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Abstract. In this paper we study some non-positively curved Riemann-
ian manifolds acted on by a Lie group of isometries with principal or-
bits of codimension one. Among other results it is proved that if the
universal covering manifold satisfies some conditions then every non-
exceptional singular orbit is a totally geodesic submanifold. When M
is flat and is not toruslike, it is proved that either each orbit is isometric
to R* x T™ or there is a singular orbit. If the singular orbit is unige
and non-exceptional, then it is isometric to R x T™.

1. Introduction

Recently, cohomogeneity one Riemannian manifolds have been studied from
different points of view. A. Alekseevsky and D. Alekseevsky in [1] and [2] gave
a description of such manifolds in terms of Lie subgroups of a Lie group G,
Podesta and Spiro in [13] got some nice results in negatively curved case, Searle
in [14] provided a complete classification of such manifolds in dimensions less
than 6 when they are compact and of positive curvature. The aim of this paper
i1s to deal with some non-positively curved cohomogeneity one Riemannian
manifolds. We generalize some of the theorems of [13] to the case where
M 1s a product of negatively curved manifolds. Also in Section 4 we study
some cohomogeneity one flat Riemannian manifolds. Our main results are
Theorems 3.5, 3.7, 3.10, and 4.4.

2. Preliminaries

Definition 2.0. Let M be a complete Riemannian manifold and G a Lie group
of isometries which is closed in the full group of isometries of M. We say
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that M is of cohomogeneity one under the action of G if G has an orbit of
codimension one.

It is known (see [1] and [4, 11]) that the orbit space {2 = M /G is a topological
Hausdorff space homeomorphic to one of the following spaces: R, S', RT =
[0,+00) and [0,1]. In the following we will indicate by k& : M —  the
projection to the orbit space. Given a point x € M, the orbit D = Gz is
called principal (resp. singular) if the corresponding image in the orbit space
is an internal (resp. boundary) point of €2, and the point x is called a regular
(resp. singular) point. We say that a singular orbit is exceptional if it has
codimension one. Also note that the principal orbits are diffeomorphic to each
other and M is diffeomorphic to Q2 x D if M/G = R.

If G, is the isotropy subgroup of G at p,(p € M), then G, and G, are
conjugate if both x,y are regular, while G, is conjugate to a subgroup of G,
if = is regular and y is singular.

Definition 2.1. 4 (complete) geodesic v on a Riemannian manifold of cohomo-
geneity one is called a normal geodesic if it crosses each orbit orthogonally.

We know (see [2]) that a geodesic v is a normal geodesic if and only if it is
orthogonal to each orbit Gx at one point = € -, and that each regular point
belongs to a unique normal geodesic.

Definition 2.2. 4 differentiable real valued function F' on a complete Rie-
mannian manifold M is said to be convex (resp. strictly convex) if for each
geodesic v: R — M the composed function F' o ~v: R — R is convex (resp.
strictly convex), that is (F o~)" >0 (resp. (F o~)” > 0).

Let ¢ be an isometry of a simply connected Riemannian manifold M, the
squared displacement function of ¢ is the function defined by d?(p) =
d*(p, p(p)),p € M, where d denotes the distance on M.

In the next proposition we list some known properties of cohomogeneity one
Riemannian manifolds, which we will use in the sequel.

Proposition 2.3. ([4], [8] and [13]) Let M be a cohomogeneity one Riemann-
ian manifold under the action of a connected Lie group G which is closed in
the full isometry goup of M, then

a) If M is simply connected with nonpositive curvature, there is at most one
singular orbit;

b) If M has nonpositive curvature and B is the unique singular orbit of M,
m (M) = m(B);

c) If M is simply connected no exceptional orbit may exist;
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d) If M is simply connected and without singular orbit then Q # S*, i e.
Q=R;
e) No exceptional orbit is simply connected;

) If v is a normal geodesic then the map k: v — () is surjective and it defines
a covering over the set Q° of internal points of Q. When Q@ = RT or R,
we can endow ) with the metric given by the covering k.

The following proposition and theorems will be needed later.

Proposition 2.4. (see [3]) Let M be a simply connected and complete Rie-
mannian manifold of nonpositive curvature, then

a) If the minimum point set C of a real valued convex function F defined on
M is a submanifold of M then C' is totally geodesic in M, and each critical
point of F belongs to C;

2 . . . . .
b) d is a convex fu.nctzon for each isometry ¢ ?f .M and lf M has neg.atzv‘e
curvature it is strictly convex except at the minimum point set C which is
at most the image of a geodesic.

