supposed that whenever

a _ to < . .. < tn, _ b ,

the random variables
X (ti) - X (to) X...XX (I.) - X (tn-1)

are mutually independent. We make the following assumptions:

E {I x (t)-x (s) < -

a < s, t< b
E {x (t) -x (s) = 0.

Then the process
{x (t)-x (a), a _ t < b}

has independent increments and is a martingale.
(b) Let {x(t), a < t _ b} be a real process with independent increments. Let 4

be the characteristic function of the random variable x(t) -x(a),
4 (t, X) = E {eixEZ(t)f(a)] } I
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and define

x(t) =e _t-(a)
This definition assumes that X is chosen so that 4(t, X) #6 0. If 8 is chosen posi-
tive, and so small that

4, (b, X) 5;-5 0, 1 Xl - X,
the equation

4b (b, X) = 4) (t, X) E {eiX[x(b)-x(t)]
shows that

)(t, X) , a_ t_b-
Thus for each X with XI _ 8 there is an x(t) process and this process is readily
checked to be a martingale.

Examples (a) and (b) show how it is possible to reduce properties of processes
with independent increments to properties of martingales. The following example
shows how it is possible to reduce properties of Markov processes to properties of
martingales.

(c) Let {x(t), a _ t < b} be a Markov process, and let A be a Borel set. Fix u in
the parameter interval, and define

x(t) = Pr {x(u) E A|x(t) }, a tu< ,

that is x(t) is the conditional probability that x(t, w) E A, for the past of the
process given up to time t. Then x(t) is a random variable and the x(I) process is
a martingale.

(d) Let T be a linear set, unbounded on the right, and let

{xi (t) , t T} , i = 1, 2

be two stochastic processes (not necessarily defined on the same w space). Let co be
a function of t E T, real if the processes are, and complex otherwise, and let Q be
the space of all functions o. Let tl, . . . , t. be any finite parameter set, and let
A1, . . . , A. be any Borel sets. Consider the class of functions g, with argument
t E T, satisfying the relations

(2.1) g(tj) E Ai, ,= l,...,n.

This class is an co set. Let Fe be the Borel field of Xo sets generated by these sets,
with ti's _ t. We define two measures of X, sets as follows. In the first place if A is
the co set determined by the relations (2.1) we define

Pri {A} = Pr{xi (ti) E Aj, j = 1, ... , n} , i = 1, 2,

and the i-th set function is then extended in the usual way, following Kolmogorov,
to the Borel field of sets generated by those for which we have already defined it.
We thus have two probability measures defined on the same field of sets of func-
tion space Q. Consider the field Ft of co sets, and suppose that on this field Pr,
measure is absolutely continuous with respect to Pr2 measure, that is there is a
random variable y(t), defined on Q and measurable with respect to the field Ft,
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whose expectation exists, such that

Pr({A} =fj (t) dPr2, AEF,.
The stochastic process { y (t), t E TJ is a martingale relative to Pr2 measure. In fact

E{ly(t) I=Jg,y(t)dPr2 =Pri{Q} =1< ,

and more generally, if A e FJ, and if s < t, so that A E et also,

fy (t) dPr2 = Pr{A} =f, (s) dPr2.

Since in particular A can be taken as any co set determined by conditions on the
y(r)'s with r _ s, the latter equality means that the y(t) process satisfies the mar-
tingale equality (1.2). When T is the set of positive integers, y(n) is called the n-th
likelihood ratio, and plays an important role in statistics.

3. Martingale inequalities
The following two theorems are basic in the study of martingales.
THEOREm 3.1. Let {x(t), t E T} be a real martingale with an enumerable parameter

set T, and suppose that T has a last point b. Then for every real c

(3.1) cPr{sup x(t)_c}_ E{ Ix(b) I.
tET

This theorem is known, and is due essentially to Ville. It is proved for finite param-
eter sets T first, and the general case is then obtained by the obvious limiting pro-
cedure. Applying the theorem to the martingale {-x(t), t E T} we obtain
(3.1') cPr{ inf x (t) _ c -E{ x (b) }

tET

for all real c, and combining the two inequalities we obtain

(3.2) cPr{supjx(t) I.c}<2E{ lx(b) I I
tE T

for all real c.
Let cl, . . , c,, be any real numbers, and let r1, r2 be real numbers with r1 < r2.

The number of upcrossings of the interval [ri, r2] by c1, . . . , c, is defined as the num-
ber of times the sequence cl, . . . , c,, passes from below r1 to above r2. More pre-
cisely let c,l be the first ci if any for which c1 _ ri, and in general let cn, be the first
ci if any after c,,,, for which

c1_ r2, j even,

ci < ri, j odd,
so that

Cni _ ri, Cn2 _ r2, Cn3 < r,.

