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Abstract. Recently -  via a simple trick, amounting essentially to a change 
of independent, and possibly as well of dependent, variables -  the possibil­
ity has been noted to modify a quite general evolution system so that the 
modified system possess a lot of completely periodic, indeed isochronous, 
solutions. Generally these isochronous solutions emerge out of an open do­
main of initial data having full dimensionality in the space of initial data. And 
many of the isochronous systems obtained in this manner seem rather inter­
esting. In this paper these developments are reviewed, mainly in the context 
of dynamical systems (systems of ODEs -  in particular, systems interpretable 
as many-body problems), and some specific examples are discussed in detail, 
including an analysis of the transition (to motions with higher periods, or ape­
riodic, or perhaps chaotic) occurring when the initial data get outside of the 
region producing isochronous motions. The applicability of this approach in 
the context of nonlinear evolution PDEs is also outlined.

Introduction

This review paper covers the material presented at the International Conference on 
Geometry, Integrability and Quantization held in Varna (Bulgaria) in June 2004, 
via four lectures organized as follows: 1. Overview: “isochronous systems are not 
rare”; 2. The “goldfish”: theory and simulations; 3. Novel technique to identify 
solvable dynamical systems and a solvable extension of the goldfish many-body 
problem. 4. Isochronous PDEs.

Lecture 1

1. Overview

An isochronous system is characterized by the property to possess an open domain 
having full dimensionality in phase space such that all the motions evolving from
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12 Francesco Calogero

a set of initial data in it are completely periodic with the same fixed period. The 
natural measure of this open domain might, or it might not, be infinite when the 
measure of the entire phase space is itself infinite: for instance, if the entire phase 
space is the two-dimensional Euclidian plane, such a domain might be the exterior, 
or the interior, of a circle of finite radius.
It is justified to call such systems superintegrable, or perhaps partially superin- 
tegrabie inasmuch as the property of isochronicity of all their motions holds only 
in a subregion of the entire phase space. This terminology is justified by the ob­
servation that, roughly speaking, all confined motions of a superintegrable system 
-  in which all but one of the degrees of freedom are constrained by the existence 
of the maximal possible number of constants of motion -  are completely periodic, 
although not necessarily all with a fixed period -  entailing that isochronicity entails 
superintegrability, while the converse is not the case.
For instance a well-known isochronous system is the one-dimensional A"-body 
problem characterized by the (normal) Hamiltonian

N N
H {z.p ) = CPn +  +  T S

n =  1 ( Zn Zm )'

and correspondingly by the Newtonian equations of motion
N

•'-n “F UJ <,n — ^  ]
(•'-n %)"

Here and always below to is a positive constant, to > 0, and the rest of the notation 
is, we trust, self-evident; in particular superimposed dots denote differentiations 
with respect to the real independent variable t  (“time”). Indeed, in the real domain, 
all the solutions of these equations of motion are isochronous, completely periodic,

z(t +  T) = z( t )

with the fixed period

( 1)

This is not quite true in the complex domain, namely if we consider the dependent 
variables zn to be complex rather than real (in which case we might as well allow 
the “coupling constant” g to be complex, while we always consider the constant to 
to be real, indeed, without loss of generality, positive). Then all motions, which 
take of course place in the complex plane, are again completely periodic, but the 
period may be an integer multiple of T. Indeed also in this case the particle config­
uration does repeat itself with period T, but the individual particles might exchange 
their roles, entailing that the period of the motion become an integer multiple of T  
(this cannot happen in the real case, when the motion takes place on the real line
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and the ordering of the particles cannot change throughout the motion due to the 
singular character of the repulsive two-body interaction).
Hence the many-body problem characterized by this Hamiltonian is isochronous, 
both in the real and in the complex contexts; and the open domain of initial data 
for which it possesses the isochronicity property coincides in this case with the 
entire phase space, with the only exclusion of a lower-dimensional set of initial 
data yielding motions leading to particle collisions (this can of course only happen 
in the complex case). And it is of course well known that this A"-body problem is 
superintegrable (see for instance [14]).
Another isochronous system (albeit only if it is considered in the complex case) is 
the more general A"-body problem characterized by the (normal) Hamiltonian

1 N  1 N
H(z .p)  = W ( p Z + ^ z * n ) + 1-  £

n=1 4 A ̂  , {/-n
(2a)

*m)

and correspondingly by the Newtonian equations of motion

Zfi 4~ uj Z-n
N

E 9n m
(zr V3 ‘ (2b)

This A"-body problem differs from the previous one because the coupling constants 
gnm are now permitted to be arbitrarily different (except for the obvious symmetiy 
restriction gfim =  g^nn, see (2a)). Indeed it has recently been shown [14,15, 32] 
that these Newtonian equations of motion yield a completely periodic motion with 
period (1), provided the initial data fall in an appropriate (open) domain, which 
however generally does not include only real data.

1.1. Isochronous Systems are not Rare

To convince the (possibly skeptical) reader of the validity of the assertion that 
constitutes the title of this section, we now show that, given a largely arbitrary 
dynamical system, it is possible to introduce a deformed version of it featuring a 
real constant ic. that has the following properties: for uj =  0. it coincides with 
the original, undeformed system. For to > 0, it possesses an open region having 
full dimensionality in its phase space such that all solutions evolving from an initial 
datum in it are completely periodic with a period T  which is a finite integer multiple 
of the basic period T, see (1), namely the deformed system is isochronous [18,25, 
27].
Let us indeed consider a quite general dynamical system, which we write as follows

C' =  F (0  r ) . (3)
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Here £ =  £(r) is the dependent variable, which might be a scalar, a vector, a ten­
sor, a matrix, you name it. The independent variable is r ,  and the main limitation 
on the dynamical system (3) is that it be permissible to treat this variable as com­
plex. This requires that the derivative with respect to this complex variable r  that 
appears in the left-hand side of the evolution equation (3) make sense, namely that 
this dynamical system be analytic, entailing that the dependent variable £ be an 
analytic function of the complex variable r  (but this does not require £(r) to be 
a holomorphic nor a meromorphic function of r  and £(r) might feature all sorts 
of singularities, including branch points, in the complex r-plane, indeed this will 
generally happen since we generally assume the evolution equation (3) to be non­
linear). The quantity F  in the right-hand side of (3) -  which has of course the same 
scalar, vector, matrix . . .  character as £ -  might depend (arbitrarily but analytically) 
on £ as well as on r . (The possibility that this dynamical system might also fea­
ture other, “spacelike”, independent variables -  for instance, be a system of PDEs 
rather than ODEs -  is treated in the last lecture.)
In spite of the generality of this dynamical system, (3), there generally holds a 
result (like “Theorem of existence, uniqueness and analyticity”) that characterizes 
the solution £(r) of its initial-value problem determined by the assignment

Here, for notational simplicity, we assign the initial datum £o at r  =  0, and we 
assume of course that the right-hand side of (3) is not singular for r  =  0 and £ =  
£o. The relevant result (see for instance Section 12.21 of [351) guarantees, not only 
for the initial datum £o, but for a (sufficiently small but open) set of initial data in 
its neighborhood, the existence of a circular disk in the complex r-plane, centered 
at r  =  0 (where the initial data are assigned) and having a nonvanishing radius 
p, such that the solutions £(r) corresponding to these initial data are holomorphic 
in it, namely for |r | < p (and note that if £(r) is a multicomponent object, the 
property to be holomorphic is featured by each and everyone of its components).
Let us now introduce the following changes of dependent and independent vari­
ables [101

This transformation is called “the trick”. The essential part of it is the change of 
independent variable (4b): and let us re-emphasize that, here and hereafter, the 
new independent variable t. is considered as the real, “physical time” variable. 
Note that (4b) entails

C(0) =  £o-

z(t) = exp(iA ̂ ) £ ( t ) (4a)

(4b)

r(0) =  0. f  (0) =  1
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and, most importantly, that r(t)  is a periodic function of t  with period T, see (1). 
More specifically, as the time t  increases from zero onwards, the complex variable 
r  travels counterclockwise round and round on the circle C  the diameter of which, 
of length j ,  lies on the imaginary axis in the complex r-plane, with one extreme 
at the origin, r  =  0, and the other at the point r  =  |  , making a full circle in the 
time interval T.  As for the prefactor exp(iAtot) that multiplies ( ( r )  in the right- 
hand side of (4a), its putpose is to allow, via an appropriate choice of the parameter 
A, the deformed system, see below, to have a neater look; however this choice is 
hereafter restricted by the condition that A be real and rational, say

with p and q two coprime integers and q > 0. This restriction is essential to 
guarantee, via (4), that if ( ( r )  is holomorphic in r  in the (closed) disk encircled 
by the circle C, then z(t) is completely periodic (namely, each and everyone of its 
components is periodic) with the period

f  = qT. (5)

The deformed dynamical system is the one that obtains from (3) via the trick (4). 
It clearly reads as follows

z =  iAujz +  exp[i(A +  l)u)t]F |exp(—iA^tjz; ^ ^ . (6)

And it is plain, on the basis of the arguments we just gave, that this system is 
isochronous, a sufficient condition for the complete periodicity with period T, see 
(5), of its solutions being provided by the inequality

2
-  < Pto

which can clearly be satisfied by initial data situated inside an open domain of such 
data, at least provided to is sufficiently large (actually, in all the examples reported 
below no restriction on the value of to is required, namely such an open domain 
exists for any arbitrary value of’a; > 0).
The isochronicity of this deformed dynamical system, (6), is a rather obvious con­
sequence of the way it has been manufactured. But, trivial as the emergence of 
this property might indeed be, the remarkable fact is that the class of isochronous 
dynamical systems that can be manufactured in this manner is not only vast, but 
it does include many instances which this author considers quite interesting (al­
though the final assessment on the validity of such a value judgement must be 
left to the reader). Some of these examples are reported below, and for others the 
interested reader will be referred to the relevant literature. Note however that in
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this review paper as a rule we limit our presentation to exhibiting isochronous dy­
namical systems obtained via this approach, without providing any detail of their 
derivation nor any characterization of the (open) region of their phase space where 
they behave as such.

1.2. Examples

In this section we report tersely several examples of isochronous dynamical sys­
tems; in each case we also provide the reference where more information can be 
found. Except when explicitly otherwise mentioned, these dynamical systems are 
to be considered in the complex context.
The first example [181 we report is a Hamiltonian TV-body problem which is a 
generalization of (2). It is characterized by the (normal) Hamiltonian

H{z,  p) = i  2 2  (Pn +  +  7 J 2
q2t/nrn

n= 1

1
+  4

N  K

E E
m ,n = l;m ^ n  k=  1

4 , (zn — zm)2
n(k)

Jura
(7a)

(1 +  S 0 (.r„ -.rm)2<1+t>

and correspondingly by the Newtonian equations of motion

Zn  + >j0 z.n
N

- E qÛnm
N K

(zn + E E Jura
",m > i u r i  (zm=l,m^nk=l n "m  ̂3-f*2 k (7b)

The next example [14,24,291 we report is a real TV-body problem in the horizontal 
plane, characterized by the Newtonian equations of motions

f n =  ujk A fy

N
( 8)

+ 2 E (®nm. “I" n  { j'm  ' f n m ' j  4 " f ’m. n  ' fn m ^ j Tnm  { j'n  ' f ’m^j

Here rn =  {xn ,yn , 0) is a real two-vector in the horizontal plane, k =  (0. 0.1) 
is the unit vector orthogonal to the horizontal plane, the symbol A denotes the 
(three-dimensional) vector product so that k A rn =  {—yn-. x n -. 0), and we use the 
short-hand notation rnm =  rn — f m entailing r%m =  r \  +  r \  — 2rn • rm. Note that 
these equations are translation- and rotation-invariant, and they are Hamiltonian, 
although the corresponding Hamiltonian function is not of normal type (kinetic 
plus potential energy).
The N (N  — 1) “coupling constants” a nrn and (5nm, are of course real, but they are 
otherwise arbitrary except for the symmetry restrictions a nrn =  a rnn, Pnm. = Pmn 
which are required in order that this system be Hamiltonian. If all these coupling
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constants vanish, this dynamical system has a clear physical interpretation: it de­
scribes the motion of N  equal, electrically charged, point particles, moving in the 
horizontal plane under the effect of a magnetic field orthogonal to that plane (in 
the approximation in which the electrostatic interparticle interaction is neglected). 
In that case each particle moves on a circle, the center and radius of which depend 
on the initial data, while the time taken to go round it is, in all cases, T, see (1). 
If the t} N ( N  — 1) coupling constants l3nm vanish, f3nm. =  0, and the ^ N (N  — 1) 
coupling constants a nrn all equal unity, a nm =  1, the system is a well-known in- 
tegrable (indeed solvable) system (see for instance [14]). This is as well the case 
if the \ N ( N  — 1) coupling constants f3nm. vanish, f3nm. =  0, and the ^ N (N  — 1) 
coupling constants a nrn equal minus one half, and only act among “nearest neigh­
bors”, a nm = - 2(^m.,n+l “H $m,n— 1 ) [191.
A more detailed discussion of this model, (8) -  including its behavior for initial 
data outside of the region yielding isochronous motions -  is made in Section 2.
Several interesting classes of isochronous dynamical systems are reported in [23], 
We only mention here a remarkably general example, characterized by the Newto­
nian equations of motion

