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Abstract. In this paper we study some non-positively curved Riemann- 
ian manifolds acted on by a Lie group of isometries with principal or­
bits of codimension one. Among other results it is proved that if the 
universal covering manifold satisfies some conditions then every non- 
exceptional singular orbit is a totally geodesic submanifold. When M  
is flat and is not toruslike, it is proved that either each orbit is isometric 
to M,k x Tm or there is a singular orbit. If the singular orbit is uniqe 
and non-exceptional, then it is isometric to R.k x T m.

1. Introduction
Recently, cohomogeneity one Riemannian manifolds have been studied from 
different points of view. A. Alekseevsky and D. Alekseevsky in [1] and [2] gave 
a description of such manifolds in terms of Lie subgroups of a Lie group G, 
Podesta and Spiro in [13] got some nice results in negatively curved case, Searle 
in [14] provided a complete classification of such manifolds in dimensions less 
than 6 when they are compact and of positive curvature. The aim of this paper 
is to deal with some non-positively curved cohomogeneity one Riemannian 
manifolds. We generalize some of the theorems of [13] to the case where 
M  is a product of negatively curved manifolds. Also in Section 4 we study 
some cohomogeneity one flat Riemannian manifolds. Our main results are 
Theorems 3.5, 3.7, 3.10, and 4.4.

2. Preliminaries
Definition 2.0. Let M  be a complete Riemannian manifold and G a Lie group 
o f isometries which is closed in the full group o f isometries o f M. We say
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that M  is o f cohomogeneity one under the action o f G if  G has an orbit o f 
codimension one.

It is known (see [1] and [4, 11]) that the orbit space Ll =  M /G  is a topological 
Hausdorff space homeomorphic to one of the following spaces: R, S'1, R+ = 
[0,+oo) and [0,1]. In the following we will indicate by k : M  —» Q, the
projection to the orbit space. Given a point x  E M, the orbit D =  Gx is
called principal (resp. singular) if the corresponding image in the orbit space 
is an internal (resp. boundary) point of fl, and the point x  is called a regular 
(resp. singular) point. We say that a singular orbit is exceptional if it has 
codimension one. Also note that the principal orbits are diffeomorphic to each 
other and M  is diffeomorphic to f ix D  if M /G  =  R.
If Gp is the isotropy subgroup of G at p , {p E M), then Gx and Gy are
conjugate if both x ,y  are regular, while Gx is conjugate to a subgroup of Gy 
if x  is regular and y is singular.

Definition 2.1. A (complete) geodesic 7  on a Riemannian manifold o f cohomo­
geneity one is called a normal geodesic i f  it crosses each orbit orthogonally

We know (see [2]) that a geodesic 7  is a normal geodesic if and only if it is 
orthogonal to each orbit Gx at one point x  E 7 , and that each regular point 
belongs to a unique normal geodesic.

Definition 2.2. A differentiable real valued function F  on a complete Rie­
mannian manifold M  is said to be convex (resp. strictly convex) i f  for each 
geodesic 7: R —» M  the composed function F  o 7: R —» R is convex (resp. 
strictly convex), that is (F  o 7 )" > 0 (resp. (F  o 7 )" > 0).

Let p  be an isometry of a simply connected Riemannian manifold M, the 
squared displacement function of p  is the function defined by d£(p) =  
d2(p, p(p)),p E M, where d denotes the distance on M.
In the next proposition we list some known properties of cohomogeneity one 
Riemannian manifolds, which we will use in the sequel.

Proposition 2.3. ([4], [8] and [13]) Let M  be a cohomogeneity one Riemann­
ian manifold under the action o f a connected Lie group G which is closed in 
the full isometry goup o f M, then
a) I f  M  is simply connected with nonpositive curvature, there is at most one 

singular orbit;
b) I f  M  has nonpositive curvature and B  is the unique singular orbit o f M,

7r1 ( M )  =  7r1 ( S ) ;

c) I fM  is simply connected no exceptional orbit may exist;
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d) I f  M  is simply connected and without singular orbit then Lt f  S l, i. e. 
Ll =  R;

e) No exceptional orbit is simply connected;
f) I f y  is a normal geodesic then the map k: 7 —» ft is surjective and it defines 

a covering over the set Q? o f internal points o f f l  When Ll =  R+ or R, 
we can endow Lt with the metric given by the covering k.

The following proposition and theorems will be needed later.

Proposition 2.4. (see [3]) Let M  be a simply connected and complete Rie- 
mannian manifold o f nonpositive curvature, then
a) I f  the minimum point set C o f a real valued convex function F  defined on 

M  is a submanifold o f M  then C is totally geodesic in M, and each critical 
point o f F  belongs to C;

b) is a convex function for each isometry p o f M  and if  M  has negative 
curvature it is strictly convex except at the minimum point set C which is 
at most the image o f a geodesic.