Then the number of upcrossings is ,1, where 2,B is the largest even integerj for which
c,n is defined, and #3 = 0 if c,,2 is not defined.
THEOREM 3.2. Let {x, j _ n} be a real martingale, and let ,B be the random variable

whose value at w is the number of upcrossings of [r1, r2] by the sample sequence corre-
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sponding to co. Then

(3.3) E }-'0z__r2 (x-ri)d)Pr_E-{ I xn-rl- r

To prove the theorem define w functions i1,*...., .n in terms of the xl, x..,
sample sequences as described above in the definition of ,B, defining n7j = n + 1 if
the above definitions have not already defined 1j. For example

lql= ...* = tq = n + 1

if min xi > r1. The qj'S and ,B are now random variables, and we have
j

(3.4) xr(X- rl)dPr> (xn- rl) dPr
4n2:rjl i21 {vi:n'172i+ I>n)

=E wf (x -ri) dPr-zf (X-rl) dPr.
i21 t712i-n} ~~~~~i>lf('12 i+1:5n)

Now using the martingale equality and the definition of the n71's,

J:; } (x. - ri) dPr = (xj-rl) dPr _ (r2-rl) Pr{12i j}, j _ n

and
J xX- ri) dPr=J (xj- ri)dPr 0, j_n.

Hence (3.4) implies that

J(Xn-rl)dPrE(xn-r1)dPr
i>1 i-1 'i=j)

i>1 j=1
= (r (r2-rlPr 172i j I
=(r2 - rl) 'FlPr { 2i< nl

i.1

= (r2- ri) 1Pr{I3 i}
t.1

=(r2- ri)E{1},
as was to be proved.

4. Regularity properties of martingales
Let {x(t), I E TI be a martingale. Then it is known that E{x(t)} is independ-

ent of t, and that ER I x(t) is monotone nondecreasing in t. Suppose now that
T is the set of positive integers, and let #n(ri, r2) be the random variable whose
value for any w is the number of upcrossings of [ri, r2] be the sample sequence of
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x(1),... , x(n) corresponding to the given w. Then by theorem 3.1,

(4.1) cPrImaxJx(j) > c}I2EII x(n) I },
iSn

and by theorem 3.2

(4.2) Et An ( rl, r2) I `E (n) - i }
r2- r,

Now suppose that
limE{Jx(n)J }=K<o~.
nf- c

Then when n - in (4.1) we find

cPr{supjx(j) J_ c} _ 2K.
j

This inequality implies that almost all sample sequences of the x(n) process are
bounded, with probability 1. Moreover

01 (rl, r2)-5 2 (rl, r2) 5 (ri, r2) ,

and when n - in (4.2) we find

(4.3) E{6c(rj, r2) }- r
K ril

Since

{lim sup x (n) > lim inf x (n)}= u {lim sup x (n) > r2> r, > lim inf x (n)
na:n_CO o Ir12 con -+cao

( r1, r2 rational)

and since almost all sample sequences of the x(n) process are bounded sequences,
it follows that unless lim x(n) exists and is finite with probability 1 there is a pair

n ->
ri, r2 such that

Pr{lim sup x (n) > r2> ri >lim inf x (n) } > 0

With this choice of ri, r2,
Pr {10 (r1, r2) = X > 0

[because on an X set of positive probability x(n, w) > r2 and x(n, co) < ri for in-
finitely many values of n], and this contradicts (4.3). Thus we have proved the
theorem that if

then the sequence {x(n) is convergent (to a finite limit) with probability 1. We have
given the proof of this known theorem in detail in order to illustrate the applica-
tion of theorems 3.1 and 3.2, and to exhibit the close connection between this
convergence theorem and the fundamental theorem on the sample functions of
continuous parameter martingales (hitherto unproved) which we now proceed to
prove.

THEOREM 4.1. Let {x(t), a _ t _ b} be a martingale, and let R be any denumerable
subset of the interval [a, b], everywhere dense in this interval. Then almost all sample
functions of this martingale coincide on R with functions defined on [a, b] which have
finite left and right hand limits everywhere on [a, b].

The usual transition from denumerable to nondenumerable parameter sets (or
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rather any one of the usual transitions) shows that this statement becomes, if sto-
chastic process measures are defined suitably, the statement that almost all sample
functions of a martingale {x(t), a _ t _ b} have finite left and right hand limits
everywhere on [a, b]. The strongest previous result in this direction [4] is the
existence of the left hand limit described in the theorem.

In proving the theorem we shall suppose that the martingale is real. If it is not
real, the theorem can be applied to the martingales determined by the real and
imaginary parts of the random variables of the given martingale. It is no restric-
tion to assume that R contains the point b, and we shall do so. According to theo-
rem 3.1, as applied to get (3.2),

cPr{supIx(t) c} _ 2E Ix(b) }.
tER

Hence almost all sample functions are bounded on R. Let ti, t2 .... be the points of
R, enumerated in some order. We shall suppose that tI = b. Let r1, r2 be any real
numbers with r1 < r2. Let t("), . . , t5n) be the first n tI's, ordered so that
t(n) < . . . < tnn), and let Mnk be the w set corresponding to the sample sequences
of x(tP)), . . . , x(tn")) for which the number of upcrossings of [ri, r2] is _ k. Then

(4.4) Mlk c M2k C * * * X

and, using the majorant of the expected number of upcrossings provided by theo-
rem 3.2, we find

(4.5) Pr{M1}k <E{E x(b) -nlr
(4.5) ~~~~~~~~k(r2- rl)