K
z +  i>jOZ =  ^  (z, z +  Lus.)

k= 1

where _£ =  ( z i , . . . .  z n ) is the A"-vector whose complex components zn =  zn (t) 
are the dependent variables, while the “forces” f ^ k)(z_.][) are required to be ana­
lytic in all their arguments and to satisfy the scaling properties

f [^ k){az.Z)  =  a - f c (z,z)

which however entail no restriction on the velocity-dependence of these forces, 
namely on the dependence of f ^ k)(z_,z_) on the (components of the) second, 2, of 
its two A"-vector arguments.
The next example [16] we report is characterized by the Newtonian equations of 
motion

rn +  korn +  2 fy
N

E M mr,rn1 ran
r,ra n

where we assume the N  dependent variables rn =  rn(t) to be three-vectors (al­
though the property of isochronicity of this deformed system would hold no less if 
these were 5-vectors, with S  an arbitrary positive integer) and we use the short­
hand notation rmn =  rm — rn. This system is (perhaps) remarkable inasmuch as it 
represents a {complex) deformation of the classical A"-body gravitational problem, 
to which it clearly reduces for to =  0.
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The next example [27] we report is characterized by the following (first-order) 
equations of motion of oscillator type

± n  -  ipn'^Xn =  f n ( x , y ) ,  n  =  1 . , , , .  N

Vrn +  i =  gm {x,y),  m  = 1, — , M.

Here the Ar-vector x, respectively the M-vector y, have as components the N  +  M  
complex dependent variables x n =  x n (t), yrn =  ym( t ) ‘, the N  +  M  parameters pn, 
qm are all nonnegative integers (or they could be nonnegative rational numbers), 
and the N  + M  complex functions / n, grn are restricted by the following conditions 
(which are sufficient to guarantee the isochronicity of this dynamical system):

1) f n(x, y) and gm (x. y) are holomorphic a tx  = 0py = 0

2) lim s ^ 1 f  (sx. sy) =  0, lim s~ 1g{sx. sy) =  0

3) / ( x, y) and g(x. y) are polynomial in the yrn

4a) lim s ^ 1̂ Pn s~-y)  =  nondivergent, n  =  1........N

4b) lim s~ 1+qmgm (s-x. s~-y)  =  nondivergent, m  =  1........M.

In the conditions (4a) and (4b) the notation s -x  indicates of course the A”-vector 
of components sPnx n, and likewise s~-y  is the M-vector of components s~<hnym.
Note that this dynamical system, (9), includes the Hamiltonian case characterized 
by the restrictions

dV(x .  y)
dyn

which imply that the equations of motion (9) are just the Hamiltonian equations 
entailed by the Hamiltonian function

N  =  M, pn = qri‘ fn{xxy) gn (x,y)  =
dV(x ,  y) 

d x n

N

H(x.  y) = PnXnyn +  v ( x .  y)
n =  1

isochronicity being now guaranteed by the following conditions on the function
V{x, y):

1) V(x,  y) is holomorphic at x  =  0, y =  0

2) lim s~ 2V ( s x . sy) =  0

3) V(x,  y) is polynomial in the yn

4) lim s^V{s^ -x .  s~^y) =  nondivergent.
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Next, let us exhibit two classes of isochronous Hamiltonian systems [201. The first 
is defined by the Hamiltonian

H{p.z)  = Y
n = 1 

K
u( z )  = Y  U{- 2k\ z )  (10b)

fc=l

U{- 2k)( a z ) =  a - 2kU{- 2k)( z ) (10c)

where the N  (possibly complex) constants cn are arbitrary and the dependence of 
the functions U ^ 2k)(±) on the (N  components of the) TV-vector is required to be 
analytic and to satisfy the scaling property (10c), but is otherwise as well arbitrary. 
The corresponding Newtonian equations of motion read of course as follows

Zn  +  U)2 z n  =  -  y jz%  +  u;2 (c n  +  z%) .
o zn

The second of these models is defined by the Hamiltonian
N

H(p.z )  = Y y { P n ) zn] +  W{z)
n— 1

where the function cp(p) is required to satisfy the ODE

<p(p) = W { p ) +  i(i +  l A ' A ^ y 0 )  - i ( i  -
with p  a real rational number different from minus unity, p  7̂  — 1, and satisfying 
either one (or both) of the following two inequalities

p  > —3 or p < — (1 +  2 K )

where K  is an arbitrary nonnegative integer that, together with p, characterizes 
the function W(z_) via the formula

K  ok .
W(z)  = Hr{0)(i) +  Y

k=l

cosh(pn) \Jcn + z \ +  U(z) (10a)

with W^a)(z) a function the dependence of which on the (N  components of the) 
iV-vector z_ is analytic and only required to satisfy the scaling property

W (a^ a z )  = a aW (a^z ) .

The corresponding Newtonian equations of motion read of course as follows

z n  +  2iP ' j j i n  +  (1 -  p 2 )i*)2 Zn

[■Zn +  i( l +  P) — i(l — P)uZn]
dW(z)  

d zn ‘
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The last two examples we report can be characterized as assemblies of nonlin­
ear harmonic oscillators [311, inasmuch as these two dynamical systems (which 
are actually special cases of more general systems [311) have the remarkable pro­
perty that their generic solutions (namely, all their solutions, except for a lower­
dimensional set of singular solutions in which one or more of the “moving parti­
cles” shoot off to infinity at a finite time) are completely periodic with the fixed 
period T, see (1). Their Newtonian equations of motion read

N  M

L n m  -  -  2 ^ 2 Z n m  =  C * Z v m )
v=l /i=l

N  M

±-nm 3iujz_nm, 2uj z_nm — c EE
v=l /i=l

These are two (different) systems of N M  Newtonian equations of motion satisfied 
by the N M  complex S'-vectors znm (with S  an arbitrary positive integer); hence 
here the index n  runs from 1 to N , and the index m  runs from 1 to M , with N  and 
M  two arbitrary positive integers, while c is of course an arbitrary complex con­
stant (which might actually be rescaled away). The dot sandwiched between two 
S'-vectors denotes the standard (Euclidian) scalar product, entailing the rotation- 
invariant character, in S'-dimensional space, of these equations of motion. Since 
these systems only feature linear and cubic forces, these models are remarkably 
close to physics; and they become even more applicable if they are written in their 
real versions, that obtain in an obvious manner by setting

±nm 22nm "I-  ̂ CL i b.

In contrast to what we did for the previous examples, let us outline here the deriva­
tion of these results. Actually the two systems of Newtonian equations written 
above are merely special subcases, corresponding to appropriate parametrizations 
(see, for instance, [14]) of a square matrix M  (of appropriate rank) in terms of 
S'-vectors, of the following nonlinear matrix evolution equation

M  -  3iu)M -  2 =  cM 3. (11)

Hence the findings reported above are merely special cases of the more general 
result according to which the generic solution of this nonlinear matrix evolution 
equation -  with M  =  M(t)  a square matrix of arbitrary rank -  is periodic with 
period T, see (1)

M {t +  T) = M(t) .
And this result is an immediate consequence, via the following matrix version of 
the trick,

exp(i ujt) — 1
M(t) =  exp (Let)'I'(r). t =

ice
(12)
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of a previous result due to Inozemtsev [361, according to which the matrix evolu­
tion equation

=  c $ 3

which clearly corresponds to (11) via (12), is integrable and all its solutions 'I'(t ) 
are meromorphic functions of the independent variable r .
Let us end this section by re-emphasizing -  to underscore the significance of the 
examples exhibited in this section -  that, as noted in the introductory part of this 
section, isochronous systems are, at least partially, superintegrable.

Lecture 2

2. The Goldfish

“A mathematician, using the dressing method to find a new integrable system, 
could be compared with a fisherman, plunging his net into the sea. He does not 
know what a fish he will pull out. He hopes to catch a goldfish, of course. But too 
often his catch is something that could not be used for any known purpose to him. 
He invents more and more sophisticated nets and equipments, and plunges all that 
deeper and deeper. As a result, he pulls on the shore after a hard work more and 
more strange creatures. He should not despair, nevertheless. The strange creatures 
may be interesting enough if you are not too pragmatic, and who knows how deep 
in the sea do goldfishes live?”
This sentence (copied from page 622 of [461) provided the motivation to call “gold­
fish” [13] -  due to its neat appearance, and the simplicity of its solution -  the 
integrable, indeed solvable, system characterized by the Newtonian equations of 
motion

C  =  2 Y .  A t ? -  (13)

as well as some of its variants (see below). Here the N  dependent variables (n =  
(n (r) evolve as functions of the independent variable r ,  and we always consider 
them in the complex', while appended primes denote of course differentiations with 
respect to r .
The solution of the initial-value problem for this model is given by the follow­
ing simple prescription [81: the N  values Cn(T) coincide with the N  roots of the 
following algebraic equation in f

C '(o )
C -  Cn(°)

1
T

(14)
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Note that this equations gets transformed into a polynomial equation of degree
N

N  in (  after multiplication by the factor n  [C — Cn(0)], hence it indeed has N
n =  1

solutions.
Via the (particularly simple) version of the trick appropriate to this model,

exp (Let) — 1
Zn{t) =  Cn(r). T = ice

entailing
~-n(0) =  Cn(0), i„(0) =  C (0)

the Newtonian equations of motion (13) become

N
zn =  i tozn +  2 Y

Zn Zn^m

(15a)

(15b)

(16)

and the prescription providing the solution of the initial-value problem for these 
Newtonian equations of motion, (16), states that the N  values zn (t) coincide with 
the N  roots o f the following algebraic equation in z

f  m

ZZi z -

ice
exp(iiet) — 1

(17)

As always in this paper we consider the constant to to be real (and, for definite­
ness, positive), and the variable t  to be as well real and to represent “time”. The 
periodicity of (the right-hand side of) this algebraic equation in 2, (17), entails that 
the set of its N  zeros is periodic with period T, see (1), and hence the solution 
zit)  =  {z\ ( t) . . . . .  20v(f)) is as well completely periodic, but due to the possibility 
that, through the motion, some zeros exchange their roles, the periodicity of this so­
lution may turn out to be a (finite, integer) multiple of T. In conclusion the system 
(16) is isochronous, indeed it also qualifies as an assembly of nonlinear harmonic 
oscillators, since all its solutions zit.) are completely periodic with the same period 
T  or a finite integer multiple of it; and the phase space of its initial data 2.(0), 2(0) 
is divided into domains out of which the system evolves with the same periodicity, 
these domains being separated from each other by (lower-dimensional) boundaries 
yielding trajectories along which the equations of motions become singular due to 
the collision of two or more particles (note that, at a collision point, the solutions 
remain finite but the speed of the colliding particles diverge, and their individual 
identity gets lost).
In this section we focus on the more general version of this model, the solutions of 
which cannot generally be obtained by algebraic operations, yet can be analyzed in 
considerable detail and do exhibit a richness of behaviors that justifies attributing
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also to this model the name “goldfish” [291. This more general model is character­
ized by the Newtonian equations of motion

Z-n

N
=  kOZn +  2 Y

m .= l ,m ^ n

&nm Z-n Z-m

Z-n Zm
(18)

which differ from (16) due to the presence of the arbitrary “coupling constants” 
anm (and of course reduces back to (16) for anm, =  1). But before discussing the 
behavior of the solutions of this model let us inteiject two remarks that are relevant 
to justify our calling it a “goldfish”.
The first remark is, that these Newtonian equations of motion, (18), are Hamilton­
ian (provided anrn =  amn, as we hereafter assume). Indeed it is easily seen that 
from the Hamiltonian