Theorem 2.5. ([15]) Let M be a connected homogeneous Riemannian manifold
with nonpositive curvature, then M is diffeomorphic to the product of a torus
and a Euclidean space.

Theorem 2.6. ([9]) Let M be a homogeneous Riemannian manifold with non-
positive curvature and negative definite Ricci tensor then M is simply con-
nected.

3. Cohomogeneity on UND Manifolds

Throught the following M will denote a complete Riemannian manifold of
dimension n with nonpositive curvature and of cohomogeneity one under the
action of (G, a connected Lie group which is closed in the full group of isome-
tries of M. If M is not simply connected then M will denote the universal
Riemannian covering manifold of M endowed with the pulled back metric
and m: M — M will be the covering projection, with the symbol A we will
denote the deck transformation group of the universal covering of M. We
know (see [4] page 63) that the group G always admits a connected cover-
ing group G which acts on M by isometries and of cohomogeniety one, the
projection 7: G — G is such that 7(§)(x) = n(§(y)) forall g € G, x € M
and y € 7 '(x). Moreover A centeralizes G so that it maps G-orbits onto
G-orbits, so for each p € A, di is constant along orbits.
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Definition 3.0. We say that a Riemannian manifold M is universally and neg-
atively decomposable (UND) when its universal covering manifold M decom-
poses as M = M, x My x---x M, and for each i, M; has negative curvature

and each o € A decomposes as o = 1 Xpa X+ - X, where ; is an isometry
Osz

Lemma3.1. If M = M, x M, is a complete simply connected Riemannian
manifold of nonpositive curvature such that for a geodesic y(t) = (71 (t),v2(t))
and for an isometry p = o1 X s, di, o1 R — R is strictly convex, then
d’ ov: R — R is a strictly convex function.

Lemma 3.2. If p € A is nontrivial and for a normal geodesic y, d;,oy: R —
R does not have any minimum point then, @ maps each orbit D onto itself.

Lemma 3.3. Let M be a UND cohomogeneity one Riemannian manifold and
let o € A be nontrivial, then there exists a normal geodesic v on M such that
di o~v: R — R is a strictly convex function.

Lemma 3.4. Let v be a normal geodesic in M and o € A be such that d2
v: R — Riis strictly convex and t, € R is not a minimum point of the functzon
F(t) = d2 o~(t), then the orbit B = G(ty) is a hypersurface in M.

Theorem 3.5. If M is a non-simply connected UND cohomogeneity one Rie-
mannian manifold with only one singular orbit B, and B is not exceptional,
then it is a totally geodesic submanifold of M diffeomorphic to R* x T™ and

Proof: First note that since dim7~'(B) = dim B < n — 1, each component of
7~ '(B) must be a non-exceptional singular orbit in M. Therefore by 2.3(a),
7~ '(B) has only one component B. Now let o € A be a nontrivial deck
transformation and v a normal geodesic in M such that ' = di ov:R—R
a strictly convex function (see 3.3), then we have two cases.

Case 1: I has only one minimum point £, € R.

In this case since di 1s constant along orbits, we get that év(to) is the minimum
point set of d2, so by 2.4(a) it is a totally geodesic submanifold of M. We

show that B = G.~(t o)- 1f not, then B = Gy(ty), t1 # to, so by 3.4 B must
be a hypersurface in M, since dim B < n —1 this is a contradiction, therefore
B = Gy(to) and B is a totally geodsic submanifold of M. Consequently
B = W(B) 1s totally geodesic in M, so is of nonpositive curvature. Since B is
homogeneous we get by 2.5 that B is diffeomorphic to R* x T™ and by 2.3(b)
we have 7, (M) = m(B) = Z™.