Theorem 2.5. ([15]) Let M  be a connected homogeneous Riemannian manifold 
with nonpositive curvature, then M  is diffeomorphic to the product o f a torus 
and a Euclidean space.

Theorem 2.6. ([9]) Let M  be a homogeneous Riemannian manifold with non­
positive curvature and negative definite Ricci tensor then M  is simply con­
nected.

3. Cohomogeneity on UND Manifolds

Throught the following M  will denote a complete Riemannian manifold of 
dimension n with nonpositive curvature and of cohomogeneity one under the 
action of G , a connected Lie group which is closed in the full group of isome­
tries of M. If M  is not simply connected then M  will denote the universal 
Riemannian covering manifold of M  endowed with the pulled back metric 
and 7r: M  —» M  will be the covering projection, with the symbol A we will 
denote the deck transformation group of the universal covering of M . We 
know (see [4] page 63) that the group G always admits a connected cover­
ing group (5 which acts on M  by isometries and of cohomogeniety one, the 
projection 7r: (5 —» G is such that 7f(§)(x) =  7r(g(y)) for all g E G, x  E M  
and y E 7r-1 (x). Moreover A centeralizes G so that it maps (5-orbits onto 
(5-orbits, so for each tp E A, is constant along orbits.
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Definition 3.0. We say that a Riemannian manifold M  is universally and neg­
atively decomposable (UND) when its universal covering manifold M  decom­
poses as M  =  Mi x M 2 x • • • x M k and for each i, Mi has negative curvature 
and each p  E A decomposes as p  =  p 1x p 2x- - •x p k where pi is an isometry 
O f  M i .

Lemma 3.1. I f  M  =  Mi x M 2 is a complete simply connected Riemannian 
manifold o f nonpositive curvature such that for a geodesic 7  (t) =  (71 (t ), y2 (t)) 
and for an isometry p = p x x p 2, d\̂ pi 0 7  x: R —» R /s strictly convex, then 
d2̂ o 7 : R —» R is a strictly convex function.

Lemma 3.2. I f  p £ A  is nontrivial and for a normal geodesic 7 , d^ o 7 : R —» 
R does not have any minimum point then, p maps each orbit D onto itself

Lemma 3.3. Let M  be a UND cohomogeneity one Riemannian manifold and 
let p  E A be nontrivial, then there exists a normal geodesic 7  on M  such that 
d̂ , o 7 : R ^  R is a strictly convex function.

Lemma 3.4. Let 7  be a normal geodesic in M  and p  E A be such that d? o 
7 : R ^  R is strictly convex and ti E R is not a minimum point o f the function 
F (t) =  d^ o 7  (t), /̂ze orbit B  =  (?7 (ti) zs a hypersurface in M.

Theorem 3.5. I f  M  is a non-simply connected UND cohomogeneity one Rie­
mannian manifold with only one singular orbit B, and B  is not exceptional, 
then it is a totally geodesic submanifold o f M  diffeomorphic to Rfc x Tm and 
7Ti (M) =  Zm.

Proof: First note that since dim 7r-1(£>) =  dim£> < n — 1, each component of 
tt~1(B) must be a non-exceptional singular orbit in M.  Therefore by 2.3(a), 
tt~1(B) has only one component B.  Now let p  E A be a nontrivial deck 
transformation and 7 a normal geodesic in M  such that F  = d ^ o 7 : R ^ R  
is a strictly convex function (see 3.3), then we have two cases.
Case 1: F  has only one minimum point t0 E R.
In this case since is constant along orbits, we get that Gy(t0) is the minimum 
point set of d?, so by 2.4(a) it is a totally geodesic submanifold of M.  We 
show that B  =  G.y(t0). If not, then B  = Gy(ti),  /  t0, so by 3.4 B  must 
be a hypersurface in M, since dim B < n — 1 this is a contradiction, therefore 
B  =  Gy(t0) and B  is a totally geodsic submanifold of M.  Consequently 
B  =  7r(B) is totally geodesic in M, so is of nonpositive curvature. Since B is 
homogeneous we get by 2.5 that B  is diffeomorphic to RfexT m and by 2.3(b) 
we have 717(M) =  tti(B) = Zm.
Case 2: F  has not any minimum point.
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This case can not occur because by 3.4 each orbit of M  must be a hypersurface, 
so B  is a hypersurface, which is in contrast with the fact dim B  < n — 1. □

Lemma 3.6. I f  for each deck transformation p  E A and each orbit D in M, 
ip maps D onto itself and if  there is no singular orbit in M, then each orbit D 
in M  is diffeomorphic to M.kl x Tmi.