N

H{p.z)  = Y
n = 1

1UJZ,
N

n + exp(cpn) n ( Zn zrn) dnr (19a)

one can obtain the following Hamiltonian equations

•'-n —

P n  =

) &nr,2 5 .  =  cexp(cp„) TT (zn - z m Y 
9 P" m = l,m tn

Q l i  _  1 . & n m ( Z n  Zm ')
= c lu;+  2 ^  — r — :--------

d '~n L m = l,m ^ n  '~n -

(19b)

(19c)

To write in more convenient form the second set, (19c), of these equations we 
used the first set, (19b). And it is now clear that (logarithmic) ^-differentiation 
of (19b) yields, using (19c), precisely (18). Note that this result obtains for any 
arbitrary (nonvanishing) choice of the constant c, that appears in the definition of 
the Hamiltonian and in the Hamiltonian equations of motion, see (19), but is not 
present in the Newtonian equations (18).
Secondly, we observe that these N  complex equations of motion, (18), obeyed 
by the N  complex dependent variables zn(t) moving in the complex plane, can be 
reformulated [11,12] as N  real equations of motion satisfied by N  real two-vectors 
rn (t) moving in the horizontal plane, by setting

zn = x n + iyn. rn = {xn .yn . 0). k = (0.0.1). €Lf = a f + i fln rn  • (20)

These Newtonian equations of motion read as follows

r n  =  ' j jk  A r n  

N
“ H 2  'y   ̂ “ H P n rn ^ 'b ')  ' n i j ' r n

m —l,mz£n

(21)

y*nrn ) "H An(riiTnrn) Tnm (j'n ' An)]*
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Here we use the short-hand notation rnm, =  r.n — rrn, entailing r^im =  r \  +  rfn — 
2rn ' 'f'm -
The fact that these equations of motion are both translation- and rotation-invariant 
is remarkable, as well as the fact that, when all the coupling constants ctnm, 3nm 
vanish, these Newtonian equations of motion have a clear physical interpretation: 
they describe a “cyclotron”, namely the motion of N  equal, electrically charged, 
point-like particles moving in the horizontal plane in the presence of a constant 
magnetic field orthogonal to that plane, in the approximation in which their mutual 
(electrostatic) interactions are neglected. And these Newtonian equations of mo­
tion (of course: see for instance [101) are no less Hamiltonian than the (complex) 
equations of motion (18). Indeed a real Hamiltonian that generates directly the 
real equations of motion (21) is provided by the real part of the Hamiltonian that 
obtains by inserting the assignment (20) in (19a), together with

Pn =  Pnx iPny. Pn =  (Pnx-Pny * 0).

Note the minus sign in the first set of these equations where pnx respectively pny 
are the ^-component respectively the ^-component of the two-vector pn, that plays 
the role of canonically conjugate momentum to the canonical two-vector variable
rn-
Hereafter we discuss the behavior of this model on the basis of the (neater if less 
“physical”) complex equations of motion (18), describing N  points zn that evolve 
over time in the complex ,--plane; but the reader should not forget that these evo­
lutions can as well be interpreted as describing the (physical) motions of N  equal 
(pointlike) particles in the {real) horizontal plane. And the main tool of our anal­
ysis is the trick (15), that relates our equations of motion (18) to the equations of 
motion

c
N

2 £
anmCnCm 

Cn Cm
(22)

that, together with the initial data Cn(0), (C(0) (see (15b)) define the solutions 
Cn =  Cn(T) in the complex r-plane. The “physical” evolution of the points zn =  
zn (t) as functions of the real time variable t is then given by the evolution of the 
corresponding coordinates Cti(t ), see (15a), as the complex variable r  travels round 
and round on the circle C  in the complex r-plane, the diameter of which, of length 
2j, has one extreme at the origin r  =  0 and the other on the positive imaginary axis 
at r  =  ff. It is therefore clear that the behavior of zn (t) as a function of the real, 
“physical time” variable t  depends on the analytic structure of (n (V) as function 
of the complex variable r ,  in particular of the singularities, if any, of this function 
Cn (t ) that fall in the disk D encircled by the circle C  in the complex r-plane. 
We tersely review here the relevant analysis, following [291 where the interested 
reader will find a more detailed report, including the display of the trajectories
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of several numerical simulations of the motions of the points zn (t.) obtained via a 
computer code created by M. Sommacal. A more rewarding experience is of course 
to watch the evolution over time of these numerical simulations -  as it were, like 
a movie show: this will eventually become possible when, hopefully pretty soon, 
the Sommacal simulation code will be made available via the web for general use.
We note first of all that there exists in phase space an open region of initial data 
zn (0), £n (0), characterized by large values of the moduli |^n (0) — zm(0)| of the 
initial interparticle distances and by small values of the moduli of the initial particle 
velocities |fn (0)| (see (22) and (15b)), that guarantees (all components Cn(r) of) 
the corresponding solution £(t ) of (22) to be holomorphic in (a disk of radius p 
centered at the origin r  =  0 of the complex r-plane that includes) the circle C, 
hence the corresponding solution zit)  to be completely periodic with period T, see 
(15a) and (1). This was firstly proven in [24], to which the interested reader is 
referred for more details, including an explicit evaluation of a lower bound to p in 
terms of the (moduli of) the coupling constants anrn and of the minimum value of 
the moduli |^n (0) — £m(0)| of the initial interparticle distances and the maximum 
value of the moduli of the initial particle velocities |£n (0)|. This result guarantees 
the isochronous character of this model, (18), for any arbitrarily given assignment 
of the coupling constants anrn.
Next, let us restrict here, for simplicity, our consideration to models (18) in which 
all the coupling constants anrn are real and nonnegative,

&nm ^  0 (23)

(for other cases see [29]). Then the singularities of the generic solution ( ( r )  of (22) 
-  which occur at values 7-5 of r  where two coordinates £n (r) coincide, say (^ (71) =  
(v(Tb) =  b (see the right-hand side of (22)) -  are branch points characterized by 
the exponent, say,

7 Ifiv
1

1 +
(24)

so that in their neighborhood, namely for r  ~  75,

Cs(t ) = b ± c ( j  ~  Tb)1 +  v(t  -  Tb)
OO OO

+  E  £  s = „ . v
k = 1 £,m=0  

£+m> 1

CnO) =  bn +  vn (r -  n )
0 0 0 0 0 0

+ E E E ? v.
k=  1 £=5kl m — 0

(25 a)

(25b)

The ±  sign in front of c in the right-hand side of the first, (25a), of these formulas 
indicates that one sign must be chosen for s =  /i, the opposite for s =  v. Note that
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here the 4 +  2(TV — 2) =  2N  constants rj,, b, c, i>, &n, vn are a priori arbitrary -  
except for the obvious restrictions bn ^  b,bn ^  brn -  while the coefficients <
riktm. can computed from these constants, recursively, by inserting this ansatz,
(25), in the equations of motion (22). The fact that the number, 2N, of a priori 
undetermined coupling constants equals the number of arbitrary initial data for 
this system of ODEs, (22), indicates that this kind of branch points, characterized 
by the exponents 7nm, see (24), is the typical singularity featured by the genetic 
solution C(r) of (22). (Branch points with different exponents may appear, but only 
in nongeneric solutions £(t ) which, at some value Tb of r ,  feature the coincidence 
of more than two components, say C//(Tb) =  Cv(jh) =  ( a(75); for a more detailed 
discussion of this question see [291).

We conclude therefore that the generic solution £(r) of (22) features a, gener­
ally infinite, number of branch points, that generally affect each of its components 
(n (r), and which are characterized, for the class of models to which we are re­
stricting attention here, see (23), by (real) exponents ynm, see (24), which are then 
clearly characterized by the inequalities

0 < 7nm 5: !•

What does this tell us about the generic solution z(t) of the equations of motions 
of primary interest to us, (18), in particular about its evolution as function of the 
real “time” variable t?
To the solution ( ( r )  is associated a Riemann surface the structure of which is 
determined by the character and distribution of the branch points of ( ( r )  in the 
complex r-plane (each of which is generally featured by each component (n (r) of 
( ( r ) ,  although generally not in the same way: see (25)), and we know from (15a) 
that the values take by z_(t.) as t  evolves from t  =  0 towards t  =  00 coincide with 
the values taken by ( ( r j  as the independent variable r  travels, on that Riemann 
surface associated with ( ( r ) ,  counterclockwise round and round on the circle C 
defined above (the diameter of which lies on the imaginary axis in the complex 
r-plane, with one end at r  =  0 and the other at r  =  ^ ) , employing a period T, 
see (1), to make each full round. Hence the behavior of the solution z_(t.) of (18) 
depends on the structure of the Riemann surface associated with the corresponding 
solution ( ( r j  of (22), and specifically on the number of different sheets of that 
sutface that are visited as one travels on it before returning, if ever, to the main 
sheet from which the travel started at t  =  r  =  0.

If no other sheet is visited besides the main one, the corresponding solution z_(t.) is 
of course periodic with period T, see (1) and (15a),

z(t + T) = z(t). (26)
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This happens provided no branch point is featured by ( ( r )  on its main sheet inside 
the circle C, and as already indicated in the preceding section, it has been proven 
[24] (even in the more general case with arbitrary coupling constants anm)  that 
there is an open region having full dimensionality in the phase space of initial data, 
see (15b), that yields such an outcome, implying the isochronicity of the model 
characterized by the Newtonian equations of motion (18). This region R  (of initial 
data that yield solutions ( ( r )  of (22) which are holomorphic in the closed disk 
encircled by C, hence solutions zft)  of (18) that are completely periodic in t, see
(26)) has a boundary -  a lower-dimensional domain in the phase space of initial 
data -  out of which emerge motions leading, at a time R  smaller than T, to a 
“particle collision”, say =  z^tb) .
The character of the solution z(t) yielded by initial data that are outside of the 
region R depends on the structure of the Riemann surface associated with the cor­
responding solution C(T)- This is mainly determined by the values of the branch 
point exponents ynm- which are themselves determined by the values of the cou­
pling constants anrn, see (25) and (24). Let us focus on the (more interesting) 
case in which these constants anrn are rational numbers, entailing that the coef­
ficients ynrn determining the character of the branch points are as well rational, 
see (24), so that each of the cuts associated with them opens the way, in the Rie­
mann surface, to a finite number of sheets. There are then two possibilities, each 
generally characterized by open regions of initial data having full dimensionality 
in phase space, the boundaries of which always are (lower-dimensional) domains 
out of which emerge motions leading, in a time tb smaller than T, to a “particle 
collision”.
One possibility is that the number B  of sheets visited before returning to the main 
sheet be finite, B  < oo and the corresponding solutions z ( t) are then completely 
periodic with period T  =  (B  +  1 )T, z{t +  T)  =  z_(t.).
Another possibility is that the number of new sheets visited be unlimited, namely 
that the structure of the Riemann surface be such that, by traveling round and round 
on it along the circle C  one never returns back to the main sheet. This can happen, 
even if the exponents ynrn are all rational so that via the cuts associated to each 
of them access is gained to only a finite number of new sheets, because of the 
possibility that an infinity of branch points be located inside the circle C  on the 
infinite sheets associated to these branch points, via a never ending mechanism of 
branch points nesting. Whenever this happens the corresponding solution zft) is 
aperiodic, and it is moreover likely that it then be chaotic, in the sense of displaying 
a sensitive dependence on its initial data. Indeed this will happen whenever some 
ones out of this infinity of branch points fall arbitrarily close to the contour C, 
because then a minute change in the initial data, to which there will correspond 
a minute change in the pattern of these branch points of ( ( r )  in the complex r -  
plane, will cause some relevant branch point to cross over from outside the circle
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C  to inside it, or viceversa, and this will eventually effect quite significantly the 
time evolution of z(t), by causing a change in the sequence of sheets that get 
visited by traveling along the circle C  on the Riemann surface associated to the 
corresponding ( ( r ) .
This phenomenology has a clear “physical interpretation”, which can be qualita­
tively understood as follows. The many-body problem characterized by the New­
tonian equations of motion (18) generally yields confined motions, the trajectory 
of each particle tending to wind round and round -  it would indeed reduce to a 
circle were it not for the interaction with the other particles. A possibility, as we 
know, is that this TV-body motion be completely periodic, with the same period T  
that characterizes the circular motion of each particle when the two-body interpar­
ticle interaction is altogether missing (anm. =  0). Another possibility, in the case 
discussed above with rational coupling constants, is that there exist other motions 
which are as well completely periodic, but with periods which are integer multiples 
of T. A third possibility, which cannot a priori be excluded, is that there also exist 
motions which are aperiodic but in some way overall ordered, perhaps featuring 
trajectories that eventually wind up around limit cycles. And still another possibil­
ity is that the motions described by the solution z(t) be aperiodic and disordered. 
In this case the physical mechanism causing a sensitive dependence on the initial 
data can be understood as follows. Such disordered motions necessarily feature 
near misses, in which, typically, two particles pass quite close to each other (while 
the probability that an actual collision occur among point particles moving in a 
plane is of course a priori nil). Such a near miss in the motion described by z(t) 
corresponds -  see the discussion above -  to a branch point of the corresponding 
solution £(t ) occurring quite close to the circle C  in the complex r-plane (which 
is the one-dimensional region of the two-dimensional complex r-plane in which 
the values of £(t ) correspond to the values z_{t) describing the motion of physical 
particles moving as functions of the time t ); and in the generic case of a two-body 
near miss, there is a correspondence between the fact that such a branch point oc­
cur just inside, or just outside, the circle C, and the way the particles pass, on one 
or the other side, by each other. Likewise, the tiny change in the initial data that 
causes, in the context of the solutions ( ( r )  -  see the discussion above -  a branch 
point of C(r) to pass from inside to outside the circle C, or viceversa, corresponds, 
in the context of the “physical” solutions z(t), to a change occurring in the corre­
sponding near miss, from the case in which the two particles involved in it slide 
by each other on one side to the case in which they instead slide by each other on 
the other side -  entailing a significant change in the subsequent motion (indeed, 
the closer a near miss, the more it affects the motion, due to the singularity of the 
two-body interaction at zero separation, see (18)).
The phenomenology outlined here does indeed occur in this goldfish model, as 
demonstrated and discussed in [291. It also occurs -  rather similarly if more simply,
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since in this case only square-root branch points occur, irrespective of the values 
of the coupling constants -  in the model 2, which has been treated in detail, along 
the same lines discussed above, in [32], where the interested reader will also find a 
representative set of numerically simulated trajectories. And it is rather clear that 
this phenomenology provides a paradigm of rather general applicability for the 
transition from isochronicity to deterministic chaos, indeed perhaps for the generic 
onset of deterministic chaos, as will be discussed in [30],