Now suppose that a bounded sample function g(t) corresponding to some c does
not coincide on R with a function defined on [a, b] which has finite left and right
hand limits everywhere on [a, b]. Then there is a point s such that for some rational
pair r1, 72 either

lim sup g (t) > r2 > ri > lim inf g (t) X t ER,
tie tTs

or the same inequality is true with tIJ s. Then with this choice of r1, r2 the number
of upcrossings of [ri, r2] by g(t(n)), . .. . g(tn")) becomes infinite when n - . Thus
if M is the w set corresponding to the sample functions g(t)
(4.6) Mc u nUMnk, ri, r2 rational.

ri,r2 k n

Now, according to (4.4) and (4.5),
Pr {UMI }UM. k (b) -r,j

n ~k(r2- ri)
so that

Pr{nUMnkj = 0
k n

It then follows from (4.6) that
Pr{Ml = 0,

as was to be proved.

5. Discussion of the examples of section 2

(a), (b) In examples (a), (b) of section 2 we are dealing with processes with
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independent increments. L6vy has shown that if {x(t), a < t . b} is such a process,
there is a t functionf (not depending on co) such that if

xi (t) = x (t) - f (t),
the limit random variables

limxi(s) = xi(t-) limxl(s) =xl(t+)

exist and are finite in the following sense: the limits are to exist with probability 1
whenever s approaches t from below or above as the case may be, if s approaches t
along a sequence of values. Moreover, neglecting values on co sets of zero prob-
ability, these limits are independent of the sequence of values along which s -3 t.
The xi(t) process obviously also has independent increments. If we can take
f(t) 0_, we shall call the x(t) process centered. For example the xl(t) process is
centered. Levy proved that if {x(t), a < t _ b} is a centered process with inde-
pendent increments, and if R is any denumerable subset of [a, b], dense in [a, b],
then almost all sample functions of the process coincide on [a, b] with functions
defined on this interval which have finite left and right hand limits everywhere.on
the interval. In the special case of example (a) we have supposed that

E {x (t) - x (s) -1 0,

and in this case theorem 3.2 implies the Levy result, and shows that the original
process is already centered. In the general case discussed in example (b) the proc-
ess may not be centered. Hence although the x(t) process sample functions [see
example (b)] are subject to theorem 3.2, we cannot come to any conclusions about
the x(t) process sample functions without making hypotheses insuring regularity
of b(t, X) in t. However if the process is centered, 4b(t, X) must have right and left
hand limits at each t, and the Levy theorem is then easily derived from theo-
rem 3.2.

(c) Suppose that {x(t), a <_ t < b} is a Markov chain with stationary transi-
tion probabilities, determined by initial probabilities

pi = Pr {x (O) = i, i = 1, 2, . . .

and transitional probabilities

p,j(t) = Pr {x (s + t) = jt x (s) = i, i,j = 1, 2, . . .

Then, as noted in section 2, for each u, j the process

{PI(t)j (u t), a _ t < u}

is a martingale. A weak version of theorem 3.2 has been used to derive the con-
tinuity properties of Markov chain sample functions from those of martingale
sample functions. More general Markov processes will be treated in this way in a
forthcoming paper by J. R. Kinney.

(d) The general likelihood ratio y(t) defined in example (d) of section 2 de-
termines a martingale { y(t), t E T} with nonnegative random variables, and

E I v (t) I = E I s (t) I = 1 . t E T .
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By hypothesis T is unbounded on the right. Suppose that

t4 < t2 < . . . . t. co* tnE T .

Then {x(tj), n _ 1} is a martingale, and by the convergence theorem proved in sec-
tion 2 it follows that
(5.1) lim5y(I") =Y(co)

n co

exists and is finite with probability 1. Since this limit exists for every such param-
eter sequence {t)}, and since any two such parameter sequences can be combined
into a single one, the limit x(-) must be independent of the parameter sequence
involved, neglecting values taken on w sets of probability 0. Moreover if
t, -+ c, with 4, E T, (5.1) remains true even if the parameter sequence is not
monotone, because the t,'s can be reordered to be monotone. It can then be con-
cluded [5, theorem 1.3] that if R is a denumerable subset of T, unbounded on
the right,

lim5y(t)='(o), .tER,
tTo

with probability 1. The random variable y(t) is not uniquely determined. Since
it was defined as a density function, it can be changed arbitrarily on an co set of
probability 0. Using this fact it can even be shown that y(t) can be defined for each t
in such a way that

gtco
with probability 1. Thus in these various senses there is a limiting likelihood ratio
y(- ). It is easily seen that, in the terminology of section 2, Pr, measure is absolute-
ly continuous with respect to Pr2 measure if and only if the y(t)'s are uniformly
integrable; this is in turn true if and only if

E {y (o) I = 1.

In the general case we can only say that

E J,y (x) <.1.
A more detailed discussion in the special case when T is the set of positive integers
and [using the notation of section 2 example (d)] the random variables

xi (1) , xi (2),*.*.-
are mutually independent, for i = 1, 2 has been given by Kakutani [6].
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