Proof: The proof of this lemma in given in a portion of the proof of The­
orem 3.7 in [4] and the sketch of the proof is as follows: for an orbit D in 
M, 7t~1(D) has only one component D and D =  G / K  with K  maximal 
compact in G. So there is a solvable subgroup H  acting transitively on D. 
Since D = D / A and A centeralizes G (and hence H  too), we obtain that H 
acts transitively on D, so D is a solvmanifold and diffeomorphic to a product 
Mfei x T mi (see [13], p. 76 and [16]). □

Theorem 3.7. I f  M  is a non-simply connected UND cohomogeneity one Rie- 
mannian manifold without any singular orbit, then each orbit is diffeomorphic 
to M.kl x T mi. In this case if  M /G  =  R, then M  is diffeomorphic to M.k x T m, 
k =  k\ 1.

Proof: By 3.3 for each nontrivial p  E A, there is a normal geodesic 7  (related 
to ip) such that o 7  is a strictly convex function. We have two cases.
Case 1: There exists a p  e A such that ^ 0 7  has a minimum point t0 e M.
In this case the orbit B  =  Gy(t0) is the minimum point set of the function 
d£. Therefore by 2.4(a) it is totally geodesic and so B = 7t(B) is totally 
geodesic in M, hence is of nonpositive curvature. Since B  is homogeneous, it 
is diffeomorphic to R kl x T mi by 2.5. From the fact that the (principal) orbits 
are diffeomorphic we get that each orbit is diffeomorphic to R kl x Tmi.
Case 2: For each nontrivial p e A, d£ o 7  does not have any minimum point.
In this case by 3.2, p  maps each orbit D onto itself. Therefore by 3.6 each 
orbit D in M  is diffeomorphic to R kl x Tmi.
If M / G  = R, from the fact that M  is diffeomorphic to M / G x D  we get that 
M  is diffeomorphic to R x R kl x T mi =  R k x T mi. □

Lemma 3.8. Let M  =  M 1 x M 2 and X  = X 1 +  X 2, Z  be two vectors at the 
point p =  (^1,^ 2) such that X lt Z  are tangent to Mi and X 2 is tangent to 
M 2, then K m (X, Z) = K Ml ( X U Z).

Lemma 3.9. I f  M  =  Mi x M 2 x • • • x M k, where for each i, Mi is negatively 
curved with dim Mi > 3, then each totally geodesic hypersurface S  o f M  has 
negative definite Ricci tensor.
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Theorem 3.10. I f  M  is a nonsimply connected UND cohomogeneity one Rie- 
mannian manifold and M  =  M 1x M 2x • • where for each i, dimM^ > 3,
then
a) There is at most one singular orbit;
b) I f  there is a singular orbit B, it is non-exceptional and diffeomorphic to

MKl x T mi and tt1(M)  =  Zmi.

Proof: We prove the theorem in two steps.
Step 1: M  does not have two exceptional singular orbits.
If M  has two exceptional singualr orbits, then the dimension of each orbit 
of M  (and so the dimension of each orbit of M)  is n — 1, so by 2.3(c, e), 
M  does not have any singualr orbit and M / G  =  R. Therefore each normal 
geodesic 7  in M  intersects an orbit D exactly once. But since M / G  =  [0 , 1], 
the normal geodesic tt o 7  intersects a principal orbit D in M  infinitely many 
times, so has more than one connected component. Therefore if D is a
component of 7r-1 (£)), there exist a nontrivial p  E A such that p(D)  /  D thus 
by Lemmas 3.2, 3.3, for a normal geodesic 7 , o 7  is strictly convex with a
minimum point t0 E R, and since d£ is constant along orbits, B  =  Gy(t0) is the 
minimum point set of d ,̂. So it is totally geodesic by 2.4(a). Now since each 
factor of the decomposition of M  is negatively curved with dim Mi > 3, we 
get by 3.9 that every totally geodesic hypersurface of M  has negative definite 
Ricci tensor, so B  (hence B  =  7r(B)) has negative definite Ricci tensor, thus 
by 2.6, B  is simply connected. Since dim£> =  n — 1, we get by 2.3(d) that 
B  is not a singular orbit. As B  is simply connected, B  =  G / K  (K  =  GX9 
x  e B ), where K  is maximal compact subgroup of G (see [10] , Vol II, p. 112), 
which is in contrast with the fact that there exists singular orbit.
Step 2: M  does not have two singular orbits, at least one orbit non-exceptional.
Let B 1 be a non-exceptional singular orbit of M  then B  =  7t- 1(L>i ) is the 
unique singular orbirt of M.  Because of dimensional reasons for each p  E A 
we have p{B)  =  B.  The isometry p  induces an isometry p* on the orbis pace 
M+ of M  such that for each orbit D we have p*(k(D) =  k(p(D)).  Since 
p(B)  =  B , we get that p*(0) =  p*(k(B))  =  kp{B)  =  k{B) =  0, so for each 
t E M+ we have p*(t) =  t. Thus p{D)  =  D. Now we have a contradiction 
because a normal geodesic 7 in M  intersects each principal orbit in two points 
( M /G  =  M+) while 7r o 7  intersects a principal orbit infinitely many times 
(M/G  =  [0, 1]). So there exists p  E A such that p(D ) /  D.
We need only to show that B  can not be an exceptional orbit, the other parts 
of the claim is a simple consequence of Theorem 3.5. To prove the claim 
observe that if it were the case, M  would admit only principal orbits and a 
normal geodesic intersects each orbit in M  exactly in one point while since
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M / G  =  R+, a normal geodesic in M  intersects each principal orbit in two 
points, and a contradiction arises as in the Step 1. □