Lecture 3

3. A Novel Technique to Identify Solvable Dynamical Systems, 
and a Solvable Extension of the Goldfish Many-Body Problem

In this section we review some recent developments [21,22,28] (occasionally we 
follow the last of these papers, [22], verbatim).

3.1. The Technique

The point of departure of our technique is a matrix evolution equation “of Newto­
nian type”,

U =  F(U. If). (27)

Here (and below) the N  x N  matrix U =  U(t) is the dependent variable, the 
independent variable t  (“time”) is real and superimposed dots indicate derivatives 
with respect to it; and we assume the matrix function F{U. If) to depend on no 
other matrix besides its two arguments (the order of which is of course important, 
since these two matrices, U and If, need not commute), so that there hold the 
identity

R F ( U . U ) R ~ 1 = F i R U R ^ . R l f R - 1) 

where R is any (invertible) N  x N  matrix.
We then introduce the parameterization of the N  x N  matrix U(t) in terms of its 
N  eigenvalues zn (t) and of its diagonalizing N  x N  matrix R(t)

U = R Z R - 1 (28a)

Z =  diag[zn]. (28b)

But before proceeding to obtain the evolution equations implied by (27) for the 
diagonal matrix Z(t)  and for the diagonalizing matrix R(t).  or rather (see below) 
for the matrix M(t)  defined in terms of R(t)  by the formula

M  = R - ' R  (29)



30 Francesco Calogero

let us note that the formulas (28) define the matrix R  only up to multiplication from 
the right by an arbitrary diagonal matrix, say

D =  diag[dn] (30)

since replacing in (28a) R  with
R  = R D  (31)

is clearly of no consequence. The corresponding “gauge transformation” of the 
matrix M,

namely

M nrn

R  = D ~ rM D  +  D - Xb (32a)

_ _ d? ) . .
Mnn H" , an

(32b)

1dn Mnmdm- n ^ U l (32c)

entails that in our parameterization of the N  x N  matrix U(t) (via (28) with (29)) 
the N 2 matrix elements of this matrix get replaced by the N  elements zn(t) of the 
diagonal matrix Z(t)  (namely by the N  eigenvalues of the matrix U(t): see (28)) 
and by the N (N  — 1) off-diagonal elements M nm(t) (with n ^  m)  of the N  x N  
matrix M(£), while the N  diagonal elements M nn(t) can be arbitrarily adjusted by 
choosing appropriately the elements dn (t) of the diagonal matrix D ( t ), see (32b) 
(of course, up to a corresponding adjustment of the corresponding off-diagonal 
elements, see (32c)).
Differentiation of (28a) with respect to the independent variable t  yields, using 
(29),

U = R { Z  +  [M, Z] }R~1 (33a)

U = R { Z  +  [M, Z] +  2[M, Z] +  [M, [M, Z ] ] } R - \  (33b)

Here and throughout we use of course the standard notation [X . Y] =  X Y  — Y X  
for the commutator of two matrices.
We now insert these formulas, (28) and (33), in the matrix evolution equation (27) 
and we thereby obtain the N  x N  matrix evolution equation

Z  +  [M. Z] +  2[M. Z] +  [M. [M. Z]] = F{Z.  Z  +  [M. Z]). (34)

Up to now, the treatment has been general, namely applicable to any matrix evo­
lution equation (27). Hereafter, following [22], we focus on a specific integrable 
(indeed solvable) matrix equation; analogous treatments of other solvable equa­
tions are given in [21] and [28]; and this is the appropriate place to emphasize that 
this approach is not new, indeed it has been employed often, in analogous or quite 
different contexts, see for instance [2-6,33,37,39-45],
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3.2. Extended Goldfish

The solvable matrix evolution equation which we now take as starting point to 
apply the technique described above reads as follows

U = a(UU +  UU).  (35)

Here a indicates a scalar constant, which might of course be eliminated by a trivial 
rescaling of the dependent or independent variables, although we prefer not to do 
so in order to keep track of the contributions coming from the (nonlinear) right- 
hand side of this matrix evolution equation, (35), and also to maintain open the 
option to set a to zero, going thereby back to the standard goldfish many-body 
problem (see preceding section and related results [21], [28], [13]).
It is easily seen that the general solution of this matrix evolution equation (35), 
reads

U (t) =  a - 1[cos(.At) — B A ^ 1 sin(^4t)]_1[̂ 4 sin(At)  +  Hcos(^4t)] (36a)

where A  and B  are two arbitrary constant N  x N  matrices. In terms of the initial- 
value problem for the matrix evolution equation (35) clearly (36a) entails

U ( 0 ) = c i - 1B.  U(0) = a - ^ A 2 + B 2) (36b)

and these two matrix equations can be inverted to yield

A 2 = - a 2[U( 0)]2 +  all  (0), B  = aU(  0). (36c)

Note that the explicit expression (36a) entails that the matrix U(t) is actually a 
function of the matrix A 2 rather than A.
We now insert the formulas (28) and (33) in the matrix evolution equation (35) and 
we thereby obtain the N  x N  matrix evolution equation

Z  +  [M, Z] +  2[M, Z] +  [M, [M, Z]\ = a{(Z  +  [M, Z])Z  +  Z ( Z  +  [M, Z])}.

We now separate the diagonal and off-diagonal terms of this matrix evolution equa­
tion, making moreover the notational assignment

AInn =  Ffi

to help us keeping in mind that, consistently with the observation made above, 
we retain the freedom to assign arbitrarily these N  quantities Fn. We thus obtain 
the following Newtonian equations of motion, interpretable as those of an A"-body 
problem (which is, of course, solvable, thanks to its relation to the solvable matrix 
evolution equation (35))

zn =  2 azn zn
N

•"m)M,n m  A fm n (37a)
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(zn -  zm)Mnm +  2(zn -  zm)Mnm = a ( z l ~  ẑ n)Mnm
N

(37b)

+  'y  ̂ (zn +  zm 2z(S\Mn^M^m (zn zm)M nm(F n Fm). n  ^  tyi.
1=1

Here the N  coordinates zn =  zn(t) denote the positions of the N  moving parti­
cles, the N (N  — 1) “auxiliary variables” M nrn =  M nm( t ) evolve according to 
the system of N (N  — 1) first-order ODEs (37b), and the N  source terms Fn can 
be assigned as arbitrary functions of time, or even of the other dependent vari­
ables zrn and M mi, without spoiling the solvable character of the model. Here and 
throughout indices like ra, m, £ range from 1 to N , unless otherwise indicated.
An interesting redefinition of the auxiliary variables obtains by setting

Mnrn (zn ■*m t ( Z-n Zm  ) ^ Unm (38)

(this assignment is suggested by the form of the Lax matrix introduced in [7]). The 
equations of motion (37) of the A"-body model take thereby the form

N . .
Zn = 2azn zn + 2 Y ZnZrn

— “ Un m Um n .
•'-n •'-m

(39a)

Unm +
-n •'-m

W n m ( l  Un m Ur
-n •'-m

N
Y F'

£=1 ;£^n,m.

u n e{u em +  u  nm  Uen)

*n Zl

+
u £m {u n£ “I- Un m Umi )

-m Zl

(39b)

Unm {Fn - F m ). n ^ m .

Here the auxiliary variables are of course the N ( N  — 1) quantities unm{ t ); and 
note that, while the (Newtonian) equations of motion (39a) that characterize the 
evolution of the “particle coordinates” zn(t) follow straightforwardly from (37a) 
via (38), in order to obtain from (37b) the equations (39b) that characterize the 
evolution of the auxiliary variables unm( t ) one must use, in addition to (38), the 
equations of motion (39a). It is now clear that, for Fn =  0 (or, equivalently, for 
Fn =  F ), the N (N  — 1) evolution equations (39b) admit the (special) solution

Unm =  - 1 ,  m  (40)

entailing that the Newtonian equations of motion (39a) become then
N ^ z

zn = 2azn zn + 2  Y  • (41)r m i’y _-t /m=l,m^n
For a =  0 these equations of motion coincide with those of the standard “goldfish” 
model (see the preceding section). For a ^  0 they characterize a novel solvable 
extension of the goldfish A"-body problem.
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Before discussing the solvability of this model, (41), let us note its Hamiltonian 
character. Indeed the Hamiltonian

N f N
H  = Y  \ -  +  exp(spn) 0

n =  1 v
"a *mJ (42a)

where s is an arbitrary (nonvanishing) constant, yields the Hamiltonian equations

•"fl

P n

d H
dpn

d H  1
dzn s

N
exp (spn) J J  (z

N
2azn +  Y

■n •'-m) (42b)

Zn  “H z.rn ( (42c)
Zn Zm  J

Note that to write more neatly the second set of these Hamiltonian equations (42c), 
we used the first, (42b). It is then obvious that ^-differentiation of (the logarithm of) 
the first set of Hamiltonian equations, (42b), yields, via the second set, (42c), just 
the Newtonian equations of motion (41), demonstrating thereby their Hamiltonian 
character.
The solution of the initial-value problem for this TV-body model, (41), is given by 
the following result (entailed by (28) with (36)): the coordinates zn (t) are the N  
eigenvalues of the N  x N  matrix (36a) with

(A2)nm = - 5nma2z l (0 ) +  ci[zn (0)zm (0)]1//2, B nm = 5nmazn ( 0). (43)

Here 5nm, is the standard Kronecker symbol, 5nrn =  1 if n =  m, 5nrn =  0 if 
n ^  m. These formulas indicate that the N  x N  matrix B  is diagonal, while the 
N  x N  matrix A 2 is the sum of a diagonal matrix and a dyadic matrix.
Via the standard trick (outlined at the end of this section) the following isochronous 
variant of the model (41) is obtained

zn — 3i ujzu — 2 uj2zn 

=  2 a(zn — iujzn )zn
N

+ 2 V Zn Zm ( Zn  Zm  -|- Zm  Zn  ) U) Zn  Zm
(44)

**m

Here and throughout to is a real (for definiteness, positive) constant, and because 
of the way this modified system is obtained from (41) all its nonsingular solutions 
are completely periodic with period T, see (1), or with an integer multiple of this 
basic period. Indeed the solutions zn (t) of these equations of motion, (44), are the 
N  eigenvalues of the modified matrix U (t ) defined as follows