Case 2: F has not any minimum point.
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This case can not occur because by 3.4 each orbit of M must be a hypersurface,
so B is a hypersurface, which is in contrast with the fact dim B <n — 1. OJ

Lemma 3.6. [f for each deck transformation p € A and each orbit D in M,

w maps D onto itself and if there is no singular orbit in M, then each orbit D
in M is diffeomorphic to R¥ xT™,

Proof: The proof of this lemma in given in a portion of the proof of The-
orem 3.7 in [4] and the sketch of the proof is as follows: for an orbit D in
M, 7='(D) has only one component D and D = G/K with K maximal
compact in G. So there is a solvable subgroup H acting transitively on D.
Since D = D/A and A centeralizes G (and hence H too). we obtain that H
acts transitively on D, so D is a solvmanifold and diffeomorphic to a product
RFt x T™ (see [13], p. 76 and [16]). OJ

Theorem 3.7. If M is a non-simply connected UND cohomogeneity one Rie-
mannian manifold without any singular orbit, then each orbit is diffeomorphic
to R* xT™ . In this case if M/G = R, then M is diffeomorphic to R* xT™,

Proof: By 3.3 for each nontrivial ¢ € A, there is a normal geodesic ~ (related
to ) such that d? o~ is a strictly convex function. We have two cases.

Case 1: There exists a ¢ € A such that dfo o~ has a minimum point ¢5 € R.
In this case the orbit B = Gy(t,) is the minimum point set of the function

d?. Therefore by 2.4(a) it is totally geodesic and so B = n(B) is totally

geodesic in M, hence is of nonpositive curvature. Since B is homogeneous, it
is diffeomorphic to R** x T™ by 2.5. From the fact that the (principal) orbits
are diffeomorphic we get that each orbit is diffeomorphic to R* x T™,

Case 2: For each nontrivial ¢ € A, d?o o~ does not have any minimum point.
In this case by 3.2, ¢ maps each orbit D onto itself. Therefore by 3.6 each
orbit D in M is diffeomorphic to R¥t x T™1,

If M/G = R, from the fact that M is diffeomorphic to M /G x D we get that
M is diffeomorphic to R x R*¥ x T™1 = R*¥ x T™ . ]

Lemma 3.8. Let M = M, x M, and X = X + X,, Z be two vectors at the
point p = (py,p2) such that Xy, Z are tangent to M, and X, is tangent to
M, then Ky (X, 7) = Ky, (X1, Z).

Lemma 3.9. [fM~: M, x My % - - x M, where for each 1, M, is negatively
curved with diim M; > 3, then each totally geodesic hypersurface S of M has
negative definite Ricci tensor.
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Theorem 3.10. If M is a nonsimply connected UND cohomogeneity one Rie-
mannian manifold and M = M, xXMyXx- - -XM,,, where for each v, dim M; > 3,
then

a) There is at most one singular orbit;

b) If there is a singular orbit B, it is non-exceptional and diffeomorphic to
REL xT™ and 7, (M) = 7™.

Proof: We prove the theorem in two steps.
Step 1: M does not have two exceptional singular orbits.

If M has two exceptional singualr orbits, then the dimension of each orbit
of M (and so the dimension of each orbit of M) is n — 1, so by 2.3(c, e),
M does not have any singualr orbit and M / G = R. Therefore each normal
geodesic « in M intersects an orbit D exactly once. But since M/G = [0, 1],
the normal geodesic 7 o v intersects a principal orbit D in M infinitely many
times, so 7~ !(D) has more than one connected component. Therefore if D is a
component of 7~ (D), there exist a nontrivial ¢ € A such that ¢(D) # D thus
by Lemmas 3.2, 3.3, for a normal geodesic 7, d?o o v 1s strictly convex with a

minimum point {; € R, and since d2 is constant along orbits, B = C?'y(to) 1s the
minimum point set of d2 So it is totally geodesic by 2.4(a). Now since each

factor of the decomposmon of M is negatively curved with dim M; > 3, we
get by 3.9 that every totally geodesic hypersurface of M has negative definite
Ricci tensor, so B (hence B = w(B)) has negative definite Ricci tensor, thus
by 2.6, B is simply connected. Since dim B = n — 1, we get by 2.3(d) that
B is not a singular orbit. As B is simply connected, B = G/K (K = G,,
x € B), where K 1s maximal compact subgroup of GG (see [10], Vol II, p. 112),
which is in contrast with the fact that there exists singular orbit.

Step 2: M does not have two singular orbits, at least one orbit non-exceptional.