4. Cohomogeneity One Flat Manifolds

In this section we study cohomogeneity one flat Riemannian manifolds which 
are not toruslike.
It is known that every isometry p  E Iso(Rn) is of the form p  =  (A, 6), 
A  E 0 ( n ) 9 b E Rn that is, p{pc) =  A x  +  b9 x E Rn. We say that (/? is an 
ordinary translation when A  =  Id (Id is the identity map on l n).
Note that Rn is the universal Riemannian covering manifold of each flat ma­
nifold M  of dimension n.

Definition 4.1. We say that a flat Riemannian manifold M  is “toruslike ” if  each 
deck transformation o f the universal covering manifold o f M  is an ordinary 
translation.

In the following V.W  denotes the inner product of the vectors V  and W  in Rn 
and | y | is the length of V.

Lemma 4.2. Let Rn be o f cohomogeneity one under the action o f a closed Lie 
subgroup G C Iso(Rn) and let p  =  (A, b) E G, A f  Id. Then there is a 
normal geodesic 7  on Rn such that the function F (t) =  d^ o 7  (t) is a strictly 
convex function with the minimum point t0 E R.

Lemma 4.3. I f  Mn is o f cohomogeneity one under the action o f a closed Lie 
subgroup G o f Iso(M.n) and if  all the orbits are regular and one orbit is 
isometric to Rn_1, then other orbits are isometric to Rn_1.

Theorem 4.4. I f  M  is a flat cohomogeneity one Riemannian manifold under 
the action o f a closed Lie group G C Iso(M) and M  is not torus-like, then
a) Either each orbit D o f M  is isometric to R k x T m for some m , k , m  + k =  

n — 1, or there is a singular orbit B  in M;
b) I f  there is a unique singular orbit B  which is non-exceptional, then B  is 

isometric to R k x Tm for some m, k and 717 (M) =  Zm.

Proof: Let M  — Rn be the universal covering manifold of M  and let G 
be the corresponding covering Lie group of G9 which acts on M  =  Rn by 
cohomogeneity one.
(a): Since M  is not toruslike there is a deck transformation p  such that p  =  
(A, b ) , A f  Id. By Lemma4.2 there is a normal geodesic 7  in M  such that the 
function F(t)  =  o 7 (t) is a strictly convex function with a minimum point
t0. Since d£ is constant along orbits we get that the orbit D0 =  Gy(t0) is the
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minimum point set of Thus by 2.4(a) it is totally geodesic in M  =  Mn, so 
it is flat and therefore isometric to W  for some r. Now let there is not any 
singular orbit in M.  So M  =  Kn does not have any singular orbit, therefore 
r = n — 1 and D0 is isometric to Mn_1, so by Lemma 4.3 we get that each 
orbit D of M  is isometric to Mn_1, therefore each orbit D (= it(D)) of M  is 
flat, and since it is homogeneous we get by Theorem 2.5 that D is isometric to 

x T m, for some m 9 k9 m + k = n — 1. This proves the part (a).
(b): Let B  be the unique non-exceptional singular orbit of M  and B  =  ir-1 (B) 
and let F(t)  be the function obtained in the proof of part (a) with the minimum 
point t0. For each t E R  we have Gy(t) =  g~1(F(t)), where g =  d ,̂. 
If c and b are regular values of g then g-1 (c) and g-1 (b) are diffeomorphic 
(see [3], p. 10, Corollary 3.11), from these facts we get that B  =  g-1 (F(£0)J 
(because if not, then B  =  g- 1(fr) where b is a regular value of g9 and so B  
must be diffeomorphic to principal orbits which is a contradiction). So B  is 
the minimum point set of g and therefore by 2.4(a) it is totally geodesic in M  
and is flat, thus B  is flat. Since it is homogeneous we get by 2.5 that B  is 
diffeomorphic to R k x T m and by 2.3(b) we have =  tt1(B) =  Zm. □
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