~ . . . . . exp(kuf) — 1
U(t) =  exp(i tut)U(T). t  = -------;—:------- (45 a)

' ' ' lie
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where the matrix U ( t ) is defined by (36a) (of course with t  replaced by r), but 
now with

[7(0) =  a-1B,  [7(0) =  a - l {A2 +  B 2) +  i u oa^B  (45b)

entailing

A 2 = —a2[U(0)]2 + aU(0) — iaujU(0), B  = aU(0). (45c)

In terms of the initial-value data for the model (44) these expressions read

| 2 n

B,
(-*4 trim - 5 nrna2z2L(0) +  a{[i:n (0) -  i£jzn (0)][£m(0) -  icczm (0)]}1/2 

3nm&Zn(0) •
(45 d)

Note that the assertion made above about the complete periodicity of all the non­
singular solutions of the system (44) is implied by the assertion made now about 
the solution of this system, since it is clear that the matrix [7 is periodic in the 
time variable t  with period T, see (1), (45a) and (36a). This incidentally allows to 
consider this generalized goldfish model, (44), as describing an assembly of “non­
linear harmonic oscillators” [31], The behavior of this system in the neighborhood 
of its equilibrium configuration is discussed in Section 3.4.
The solutions zn (t) of the generalized goldfish model (44) are necessarily complex 
(for positive ic, to > 0), but these equations of motion can be reformulated [11,12] 
as real and covariant equations describing the motion in the (horizontal) plane of 
N  particles the positions of which there are identified by the real two-vectors rn 
related to the complex numbers zn via the standard relations (see (20))

zn =  x n +  iyn, a = ax -  iay (46a)

rn = { x n .y n. 0). a = ( a x .ay . 0). k =  (0.0.1) (46b)

which entail that the equations of motion (44) read then as follows

rn -  3cufc A rn -  2>j02rn =  2[rn (a • rn) +  rn(a ■ rn) -  a(rn ■ rn))
N

2'A, A [2rn (a • r n) -  ar£] + 2  £  r l l { r n (rm • rnm) +  f m {fn • f r
m=l,m^n

n m ,* (^  . iy* \ ) Is* A I ry? (rr* . rr* J . 1 iy* (ry? . ry?nm \{ n 1 rn) wn, / \ \ t n\* m 1 n m / \ * m\* n 1 r

rn {[rn +  rm] ■ rm) +  f m ([rn +  rm] ■ rm)] +  ^ 2[rnr ^  -  rmr 2]}

(46c)

where we use again the short-hand notation rnm =  rn — rm entailing rfLm =  
rn +  rm — 2rr(, • rm. This equation is covariant (thanks to the definition (46) of 
a; note the minus sign there!), but it is not rotation-invariant because the constant 
two-vector a identifies a preferred direction in the plane.
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Before closing this section let us, for completeness, outline how the isochronous 
model (44) is obtained from (41), which to this end we rewrite here in the following 
(merely notationally) modified guise

N >/ >/
C  =  2 < C „  +  2 X ! 7 ^ 7 “  (47)

where (n =  ( n(r) and appended primes indicate of course differentiations with 
respect to the (complex: see immediately below) independent variable r .  We then 
set

, . . exp(iujt.)
zn{t) =  exp(icut)Cn(T), r  =  ----:-----

Vj J

And it is then easily verified that (22) implies (44).

3.3. An Alternative Approach

In this section we describe an alternative approach (see for instance Section 2.3 
of [14]). Let 'ip{z. t) be a monic polynomial of degree N  in the (complex) variable 
2:, and let us denote with cm{t) its coefficients and with zn (t) its zeros (which will 
be eventually identified with the coordinates of the particles evolving according to 
the Newtonian equations of motion (41))

N N
i iz . t . )  = U l z -  zn(t.)] = Z N  + Y  cm{t)zN~m- (48)

n=  1 rn= l

Note that this formula implies the relation
N

ci{f ) = -  Y  (49)
n = 1

We now recall the relations (that obtain by logarithmic differentiation of the repre­
sentation of tp(z, t) via its zeros, see (48), or see the equations (2.3.2-8,11) of [14])

N
^t{z,  t) = - ip{z. t) Y  iz -  zn{ t ) Y z n (t) (50)

n =  1

that clearly implies (via (49))
N

zijjf (z. t) -  ci{t)^{z.  t) = ip{z. t) Y  iz -  zn ( t ) Y ( - z n(t)zn (t)) (51a)
n=  1

and
N

i'tt{zA ) = iJj (zA) Y l z -  Zn(^) 1~~ 1
n =  1

-"a(t) + 2
!V

£
Z n ( t ) Z m ( t )

Zn(t) Zrn(t)
(51b)
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Here and below subscripted variables denote of course partial differentiations.
It is clear from these formulas, (51), that the equations of motion (41) imply that 
the polynomial (48) satisfies the PDE

t ) -  2a[z'ipt{z. t) -  ci(t)ijj(z. t)} =  0 (52)

and clearly this PDE, via the (second) relation (48), entails the system of ODEs

Cm -  2acm+i +  2acicm =  0 (53a)

supplemented with the “boundary conditions”

cq =  1. c/v+i =  0. (53b)

Note that (53a) is trivially satisfied for m  =  0 (see (53b)), and that it can be 
integrated once for m  =  1, yielding

C2~  2 Ci +  s r ( c i + c )
where C  is an integration constant. Insertion of this expression of C2 in (53a) with 
m  =  2 yields

C.3
(  1 \ 2 . ..  Cl C l + 2cf +  Cci 
V2a )  2a

1 • 2+ o ClCf (54)

the right-hand side of which is however not an exact differential. Alternatively 
one could start from m  =  N  (which yields, see (53), the Schrbdinger-like linear 
equation

ci\f +  2 a ci cm =  0

with cv(£) playing the role of eigenfunction and ci(t) playing the role of “po­
tential”) and work all the way down by solving sequentially (but only formally!) 
the series of second-order, nonhomogeneous, linear ODEs for crn (t) with m  =  
N  — 1. N  — 2 . . . . ,  arriving in the end, for m  =  1, to a highly nonlinear (integro- 
differential) equation for c.\ (t).
Clearly the fact that the system (53) is solvable is far from trivial. It is obviously 
implied by the results described above, since the coefficients cm(t)  can be explic­
itly written in terms of the zeros zn (t) (see for instance Section 2.3.1 of [14]); in 
particular (49) and (28) clearly entail the relations

ci(t) =  — trace[C/(t)], Qv(t) =  (—1)‘¥ det[[/(£)] (55)

with the N  x N  matrix U(t) evolving according to (36a).
The isochronous variant of this system, (53), can be obtained by first rewriting it 
in the following guise

l m  -  2 a l m  + l  +  2 a i l l m  = 0 . 70 =  1- 7.V+1 =  0 (56)
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with j m =  7m (t ), and by then setting

Cm(t) =  exp (irriLut) ( r ) ,

It reads
crn — i(2 m  +  1 )ujcrn — m {m  +  l)uj2crn

+ 2a[ci -  iu;ci]cm

Again, the isochronous character of the general solution of this system, implied by 
our treatment, is a nontrivial finding (up to the observation that all true mathemat­
ical results are indeed trivial!).
In the next section we consider the behavior of the isochronous models, (44) and 
(58), in the neighborhood of their equilibrium configurations.

T
exp(i ujt) — 1

\UJ
(57)

2fl[C m ,+ l \ { rn  -|- l)lUCm.-|-l] 

: 0, c0 =  1. c/v+i =  0.
(58)

3.4. Equilibrium Configurations of the Isochronous Models, Small 
Oscillations and Diophantine Relations

In this section we discuss the equilibrium configuration of the two (clearly related) 
isochronous models characterized by the equations of motion (44) and (58), as well 
as the behavior of these systems in the neighborhood of their equilibrium config­
urations. In this manner we also obtain some results for “remarkable matrices”, 
following an approach already employed in the past in analogous contexts, see for 
instance [1], [91, [14] and the references cited there.
The equilibrium configuration

Zn {t) = zn , zn (t) = 0 (59a)

of the system (44) is clearly characterized by the following system of N  algebraic 
equations which determine (up to permutations) the N  unknowns ~zn

N
1 zn “H

zr
Zn Zrn

This suggests setting

'T l

•'-m

= 1 ,mj^n

'i  uj \

(59b)

(60)

This notation is convenient to make contact with other results. The reader should 
of course note that the numbers x n introduced here have nothing to do with the real 
parts of the quantities zru see (46). Indeed these N  numbers x n need not be real 
and they satisfy the N  algebraic equations

N
x n =  —2 +  2

x m
Xr X r

(61a)
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or equivalently
N

Xn -2 N  +  2 Y
X r

(61b)

which can therefore be identified as the N  zeros of the generalized Laguerre poly­
nomial 2N 1\ x )

L ^ n ^ ^ X n )  = 0. (61c)

Let us provide, for completeness, a proof of this result (not new, see [1, 91 and 
the literature quoted there). The (conveniently normalized) generalized Laguerre 
polynomial

(~1)n N \ L {n 2N r>(x) = X(x) (A + m ) j  x N - m .  

(N  — m )\m \rn=  0 v /
is characterized by the ODE

x x " ( x ) - { x  + 2 N ) x { x )  +  N x ( x )  =  0 

while its representation via its zeros,

(62)

(63)

N

X.{x ) =  n  (x ~  Xn) (64a)
n=  1

entails clearly (by logarithmic differentiation; or see the equations (7), (12) and 
(13) of Section 2.3.2 of [14])

N
X f { x )  = x{x) Y ( x ~  Xn)-1 (64b)

n= 1
N

X X  {x) -  Nx{x) = x(x) Y ( x  -  (64c)
n= 1

N N
xx"{x)  = x(x) Y ( X -  Xny 12 Y  (Xn -  X m Y x n  (64d)

n= 1

where the appended primes denote of course differentiations. It is then clear that 
the insertion of these three formulas in (63) entails (61b).
Let us now consider the behavior of our isochronous system (44) in the neighbor­
hood of its equilibrium configuration. To this end we set

zn (t) = zn + 5wn (t) (65 a)
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and we then insert this assignment in the equations of motion (44) treating £ as a 
small parameter. We thus get the linearized equations of motion

wn — 3icown — 2 uj2wn =  2cizn (wn — 2kown)
N

+ 2 E -iw(zmwn +  znwm) w2(z2nwn -  z l w m-2 ,
+

(66a)
(zr Zm)2

namely
9

w +  kc£tfi +  >jj Aw  =  0. (66b)
Here and throughout this section, to underline the vector and matrix character 
of our formulas, A"-vectors are denoted by lower case underlined letters, hence 
w =  w(t) denotes the A"-vector of components wn =  wn (t), and likewise N  x N  
matrices are denoted by upper case underlined letters. In particular the two (con­
stant) matrices £  and A are defined (componentwise) as follows, via (60), in terms 
of the N  zeros x n of the generalized Laguerre polynomial L ^ 2N~r) (x)

nm ~$nrri +  ( i -  $nrri)‘
2Xr

N

A r "8nm. 2 i + x-n +
Xt

l=\ ( Xn  -  x t f

Xn Xr

+  ( 1 -  $nrn)
2x.n

(Xn X m ..

(67a)

(67b)

Note that to simplify the expression of the diagonal part of the matrix £  we used 
(61a).
The general solution of the linear evolution equations (66) is provided by the for­
mula

2 N

w(t.) =  ^  ak exp(iXkwt.)v^k) (68)
k= 1

where the 2 N  constants rik are arbitrary (to be determined, in the context of the 
initial-value problem, from the 2 N  initial data icn (0) and w’n (0jj, while the 2 N  
numbers A&, respectively the cotxesponding A^-vectors v}kX are the eigenvalues, 
respectively the eigenvectors, of the following (generalized) A^-vector eigenvalue 
equation (see (66b))

- \ l v {k'} -  XkT u{fc) +  A v {k) =  0. k = 1 . . . . .  2N.

