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Abstract. Starting from a fixed elliptic curve with complex multipli­
cation we compose lifted quotients of elliptic Jacobi theta functions 
to abelian functions in higher dimension. In some cases, where com­
plete Picard-Einstein metrics have been discovered on the underlying 
abelian surface (outside of cusp points), we are able to transform them 
to Picard modular forms. Basic algebraic relations of basic forms come 
from different multiplicative decompositions of these abelian functions 
in simple ones of the same lifted type. In the case of GauB numbers the 
constructed basic modular forms define a Baily-Borel embedding in 
P22. The relations yield explicit homogeneous equations for the Picard 
modular image surface.

1. Introduction: Basic Problems, Motivations

1) Rational Cuboid Problem.
Find a cuboid with rational edges and (face) diagonals. There is no solution 
until now. By some work of Shiga and others, see [14], the rational cuboids 
define (and are defined up to similarity by) rational points on a Q-model 
of the K 3-surface E x E / ( —1), E  an elliptic curve with GauB number 
multiplication. This K 3 surface is Picard modular.

2) Hilbert’s 12-th Problem.
Explicit construction of “nice” number fields via special values of tran­
scendental functions with more than one variable. There is no completely 
understood example until now.

* For the celebration of 200 years since the appearence of GauB’ Disquisitiones Arithmeticae.
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12 R.-P. Holzapfel

3) Uniformization theory for systems of partial differential equations of 
Picard Fuchs type, see [19].

Example 1.1. (closely related with this paper) Set

For t0 =  1 this multivalued function / ( U ^ ) ,  defined outside o f the line 
configuration

satisfies special Picard Fuchs equations, see [6], Ch. II.

4) String theory.
There is a question of Stieberger (Princeton, 2000, private communication): 
Understand Picard modular forms of the field of GauB numbers, and present 
them in most explicit manner.

5) Construction of almost compact real 4-spaces with Kahler Einstein metric 
of negative constant curvature. The metric should be complete outside of 
finitely many “cusp points” compactifying the space. Find explicit complex 
quasiprojective models.

There are respectable lists of candidates for attacking these problems simulta­
neously. The most interesting cases are those which appear in all the list, and 
some of them are related to all of the above problems. We refer to the list

i) Le Vavasseur [13], 1893 (thesis adviced by Picard);
ii) Mostow-Deligne [4], 1986;

iii) Hirzebruch (and others) [1], 1987;
iv) Thurston [18], 1998.

We pick out a real complex 2-dimensional case appearing in all items of the list, 
which is connected with GauB numbers. Most important for these problems is 
to find generating modular forms together with basic relations, both as explicit 
as possible. This is the aim of this paper.
For necessary preparations we give in Sections 2-6 a summary of basic no­
tions and results. The most recent are available only as Humboldt University 
preprints at the moment of writing. One can find them on my homepage at 
Humboldt University. After defining the remarkable 77-form via euclidean- 
hyperbolic coordinate change, the transfer of abelian functions on special ball 
quotient surfaces to modular ones is explained (Section 7). We remember to 
elliptic Jacobi theta functions and quotients of them in Section 8. In Section 9

u u ( u  _  u ) (u  _  i) (u  +  i) (u  — 1)(G +  1) — 0
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we pull them back along elliptic fibrations and find multi-periodic composi­
tions of them, which we call abelian E-quoticnts. We discover an imaginary 
quadratic version of Heisenberg groups in Section 10. Then we look at divi­
sors of abelian S-quotient and discover relations via different multiplicative 
decompositions in simple ones (Section 11). Sections 12-14 are dedicated to 
normalizing constants in order to get the most simple and clean relations. In 
Section 15 we present for each weight > 2 explicit modular forms of the fol­
lowing Eisenstein quality: they are non-cuspidal at precisely one cusp point. 
For any given cusp we construct such a form.
Our lifting construction of “abelian modular forms” yields explicit basic Picard 
modular forms of weights < 3 and relations in the Gaufi number case as ex­
plained in the final Sections 16 and 17. The projective Baily Borel embedding 
of the underlying Picard modular surface with all basic forms shows that we 
are very near to generate the whole ring of modular forms and to generate 
explicitly the ideal of all relations between generators.
This should be checked by computer algebra in a forthcoming paper. It needs 
also more place, but seems to be not difficult with help of [5] (adviced by 
Langlands), to present Jacobi-Fourier series of our modular forms of abelian 
type at a cusp. I believe that our abelian approach to modular forms works also 
in higher dimension, at least in Picard modular cases appearing in the above 
list (i)-(iv).