Let B, be a non-exceptional singular orbit of M then B = 7 '(B,) is the
unique singular orbirt of M. Because of dimensional reasons for each ¢ € A
we have go(B) B. The isometry ¢ induces an isometry (* on the orbis pace
R* of M such that for each orblt D we have ¢ (k:(D) k(p(D)). Since
©(B) = B, we get that ©*(0) = k;(~B = kp(B) = k(B 3) = 0, so for each
t € Rt we have ¢*(t) = t. Thus ©(D) = D. Now we have a contradiction
because a normal geodesic -y in M intersects each principal orbit in two points

(M/G = R*) while 7 o ~y intersects a principal orbit infinitely many times
(M/G = [0,1]). So there exists ¢ € A such that p(D) # D.

We need only to show that B can not be an exceptional orbit, the other parts
of the claim is a simple consequence of Theorem 3.5. To prove the claim
observe that if it were the case, M would admit only principal orbits and a
normal geodesic intersects each orbit in M exactly in one point while since
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M/G = R*, a normal geodesic in M intersects each principal orbit in two
points, and a contradiction arises as in the Step 1. [

4. Cohomogeneity One Flat Manifolds

In this section we study cohomogeneity one flat Riemannian manifolds which
are not toruslike.

It is known that every isometry ¢ € Iso(R") is of the form ¢ = (A4,b),
A € O(n), b € R" that is, p(z) = Az + b, x € R". We say that ¢ is an
ordinary translation when A = Id (Id is the identity map on R™).

Note that R™ is the universal Riemannian covering manifold of each flat ma-
nifold M of dimension n.

Definition 4.1. We say that a flat Riemannian manifold M is “toruslike” if each
deck transformation of the universal covering manifold of M is an ordinary
translation.

In the following V.WW denotes the inner product of the vectors V and W in R
and |V is the length of V.

Lemma 4.2. Let R" be of cohomogeneity one under the action of a closed Lie
subgroup G C Iso(R™) and let ¢ = (A,b) € G, A # 1d. Then there is a
normal geodesic v on R™ such that the function F(t) = d? o~(t) is a strictly

convex function with the minimum point t, € R.

Lemma 4.3. If R" is of cohomogeneity one under the action of a closed Lie
subgroup G of Iso(R™) and if all the orbits are regular and one orbit is
isometric to R" 1, then other orbits are isometric to R 1.

Theorem 4.4. If M is a flat cohomogeneity one Riemannian manifold under
the action of a closed Lie group G C Iso(M) and M is not torus-like, then

a) Either each orbit D of M is isometric to R¥ xT™ for some m,k,m + k =
n — 1, or there is a singular orbit B in M,

b) If there is a unique singular orbit B which is non-exceptional, then B is
isometric to RF xT™ for some m,k and 7 (M) = Z™.

Proof: Let M = R" be the universal covering manifold of M and let G
be the corresponding covering Lie group of GG, which acts on M = R" by
cohomogeneity one.

(a): Since M is not toruslike there is a deck transformation ¢ such that ¢ =
(A,b), A # 1d. By Lemma 4.2 there is a normal geodesic « in M such that the
function F'(t) = d? o y(t) is a strictly convex function with a minimum point

tg. Since dfa is constant along orbits we get that the orbit D, = é’*y(to) is the
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minimum point set of di Thus by 2.4(a) it is totally geodesic in M =R", so
it is flat and therefore isometric to R” for some r. Now let there is not any
singular orbit in M. So M = R" does not have any singular orbit, therefore
r =n — 1 and D, is isometric to R"™!, so by Lemma 4.3 we get that each
orbit D of M is isometric to R"~!, therefore each orbit D (= w(D)) of M is
flat, and since it is homogeneous we get by Theorem 2.5 that D is isometric to
R* xT™, for some m, k, m + k = n — 1. This proves the part (a).

(b): Let B be the unique non-exceptional singular orbit of A and B = 7~ (B)
and let F'(t) be the function obtained in the proof of part (a) with the minimum
point t,. For each t € R we have G~(t) = ¢ '(F(t)), where g = dz.
If ¢ and b are regular values of ¢g then g~'(¢) and ¢~*(b) are diffeomorphic
(see [3], p. 10, Corollary 3.11), from these facts we get that B = g (F(to))
(because if not, then B = g~ !(b) where b is a regular value of g, and so B
must be diffeomorphic to principal orbits which is a contradiction). So B is
the minimum point set of g and therefore by 2.4(a) it is totally geodesic in M
and is flat, thus B is flat. Since it is homogeneous we get by 2.5 that B is
diffeomorphic to R* x T™ and by 2.3(b) we have 7, (M) = 7;(B) = Z™. [
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