Hence the numbers Xk are the 2 N  roots of the following equation (polynomial of 
degree 2N)  in A

det[A2l +  X T -  A] =  0. (69)
Here and throughout £ denotes of course the N  x N  unit matrix, (£)nm =  Snrn.
But we already know, from our previous treatment, that the solutions of the isochro­
nous model (44) are completely periodic with period T, see (1). Actually solutions 
with a (larger) period which is an integer multiple of T  can also emerge, due to the
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exchange of the identity of the eigenvalues of the matrix U (£), see (45), through the 
motion; and some exceptional singular solutions also exist, in which two or more 
particles collide at some finite time; but neither one of these two phenomena can 
occur for the small oscillations around the equilibrium configuration considered 
here. The same periodicity property must therefore characterize the behavior (68) 
in the neighborhood of the equilibrium configuration of this system. We thus arrive 
at the following diophantine finding: the 2N  numbers Afo are all integers. In fact, 
motivated by this finding and by some numerical checks, we make the following

Conjecture. Let the two N  x N  matrices T and A be defined by (67), in terms of 
the N  zeros x n o f the generalized Laguerre polynomial z/¥ 2N x ), namely the 
polynomial o f degree N  characterized by the ODE (63). Then

N

A related diophantine conjecture -  more explicit hence more suitable for numerical 
checks -  is now obtained in the context of the investigation of the behavior of the 
isochronous system (58) in the neighborhood of its equilibrium configuration

The fact that this formula provides a time-independent solution of (58) can be 
easily verified, as well as its consistency with (62) and (60).
To study the behavior of the system (58) in the neighborhood of this equilibrium 
configuration, (71), we now set

and by treating £ as a small parameter we obtain the following linearized system 
for the time evolution of the quantities r]m (t)

i)m -  i(2m  +  1 )u}i)m +  [N(N  +  1) -  m ( m  +  l ) }^2i]m -  iu)i)m+i

det[A2l +  X T -  A] =  J ]  [(A -  2fc)(A +  2k -  1)]. (70)
fc= l

(71)

(72)

(73a)
[Mi + = 0- m  =  0- v n +1 =  o

(73b)

(74b)

(74a)
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The general solution of this system of linear equations reads
2 N

rf(i) =  ^ 2  bk exp(iAfcix;f)^fĉ
k= i

(75)

where the 2N  constants are arbitrary (to be determined, in the context of the 
initial-value problem, from the 2N  initial data ?/n (0) and /)n (0)j, while the 2N  
numbers Afc, respectively the corresponding Ar-vectors w ikK are the eigenvalues, 
respectively the eigenvectors, of the following (generalized) matrix eigenvalue 
equation (see (66b))

Hence the numbers Afc are the 2N  roots of the following equation (polynomial of 
degree 2N)  in A

But obviously these numbers coincide with those defined above, see (69). We may 
therefore assert with certainty that they are all integers, and the Conjecture made 
above can now be reformulated to read

Other versions of this conjecture obtain via some additional manipulations -  see 
[22], We display here just one specific example (of course true) of formulas ob­
tained in this manner

3.5. Additional Remarks

Recently, via an approach analogous to that described in Section 3.3, a model 
remarkably similar to that considered in this section has been investigated by David 
Gomez-Ullate, Andy Hone and Matteo Sommacal [34], The equations of motions 
of their model, in its “many-body problem” formulation, read

A|w{fc) -  AkC w (k'} +  W fc) =  0. k = 1 . . . . .  2. N.  (76)

det[A2I + A  C - L ]  = 0. (77)

N
det[A2I + A  C - L ]  = J ]  [(A -  2fc)(A +  2k -  1)]. (78)

k= 1

A +  29 
30(A -  11) (A — 8)(A +  3) 

— (A — 8)(A +  3)

14 0
—8(A -  3)

(A — 6) (A +  7) 
-(A — 9) (A +  2) 

0

0
0

0
0

0
0
0

0
0

_ 9  _ 4 )  n

(A -8 )(A  +  | )  —2(A — 5)
1 1

(79)
(A -  4)(A -  6)(A -  8)(A +  3)(A +  5)(A +  7)(A +  9).

(80)
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and those of the model related to it via the approach of the preceding section read

Cm + ( m +  l ) (m +  2)cm+2 -  2c2cm =  0 (81a)

with the “boundary conditions”

co =  1. c/v+i =  0. 

Via the simple change of dependent variables

zn — bzn.
a 1/2

1 -  N ,

the equations of motion (80) can be recast in the form

N  ~  ~  , i2~4
o ~3 i o +  b2a +  2 2 ^  ---~-----" n

m=l,m^n ~rri

(81b)

(82)

(83)

demonstrating that they are indeed rather similar to (41). Likewise, via the simple 
change of dependent variables

C2m (2m)!
(84)

the evolution equations (81a) (with even m; note that they are decoupled from 
those for odd m) become

Cm 2qcm+i -|- 2ac\cm — 0 (85)

which are remarkably similar to the evolution equations (53a). However, in con­
trast to the systems treated here, (41) and (53), which are solvable, as explained 
above, for all values of the positive integer N , the systems (80) and (81), or equiva­
lently (83) and (85), have been shown to be solvable only for N  < 4; moreover, for 
N  =  3 their solution generally involves transcendental (more precisely: elliptic) 
functions of the time variable, as well as algebraic functions of such elliptic func­
tions (typically roots of iV-degree polynomials the coefficients of which evolve in 
time as elliptic functions), in contrast to the solution of the models treated in this 
paper, which clearly only involve, for all values of N , algebraic functions of ele­
mentary (more precisely: exponential, or equivalently trigonometric) functions of 
the time variable (again, typically, via roots of TV-degree polynomials the coeffi­
cients of which evolve exponentially, or equivalently trigonometrically, in the time 
variable, see (36a)).
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Lecture 4

4. Isochronous PDEs

In this section we outline a version of “the trick” suitable to deform PDEs so that 
the deformed versions are isochronous, and we then apply it to quite a few “well- 
known” PDEs, many of them integrable ox solvable. In this context by isochronous 
PDEs we mean evolution partial differential equations that possess lots of com­
pletely periodic solutions, generally, in the context of the initial-value problem, 
obtainable from open domains of initial data having full dimensionality in the 
phase space of such data. The main thrust of our presentation is to emphasize 
the wide applicability of this approach, as well as the neat look of the isochronous 
PDEs yielded by it, providing thereby some support for the slogan “isochronous 
PDEs are not rare”. Hence the major part of this section consists merely of a list­
ing of unmodified and modified PDEs, lifted from the recent paper [381 which we 
occasionally reproduce below verbatim and to which we refer for additional infor­
mation on these PDEs, including the appropriate references that justify attributing 
to them -  as we shall do on a case by case basis -  the property to be integrable or 
solvable.

4.1. Notation and Preliminaries: The Trick

The independent variables of the unmodified evolution PDE are denoted as £ =  
(£ i,. . .  ,£*/) and t ; the dependent variable of the unmodified evolution PDE is 
denoted as w(£:r)  =  w ( i i , . . .  , £n :r ) ,  and if a second dependent variable also 
enters, it is denoted as w (^:t ) =  w ( i i , . . . .  £n ;r ) ;  upper case letters, W ( i : r )  =
VE(£i,. . . ,  £n ; t ), W(i :  r )  =  W ( £ i , . . . ,  £n ; t ), are used for matrices. The inde­
pendent variables of the modified evolution PDE are denoted as x  =  ( x i , . . . .  xn) 
and t; the dependent variable of the modified evolution PDE is denoted as u(x: t) =  
u{x i , . . . .  x n :t), and if a second dependent variable also enters, it is denoted as 
u(x: t )=u (x \ . . . . .  x n: t); and again upper case letters, U(x: t )=U{x \ . . . . .  x n : £), 
U(x: t) =  U ( x i , . . . .  x n: £), are used for matrices. The relation among the (inde­
pendent and dependent) variables of the unmodified evolution PDE and the modi­
fied  evolution PDE are given by the following formulas (“the trick”)

exp (Let) — 1
r  =  ------ ;—:------

ice
in  =  £n(t) =  Xn exp(ifJLn'jJt), n =  1, . . . .  TV

(86)

(87)

u(i : t )  = exp(iAiet)ic(<£: r )  

=  exp(i\ujt)w(i:  r )

(88a)

(88b)
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with analogous formulas, see (88), in the matrix case. Here and hereafter constants 
such as /in, A, A, a , {3 (Greek letters) denote rational numbers (not necessarily 
positive), which whenever necessary shall be properly assigned, while Latin letters 
such as a, b, c denote complex (or, as the case may be, real) constants (sometimes 
we keep such constants even when they could be eliminated by trivial rescaling 
transformations; and of course by such transformations additional such constants 
might instead be introduced). When N  = 1 we drop the index n, namely we write 
£ instead of £i, x  instead of x \, p, instead of p i, and for N  = 2 we also, to simplify 
the notation, write p instead of £2* y instead of X2, v instead of p 2-
Note that this transformation, (86)—(88), entails that, at the initial time, r  =  t  =  0, 
the change of variables disappears altogether

£(0) =  x, u(x: 0) =  w(£: 0). u(£: 0) =  w(£: 0). (89)

Hereafter subscripted variables denote partial differentiations, wT =  — —, 
uXn =  and so on.
Let us emphasize -  obvious as this may be -  that, since the transition from an 
unmodified PDE satisfied by w (£:t ) to the corresponding modified PDE satisfied 
by u(x: t) is performed via the explicit change of variables (86)—(88) (“the trick”), 
properties such as integrability or solvability, if possessed by the unmodified PDE 
satisfied by ic(£ ;r), carry over to the corresponding (modified) PDE satisfied by 
u (x : t ) -  which generally has in addition the property of isochronicity, as defined 
above. Let us moreover note that the property of isochronicity of the modified evo­
lution PDE -  which does not require that the original, unmodified PDE from which 
it has emerged be itself integrable -  implies that in some open set of its phase 
space the modified equation is generally integrable, indeed, in some sense, super- 
integrable (for a discussion of this question in the ODEs context see Section 1).
Let us end this section by pointing out that, in most cases, the modified PDEs 
are complex, they can of course be rewritten in real form by introducing the real 
and imaginary parts (or, instead, the amplitudes and phases) of all the quantities 
that enter in these PDEs, and by then considering the two, generally coupled, real 
PDEs that obtain from each complex PDE by considering separately its real and 
imaginary parts; below, in a few cases, we also exhibit the system of real evolution 
PDEs obtained in this manner.

4.2. Examples

In this section we display, with minimal commentary, a list of nonlinear evolution 
PDEs, each of them firstly in its unmodified avatar, then in its modified version. 
It is remarkable that so many “well-known” autonomous evolution PDEs possess
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modified versions which are as well autonomous, at least as regards their time de­
pendence; in several cases this appears to be due to some minor miracle, inasmuch 
as the number of relevant parameters A, /i, z/, A, . . . ,  is smaller than the equa­
tions they are required to satisfy in order to guarantee the autonomous character 
of the modified equations, yet nontrivial parameters satisfying these conditions do 
exist. All the modified evolution PDEs displayed below possess many isochronous 
solutions -  but only in rare cases we do exhibit below examples of these solutions.
A discussion of each of these nonlinear evolution PDEs would indeed require much 
more space. Let us also emphasize that the list reported below includes only some 
kind of “representative” instances of this phenomenology. Obviously many more 
examples could be added.
The list is arranged in a user-friendly manner, being ordered according to the fol­
lowing taxonomic rules: of primary importance is the number of independent vari­
ables; next, the number of dependent variables; next, the order of the differential 
equation, with primary attention to the “time” variable; finally, the type of nonlin­
earity (except when an equation is presented as a special case of a more general 
equation, see for instance (97) and (124)).
The following unmodified (1 +  1)-dimensional “generalized shock-type” PDE is 
integrable, indeed solvable

wT =  awaw£. (90 a)

By setting p  =  1 — aX one gets the corresponding modified evolution PDE

ut — iA lou +  i(ctA — 1 )loxux =  auaux . (90b)

The general solution of the initial-value problem for this PDE, (90b), is given, in 
implicit form, by the following formula

/  r i  _  e-tw<
u(x:t)  =  elXultuo exp[i(l — ctAWtK x  +  a ------------ [u(x:t)Y

\  ' { 1U)
(90c)

where of course uq(x ) =  u(x: 0).
The following unmodified (1 +  l)-dimensional “generalized Burgers-Hopf ’ PDE 
reads

wT =  ciww£ +  b(wawf)£. (91a)

By setting A =  and b  =  one gets the corresponding modified evolution 
PDE

1 1 -  a
Uf +  i------- ton +  i--------loxux =  auux +  b(uaux)x . (91b)

a  —  2 a  —  2
Note that, for a  =  1, this PDE becomes autonomous also with respect to the 
£space£ variable x, while for a = 0 the PDE (91a) becomes the standard {solvable) 
Burgers-Hopf equation.
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The following unmodified (1 +  1)-dimensional dispersive KdV-like PDE is inte- 
grable, indeed solvable

By setting A =  ^, /i =  |  and (for notational simplicity) Q =  ^  one gets the 
corresponding Q-modified evolution PDE

The symmetry properties, and some explicit solutions, of the following unmodified 
(1 +  l)-dimensional “generalized KdV equation” have been investigated recently

We assume here of course that 3/3 — a — 2 0. Particularly interesting is the
case with a  =  /3, when this modified PDE becomes autonomous also in the space 
variable x. In the even more special case with a  =  =  2, and by setting u =
u\ +  m2, a =  ci +  ic2, b =  C3 +  ic4, we re-write this evolution PDE as a system 
of two coupled PDEs

u lt +  u)u2 =  [ci(uf -  u%) -  2c2uiu2]x +  [c3(uf -  u\) -  2c4u1u2]xxx

2 2 2 2u2t — um\  =  [c2(u1 — u 2) +  2c\Uiu2)x +  [c4(u1 — u2) +  2c^uiu2]xxx.