2. Modular Approach

The example of problem 3) is connected with the family of plane curves

Ct : y4 = (x -  l)(x +  l)(x -  t0)2(x -  t 1)2(x -  t2)2 ,

I — ti, t2) £ C3 \  {0} .

Via plane projective closure and normalization one gets smooth compact models 
C'l . The general members of the family have genus 3. We associate with t the 
point

t =  Pt =  (t0 : ti : t2) 6 CP2 .

It is easy to see that the isomorphy class of Ct is well defined by t. So the 
projective plane appears as parameter space of isomorphy classes of our family. 
The symmetric group S3 acts by permutation of t0, t 1, t 2. In [11] we proved

Proposition 2.1. The quotient surface P2 /  S3 is a compactified moduli space o f 
the family (1).
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This means that a Zariski open part of P2/ S 3 parametrizes precisely the genus 
3 curves of the family (1). The three projective lines Ck : t* =  t3, {i , j , k} = 
{1,2,3}, on P2 are tangent lines of an -invariant quadric C0. For a first 
understanding of C0 we move the zeros ±1 in (1) to a common one fixing 
the other zeros. Then the curve C0 parametrizes the limit points on P2. The 
Apollonius curve

A  := C0 +  Ct +  C2 +  C3 e  D ivP2 

supports the orbital Apollonius cycle

A := 4C0 +  4Ci +  4(72 +  4C3 Pi +  -P2 +  -P3 +  K \ +  K 2 +  K.% , 

with intersection points

Pi =  Ci n C fc,{*,j,fe} =  { l,2 ,3 } , Ki = Co n C%, i = 1 2, 3 .

Now we want to uniformize the orbital surface (P2, A). Let

B := {{zi , z2) £ C2; |^i|2 +  \z2\2 < 1} C C2 C P2 

be the 2-dimensional complex unit ball,

Ti :=S77((2,l),Z[i]) CG13(C)

the full Picard modular group acting effectively on B and T(1 +  i) the congru­
ence subgroup defined by the exact sequence

1 -  r ( i  +  i) -  r ,  -  su((2,1),z[i]/(i +  i)) -> 1,

Notice that

SU((2,1), Z[i]/(1 +  i)) ^  0(3, F2) ^  S3 . 

with the field P2 consisting of two elements.

Uniformization Theorem 2.2. ([11]) The Baily-Borel compactification o f the 
Picard modular surface B / r ( l  +  i) is equal to the projective plane. There 
are precisely 3 compactifying cusp points, which we identify with K i , K 2. K 3. 
The quotient morphism extended to the Baily-Borel compactification

B -> B /T (l +  i) c  B /T (l +  i) -  P2

is a locally finite covering branched along the Apollonius curve A. The orbital 
cycle (with ramification indices, cusp points and singularities) o f this covering 
is the Apollonius cycle A. The ramification locus on B is the T (1 +  i)-orbit o f 
4 discs DqiO15O2,03-
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The proof of the theorem needs rather new rational invariants of orbital sur­
faces, orbital curves and orbital points. Especially, we dispose on orbital Eu­
ler numbers, orbital signatures of orbital surfaces, orbital Euler numbers and 
orbital selfintersections of orbital curves. The theory of these Q -invariants 
(originally called orbital heights) has been developed in [7], With a general 
proportionality theorem (see [9]) one can decide whether an orbital surface has 
ball uniformization or not. On the other hand, starting from Picard modular 
groups, one can calculate the orbital invariants in terms of fine arithmetic her- 
mitian lattice theory described also in [7], Bringing both sides together we 
proved the above Uniformization Theorem in [11],
In general we define in this paper a Picard modular group E as a subgroup 
of finite index in the (special) full Picard modular group