Here of course we assume that the two dependent variables u± =  u i ( x , t ) , u 2 =  
u2(x. t) are real, and that as well real are the 4 arbitrary constants c4, c2, c3, C4. 
The following unmodified (1 +  l)-dimensional “Schwarzian KdV” equation is in- 
tegrable

The following unmodified (1 +  l)-dimensional Cavalcante-Tenenblat equation
is integrable

(92a)

Uf — i Qu — 2iQxux =  uxxx +  3 (uxxu2 +  3 u%.) +  3 uxu4. (92b)

wT = a(wa )eee + (93 a)

By setting A =  3/j_2a _2, /i =  3ff_ ^_ 2 one gets the modified evolution PDE

a{ua)xxx +  b(ui3)x . (93b)

wT =  ruttft +  a---- . (94a)

By setting /i =  1/3 one gets the corresponding modified evolution PDE

uxxx +  a----wx
(94b)

(95 a)
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By setting /i =  1/3 one gets the corresponding modified evolution PDE

UJ
ut — iXuju — i—xu

1
a + b(ux )3//2. (95b)

The KdV class of unmodified (1 I 1)“dimensional integrable evolution PDEs leads

wT =  AmW£, m  =  1 ,2 , . . .  (96a)
where A is the integrodifferential operator (depending on the dependent variable 
w(£: r ) )  that acts on a generic (twice-differentiable, and integrable at infinity) func­
tion (j>(£) as follows

A</(0 =  <%(£) -  4u>(£:t )0(£) +  2w ^ : T\ 0(£') (96b)

LOBy setting A =  2rn+i> A4 =  2m+i and (for notational simplicity) Qm — 2m+1 
gets the corresponding class of Om-modified evolution PDEs

one

Uf — \Qm(2u  +  xu a L mu (96c)

where L is the integrodifferential operator (depending on the dependent variable 
u(x: t)) analogous to A, namely the operator that acts on a generic (twice-differen­
tiable, and integrable at infinity) function / ( x) as follows

L /fa )  =  fxx{x) -  4 u(x: t . ) f (x) +  2 ux(x: t.) f ( x )  d x f  m  = 1 .2 . . . .
J X

(96d)
For m  = 1 the PDE (96a) becomes the well-known KdV equation

wT +  =  Gww£ (97 a)

and the corresponding modified equation reads
UJ

Ut + u x x x - i - ( 2 u  + u x ) = 6uux . (97b)
o

The unmodified (l+l)-dimensional “Monge-Ampere” integrable PDE reads

wTTw ^  — W£t =  0. (98 a)

The coixesponding modified PDE is in this case f-autonomous for any choice of A 
and /i

Uf,f,uxx (Ufx) +  iû [ (2A +  l')UfUxx +  2(A +  fi)utxux]

+ lu2[-A(A +  1 )uuxx +  /i(/i -  1 )xuxuxx +  (A +  ti)2(ux)2] = 0. (98b)

The general solution of this PDE (98b) is given in two steps: first, for any arbitrary 
function F (r) , find the function r ( x : t) from the nondifferential equation

r(x:t) = x e ^ - 1' ^  -  e,-^F[r{x:t)} (98c)
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then, for any arbitrary function G (r) and constant a, evaluate the solution

u (x : t ) =  elXu)t d t felu)t' G[r(x:t f)] 
Ja

A class of explicit solutions of this PDE (98b) is

i{x:t) = e^x+^ fx f

(98d)

u[
sin ( ^

XQt(^—l/2)u)t (98e)

where f ( z )  is an arbitrary function. Three particularly neat cases of the modified 
evolution PDE (69) are worth explicit display: for A =  /i =  0,

for A -1,/i =  1

UffUxx Ufx i UJUfUxx — 0

Uf,fUXx Ufx -F iuJUf Uxx — 0

(98f)

(98g)

(98h)

for A =  —1/2, g  =  1/2

UffUxx Ufx “H XUx)uXx = 0*

The following unmodified (1 +  l)-dimensional solvable PDE reads

wttW£ — wt£Wt =  0. (99a)

The corresponding modified PDE is in this case t-autonomous for any choice of A 
and g

UtfUx UfxUf +  kc[( A +  /i +  1 ')Uf'Ux +  A UUfx gXUfxUx +  gXUfUXx

+ u;2[A(/i — 1 )uux +  (—A +  g  — 2 )gx(ux)2 +  A g x u u xx] =  0.

The general solution of this PDE reads

(99b)

u(x:t)  = eiXult f[g(xelfJ,ult) +  eiwt]ifiuit' (99c)

where f ( z ) ,  g(z) are two arbitrary analytic functions.
The following unmodified ( l+ l)-d im en sio n a l Boussinesq equation is integrable

wTT = (Wtft +  w w ^ .  (100a)

By setting A =  1 and g  =  1/2 one gets the corresponding modified evolution PDE

1UJ
Uff — lum -XUn {uX X X UUX  } X  * (100b)

The following unmodified (1 +  l)-dimensional “nonlinear wave equation” reads

wTT =  (waw^)^. (101a)
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By setting p, =  1 — ^  one gets the corresponding modified evolution PDE

Uft — i(2A +  1 )u>Uf — ilo(2 — a \) x u tx — A(A +  1 )'J2u

-  (2 -  a  A) ^A +  1 — ^  j <j02xux -  ^  ~Y

Two special cases of this nonlinear PDE warrant explicit display

““+ ©  “=&X (ioic)
cotxesponding to a  =  —4, A =  —1/2, and

uu — 5uJUt — 6u) u = (uux )x (lOld)

2X uxx (u«
(101b)

Un

cotxesponding to a  =  1, A =  2.
Another class (out of many possible ones) of unmodified (1 +  1 )-dimensional 
nonlinear wave equations reads

wTT — w 3+ak
f d Pkw \
l  dp*  )

(102a)

where the numbers pf, are nonnegative integers (or possibly just integers). By 
setting A =  —1/2, p  =  0 one gets the cotxesponding modified evolution PDE

Uft. + (102b)

The following unmodified (1 +  l)-dimensional system of two coupled PDEs is 
integrable

-2WT =  +  w
WT = Wtf. (103a)

By setting A =  A =  l , / i = l / 2  one gets the cotxesponding modified system

VjJ
ut — i uni — —xu x =  uxx +  u

_ . _ vjj _
uu — i u m ------xu a u €£• (103b)

The following unmodified (1 +  l)-dimensional system of two coupled PDEs is 
integrable

wT =  a{ww)^ 

wT =  (bw +  cw2)^. (104a)
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By setting A =  2(1 — /i), A =  1 — /i one gets the corresponding modified system 

Uf — 2 i(l — fi)uju — ifiujxux =  a(uu)x 

Uf — i( l — fi)uju — lfiuJXUx =  (bu +  cu2)x .
(104b)

The following unmodified (1 +  1)-dimensional “Zakharov-Shabat” system of two 
coupled PDEs is integrable

wT +  =  itrw

w.r -  =
(105a)

- w  w .

By setting A =  1 — A, /i =  1/2 one gets the cotxesponding modified system
UJ

Uf — i\um  — \—xUx +  uxx =  u2u 
2

. uj (105b)

The following unmodified (1 +  l)-dimensional Wadati-Konno-Ichikawa system
of two coupled PDEs is integrable

w
Wx =  a

Wx =  b

. y l + w w  )  ££ 
w \

(106a)

\  V l  +  WW )  ^

By setting A =  — A, /i =  1/2 one gets the cotxesponding modified system

Uf — iXuju — i—xux =  a [ . U )
* 2 * W r + m . X X

_ _ .uj _ . / uUf + 1AUJU — 1 —xux =  b . :
2 W l  +  UU.

(106b)

The following unmodified (1 +  1 )-dimensional Landau-Lifshitz system of two 
coupled PDEs is integrable

wT =  — sm(w)vj££ — 2 cos (w)w£W£ +  (a — b) sin(ic) cos(w5) sin (ft;)
~ / \ / ~ \ 2  / w 2 / 7  • 2/~ \ \ (107a)wT =  . ; N — cos{w){wc) +  cos{w){acos [w) +  osm (w) +  c). 

sin(ic) ' ' ' '

By setting A =  A =  0, /i =  l /2  one gets the cotxesponding modified system

Uf — —x u x =  — sin(w)wxx — 2 cos(u)uxux +  (a — b) sin(w) cos(w) sin(w)
2 (107b)

Uf — —xux =   ̂ — cos(w)w2 + cos(w)(a cos2(w) + 5sin2(w) + c).

Note the simplification if a =  5, and, moreover, if c =  —a.
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The following unmodified (2 +  1)-dimensional PDE is integrable

wT =  awv +  bww£. (108a)

By setting A =  0, y, = v = 1 one gets the corresponding modified evolution PDE

Uf — ko(xux +  yuy) =  auy +  buux . (108b)

The following unmodified (2 +  1)-dimensional PDE is integrable

wT =  awv +  b(w^)2. (109a)

By setting A =  0, y  =  1/2, v  =  1 one gets the corresponding modified evolution 
PDE

x
Uf -  ice +  yuyJ =  auy +  b(ux)‘

The following unmodified (2 +  l)-dimensional PDE reads

WT =  afw^Wy — WW^y)a .

(109b)

(110a)

By setting A 
PDE

2a —1 ’ M ^ 0 one gets the corresponding modified evolution

vjj
Uf -Lou =  a(uxuy — uu3 \a

2 a - 1 ” ” xv/
A (rather trivial) separable solution of this PDE reads

u{x.y: t) =  exp f (x)g(y

where f ( x ) ,  g(y) are two arbitrary functions.
The following unmodified (2 +  l)-dimensional PDE reads

wTT = a(w^wv -  ww£V)a . 

2^-L<d = v

(110b)

(110c)

(111a)

By setting A 
PDE

Uff -
2a +  3,

-1 LOUf

=  0 one gets the cotxesponding modified evolution 

2(2a  +  l) 2
lo~u  =  a(ux uy — uu \a

2a - 1"  " (2a — 1)

A (rather trivial) separable solution of this PDE reads
'2a  +  1

x y .

u(x, y: t.)
' (  2iLot.
bexp I - + cexp

2a -  1
i LOt. f ( x ) g ( y )

(11 lb)

(111c)
,2a  -  1.

where a, b are two arbitrary constants and f ( x ), g(y) are two arbitrary functions. 
The following unmodified (2 +  l)-dimensional system of two coupled PDEs is 
integrable

WT +  =  (ww)^
UK

(112a)
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By setting A =  v +  1/3, A =  2/3, g  =  1/3 and, for notational convenience, 
Q = lc/3, one gets the corresponding Q-modified system

ut + uxxx — i(3z/ + l)Ow — i Qxux — 3i vQyuy =  (uu)x
U y  =  U X .

(112b)

The following unmodified (2 +  1 )-dimensional long-wave equation system of 
two coupled PDEs is integrable

WTfj +

WT +

1 / 2\
2 (W h /
(ww +

(113a)

By setting A =  1/2, A =  0, y  = 1/2, v =  —1/2 and, for notational convenience, 
Q =  lc/ 2, one gets the corresponding modified system

U fy  i £ l l l y  '\ £ l(x U Xy y U y y ) U XX  --  ( u  ) Xy

ut -  it l ( xux -  yUy) +  uxx = (uu +  u +  Uxy)x .
(113b)

(114a)

The following unmodified (2 +  l)-dimensional system of two coupled PDEs is 
integrable

WT +  W ^v = (w2)v +  w^w 
=  Wv .

By setting A =  1 — A/2, y  =  A/2, v  =  1 — A one gets the corresponding modified 
system

i\u)
T.U~ — if I — A)h)UU„. -I- 7/___ =  ( 7 -I- 7/__7/,

(114b)
ut — iA um--------xux — i( l — A )uryuy + uxxy =  (u2)y + uxu

UX -- Uy,

A nontrivial family of solutions of this system, (114b), reads as follows
_^ 2 A Ljf

u{x,y:t) f r a -I v ^
|  cosh a x e — / ( f )  — g (;(/eA1- AM  — belu)f) \
iA e 2

u(x.y:t.)
a /'(*) +  e” V  (yeiut nf ( i{i— i ̂ b - 4 a 2 (114c)

+
2 a

cosh axe i-M _  f ( t )  -  g (yeh1-* )^  -  beiult)

where a, b are two arbitrary constants and / (f) ,  g (z) are arbitrary functions (and 
of course / '( f ) ,  g'(z) denote their derivatives).
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The following unmodified (2 +  l)-dimensional matrix KP system of two coupled 
matrix PDEs is integrable

WT +  W tfs -  3Wrj = 3(VE2)e +  3i[W. W] 

W$ = W rj.
(115a)

Here W  =  and W  =  W  =  W(^,ry,T)  are matrices (of course, of
the same rank), and the notation [W. W] denotes their commutator. By setting 
A =  2/3, A =  1, /i =  1/3, v =  1 one gets the corresponding modified system

Ut +  UXxx 3t/y h '^ x U x -  luiyUy =  3 (U2)x +  3i[U, U],
3 (115b)

Ux =  Uy.

The following class of unmodified (N  +  1)-dimensional PDEs,

dm+1w
dr dC / w (116a)

where m  is & positive integer (or possibly just an integer) and f ( w )  is an arbi­
trary analytic function, gets transformed, by setting A =  0, p, =  —1 /m  into the 
corresponding modified evolution PDE

dm+lu Qmu dm + l u
+ 1̂  ^ _ +  1 X ——ZZTTT =  j(W) (116b)

dtdxm ' dxm m dxm+1
For instance for m  =  1 and f{w)  =  exp (aw), (116a) becomes the “Liouville” 
equation

wt £ =  exp (aw) (117a)
and the corresponding modified evolution PDE (116b) reads

UfX +  VjOux +  VjOXUxx =  exp (aw). (117b)

The general solution of this modified Liouville equation reads

u{x:t)  =  g{xe iult) +  f{t.)
2 ( ■ f x ■ a
— In  ̂be~lult I d;(/exp[a<g(;(/e_iwt)] — — J  dsexpfiws — af(s)]
a x0

where b is an arbitrary (nonvanishing) complex constant, xq is an arbitrary real 
constant, g(x) is an arbitrary analytic function and f ( t ) is as well an arbitrary 
function of the real ‘time‘ variable t, but it must of course be periodic with period 
T, see (1), for the isochronicity property to hold.
The following unmodified (N  +  l)-dimensional PDE reads

dm+2w
d{,mdT2 / M (118a)
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where m  is an integer and f (w)  is an analytic function. By setting A =  0, /i 
—2f m  one gets the corresponding modified evolution PDE

d m + 2 u  d m + l u  d m + 2 u  Qm u
+ dllx;——----- f 4lUJX-^-:-----—---- 2uJ

d t2d xr d td x r d td xm+1 d xr
2 (  2 \  dm+1u

— uj 3 H-----) x- 2 2 UJ X
drn+2u

(118b)

m  \  m j  d xm+1 \m  J dxm+2

The following unmodified (N  +  l)-dimensional PDE reads

N N
WTT = WT Y  K  { ^ n)an] +  Y  (Wen)2{/3an_1)

f{u)-

(119a)
n =  1 n = 1

By setting A =  — 1, /in =  1 - / 3 + ^ -  one gets the corresponding modified
evolution PDE

utt -

UJ

(2/3 -  1 )ut + Y  ( 1 “  I3 +  — )  x nUtXn

' -¥ /  1 \  
l3(l3 - l ) u  + ( 1 — A? H------) x nuXi
. n = 1 '  a n '

N /  IX
(/3 — l)u  +  Y ^  (1 — (3 H------j x 1Uf — IUJ

N
Y  K (ux,
n =  1

(119b)
\anl

N

+ Y bn iu '->
\2{j3an — l) U

n= 1

The following unmodified (N  +  1)-dimensional “nonlinear diffusion” PDE reads

N
WT =  Wa

Y WSn (120a)
n =  1

By setting fin =  |(1  — ctA) one gets the corresponding modified evolution PDE

N  N
Uf — iXuju — i

1 — ctA EUJ > Xn =  Ua
"Tl^Xn — /  . u-xnxn ■

n = 1 n = 1
E Un (120b)

The following unmodified (N  +  l)-dimensional “nonlinear heat equation with a 
source” reads

N
WT =  Y  a n  +  bud3.

n =  1
(121a)



Isochronous Systems 55

By setting A =  Mn =  2{/3- i)  one §ets corresPonding modified evolution 
PDE

ut
i to

13 -  1
u — i ( 0  -  a n )cu 

2(0 - 1)

N

x nUXn
n= 1

N
T .  an (U ” M*n)
n=1

+  buh (121b)

The following unmodified (N  +  l)-dimensional “Bateman” PDE is solvable

(  0 wT Wfr ••• w$n \
wT wTT w^lT • • • wT̂ n
Uf i U)T£id e t (122a)

\U fn ^(,1 £n * * * £̂,n£,n J
The corresponding modified PDE is in this case f-autonomous for any choice of A 
and /in. For A =  /in =  0 it reads

/  0

d e t

Ut UXl ' * u Xn \
/ 0 u Xl * ' u xn N

Uft UXlt • ' u xnt

— i uJUf d e t
u Xl WXlXl * * u xnx 1

u Xlt u XlXl * ' UXnXl

u txn UXlXn ' ' u XnXnJ
\u x n u x 1x n ' * u xnxnf

0.

(122b)
The general solution u =  u(x: t) of this PDE is given by the implicit formula

n
( e lwt -  l )  fo(u) +  x kfk{u) =  C (122c)

k= 1
where the N  +  1 functions fk{z),  k =  0 . 1 . . . . .  N  are arbitrary.
For A" =  1, the unmodified (1 +  1 )-dimensional Bateman equation reads

wTT (wg) +  w ^ w x — 2wgwTwgT =  0 (123a)

and the modified version of this equation reads

utfUx -H uxxuf 2uXf,uxUf +  iu j[2\u(ux i i xf UfUxx) +  (2g, l ) ( u x) Uf\

(123b)
+  lu2[A 2u{ux f  -  A 2u2uxx +  A(2/i -  l )u(ux)2 +  g(g  -  l)x(wx)3] =  0. 

The general solution of this equation reads (in implicit form)

(elwt — 1 )/ (e~lXu)tu(x: t)^ +  xeip,u}tg (e~lXu}tu{x: £)  ̂ =  c (123c)

with f ( z )  and g(z) two arbitrary functions which can be easily determined in terms 
of the initial data, say uq(x ) =  u(x: 0) and ui(x)  =  uffx :  0).
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By setting A =  0, p  =  1/2 and (for notational convenience) Q = uj/2  the modified 
(1 +  l)-dimensional Bateman equation (123b) takes the simple (real) form

Uftul +  uxxu2 -  2Uxfuxuf = t t2x u 3x . (124a)

Note that, if u(x:t)  is a solution of this PDE, v(x:t)  =  f [u(ax: t  — 6)] is also a 
solution, with f (z)  an arbitrary function and a, b two arbitrary constants.
The initial-value problem for this equation is solved by the implicit formula

u(x: t) =  Uq
tan(Qt) wi(wginv [̂w(a;: t.)]

+
x

cos [Of]
(124b)

where of course UqV]V)(z) respectively u'0(z) are the inverse respectively the de­
rivative of the function u${z) (namely, Wgmv [̂wo(®)] =  x, uf0(x) =  Aufix)/&x).  
And two explicit solutions of this equation, (124a), read as follows

u(x:t)  = f  

u{x:t.) = f

C\X +  C2 cos[0(f — C3 )] )
C4X +  C5 COs[0(f — Cs)] J
___________ C l cos[tt(t -  c2)]________
cos[20(f — C3 )] +  cos[20(c2 — C3 )]

(124c)

x  +  c4 tan[0 (f +  c2 — 2c3) ] |  .

(124d)

Here f ( z )  denotes an arbitrary (twice differentiable) function, and the constants Ck 
are arbitrary. Clearly these solutions are real if the function f ( z )  and the constants 
Cfc are themselves real; and the conditions that the function f ( z )  and the constants 
Cfo must satisfy in order to guarantee the isochronicity of these solutions are rather 
obvious.
The following unmodified (N  +  1)-dimensional PDE reads

wTT = w2f ( w .  . . . . .  wLn . . . . . .  wLnLn . . . . )  (125a)

where f (w .  wXl. . . . .  . . . . .  w^N̂ N. . . . )  is an arbitrary analytic func­
tion. By setting A =  =  0 one gets the corresponding modified evolution PDE

Uft iuju — ut f  (u, ux 1, . . . ,  uXn . uXlxi uXn Xn , . . . ) .  (125b)

4.3. Periodicity in the Space Variable

Throughout this section we focussed on modified PDEs that feature many isochro­
nous solutions. By a variant of the trick (86)—(88) it is in some cases possible to 
generate equations that feature many solutions which are completely periodic not 
only in the time variable t, but as well in the space variable x. We only exhibit
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here a single example, obtained from the unmodified PDE (90a) via the following 
change of variables

r  =  — ----- . (126a)
1' jJ

gi k x  _ ^
£ =  — 7----• (126b)ik

u {x : t) = r )  (126c)

where, to apply this transformation to the unmodified PDE (90a), we set A =  1/ct 
and p =  —1 fa ,  while to and k are two real (indeed, without loss of generality, 
positive) constants, that determine the basic period in the (real) time variable t, see 
(1), as well as the basic period, L =  2ir/k, in the (also real) space variable x. The 
modified PDE corresponding to (90a) reads then

a , . ifc \ U f------u =  au (ux H-----u)
a a '

(127a)

and its general solution, in implicit form, reads

iixjt nk 1//a
u(x:t)  = <| 1 +  ^ -(1  -  e - iuf) K r : t ) ] a |

x Uq ( x — — log { l  +  —  (1 — e lwt)[w(®: 
V k [ to

(127b)

where of course the initial datum, uo(x) =  u(x: 0) should be itself periodic with 
period L (or some appropriate integer multiple, or fraction, of L), in order for 
this solution to be periodic for all time with period L (or some appropriate integer 
multiple, or fraction, of L) -  in addition of course to being periodic in t  with period 
T  (see (1) -  or with some integer multiple of T, depending on the analyticity 
properties of uo(z) as a function of the complex variable z). An explicit special 
case of this implicit equation (corresponding to uq(x ) =  eiqx) reads

iojt ak
u(x:t)  =  be « eiqx < 1 H----- (1 — e lult)[u(x: 7)1

l u}
a

L+1a ^  k
(127c)

yielding, for q =  —k / a ,  the trivial solution of (127a)

u(x: t) =  b exp
(ujt. — kx)

a
(127d)
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For q =  k f  a  one obtains instead from (127c) the explicit solution of (127a)

u(x: t) =  e
i(ijjt—kx) UJ

X

2 a2bk?{elu)t — 1) 

uj — 2 abelkx(e: 4abhxeikx(eiulf -  1)
1_
Ck

Of course many other explicit solutions could be exhibited in specific cases, for 
instance in the special case with q =  —k and a = 2

u ( x : t)
^ 4 ab2h x e - 2[kx(eiu}t -  1) +  cu5

2cik(l e,i uit' (127e)

Finally, we also rewrite below the evolution PDE (127a) with a  =  1 in real form, 
setting u =  u i +  hf2, a =  ci +  ic2 where the two dependent variables u\ =  ui(x: t) 
and v>2 =  U2(x: f), as well as the two constants ci, C2, are of course now rea/

u u  +  -xu2 = Ci[uiuix +  u2u2t -  2k u i u 2) -  c2[uiu2x +  ^ 2^ 1  ̂ +  k{u\ -  ufj\
(128)

u2t -  'XUX =  c2[uiUi:r +  U2u2x -  2k u xU2\  +  +  U2u lx +  k{u\ -  u\)\.
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