r, = rf = s u ( (2, i ) ,o k),

where K  = Q(-\/—d), d e N+, is an imaginary quadratic number field and O k 
the ring of all algebraic integers in K.  Of main interest are the Picard modu­
lar congruence subgroups defined as subgroups of Ei, containing a principal 
congruence subgroup Ti(a). The latter is defined as kernel of the reduc­
tion homomorphism of r x mod a, a an ideal of £)K invariant under complex 
conjugation:

1 r(0) ^  r, ^  SU((2,1), o K/a).

For the rest of the paper we use the shorter notation Picard modular group as 
synonyme for Picard modular congruence subgroup.

3. Hyperbolic Metric on Neat Ball Quotients

For the construction of the hyperbolic metric on B one starts with the boundary 
distance function

N  (z) := 1 -  -  z2z2 , z = (z1, z2) e M .

The corresponding Kahler form is defined by

i
co — — • ^ 2  9jk dzj dz k = — dd  log N .

This (1, l)-form is invariant under the action of

Autho| B =  PHJ((2,1), C ). 

The Ricci form of to is defined as

P=  ^ J 2 Rfk dzJ dzk
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with coefficients

Rjk — — <92(logdet g) /dz j dzk .

It holds that p =  — 3 • uj. If the Ricci and Kahler form coincide up to a real 
constant factor, then the underlying metric is called Kahler-Einstein. For a 
short proof in the ball case we refer to [1], Appendix B. It turns out that the 
holomorphic sectional curvature is negative constant. Such metrics are called 
(complex) hyperbolic.

Definition 3.1. A ball lattice is a discrete subgroup V o f G = PU((2,1),C) 
(or o f U ((2,1), C)) such that for the volume o f a V -fundamental domain # r of 
r  on B with respect to any G-invariant volume form it holds that

i) vol(fr ) < oo , fr a Y-fundamental domain.
The group Y C G is a neat ball lattice iff it satisfies (i) and for each 
element y  o f Y the eigenvalues o f 7 generate a torsion free subgroup o f 
C*. I fY  is neat then

ii) r  acts freely on B, that means each Id 7 6 Y acts without fixed points.

Theorem 3.2. For neat ball lattices Y it holds that
iii) The quotient morphism B —> ® /r  is a universal covering.
iv) B / r  supports a complete hyperbolic (Kahler-Einstein) metric.
v) The Baily-Borel compactification B/T is a normal projective algebraic 

surface.
vi) B/T =  B / r  U { k i , . . . ,  k h}, with elliptic cusp singularities ki.

vii) means that the minimal resolution o f each o f these cusp singularities kj is 
an ellipic curve T f  For explicit local construction via cusp bundles we 
refer to [7], Ch. IV. The property (v) holds for any quotient o f a symmetric 
domain by an arithmetic group. This is a theorem o f Baily-Borel [2],

Fixing notations, keep in mind the following diagram in the category of complex 
surfaces with neat ball lattice Y:

A  ^  A' = X (  ^  X r ^ X r = B / r  (2)

with minimal (elliptic) singularity resolution p and (smooth) minimal model A  
of A'.

4. Picard Modular Forms

Let r  be a Picard modular group. It acts via argument shifting on the field 
97let(B) of meromorphic functions on the ball.
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Definition 4.1. The invariant field

£ r =  mzx(B)r c  mter(B) 

is called the field o f T -modular functions.

This is an algebraic function field, namely the function field of the quasipro- 
jective surfaces appearing in (2):

Sr =  C(XT) = C ( ! r ) =  C (A f).

For each n e N w e  have a representation pn of F in 9Jter(B), defined by

Pn{l)- f  •-> f i nf ( f ) , 7 ^ F , /  G nJter(B),

where j f i z )  denotes the Jacobi determinant function of 7 on B. The ring of 
holomorphic functions on B is denoted by ijotfB).

Definition 4.2. A holomorphic function f  on B is called a T-modular form  
o f (algebraic) weight n (of Haupttypus) iff it is an eigenfunction o f pn (Tj c  
Aut Jjol(B) with eigenvalue 1. More explicitly, this means that

i \ f ) ( z )  = f ( i ( z ) )  = j n1f ,  V2 e b , 7 e r .

The C-vector space of all T-modular fonus of weight n is denoted by [T,n]. 
The product of forms of weight m  or n is a modular form of weight m  +  n. 
Therefore the direct sum

m  : = © [ ! > ]
n =0

has the structure of a graded ring.

Theorem 4.3. (Baily-Borel [2]) Let V be a Picard modular group. Then:

i) T , 0] =  C;
ii) [T, n\ is finite dimensional for all n G N;

iii) R[T] is a normal finitely generated C-algebra o f dimension 3;
iv) X r =  Proj R [T].

This was the way of Baily-Borel to recognize the existence and normal pro­
jective structure of the compactification of X r = B/T.
From now on we assume that V is a neat ball lattice. In this case we have
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Proposition 4.4. (see e. g. [8]) There is a natural isomorphism o f graded rings
OG

m  =  ®  (fii'( lo g T '))") (3)
73 =  0

onto the ring o f logarithmic pluricanonical forms o f the (smoothly compactified) 
quotient surface X'v with (disjoint) elliptic compactification divisor

h

= (4)
3 = 1

With X ' := X (  and a canonical divisor K x > on X ' we change from bundle 
sections to rational functions. The divisor K x , + T ' is called logarithmic canon­
ical, and its multiples n (K x > + T'), are logarithmic pluricanonical divisors on 
X ' with respect to T '. For n E N we have C-vector space isomorphisms

[r> ]  S  f f» (X ',(n |,( lo g T ') )” ) a  H 0( X ' , n ( K x , + r ) ) .  (5)

The cusp points of a Picard modular group of the imaginary quadratic field K  
are precisely the K -points of <9B, that means the boundary points of B with 
coordinates in K.  Let B be the join of B and the set of T-cusps. The quotient 
map B —>• B/T extends surjectively to B —> X r . Around cusps k and their 
image cusp points k — Tn c  5B it is a well-understood locally analytic map 
(see [7], Ch. IV).

Definition 4.5. A T-modular form p  is called a cusp form iff it vanishes at 
each T-cusp k e  <9B.

Algebraic criterion: P e  [T, n] is a cusp form iff the corresponding pluri- 
logarithmic canonical form vanishes along T '.
The C-vector space of T-cusp forms of weight n is denoted by [T, n]cusp. The 
isomorphisms (5) restrict to

[r, 7 iU „ =  H°(X' ,  n K x , + ( n -  1 ) T )

^ f f ° ( x ' , ( n 2x ,(iog T ' ) r ® x ' - 1) , (6)

where V  = Ox >{T').

5. Neat Coabelian Ball Lattices

Definition 5.1. A neat ball lattice T is called coabelian i f  the smooth minimal 
model o f the surface X'v is an abelian surface A. Such a lattice is called 
coabelian o f first kind iff the only curves on X ( contractible to a regular point 
are irreducible.
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In this paper all coabelian ball lattices are assumed to be of first kind. So the 
exceptional curve L of the birational morphism A <— X ' is a disjoint sum

L — L\  +  • • • +  L s , P 1 =  Z/fc C X ' , (L \ ) =  —1. (7)

Each elliptic cusp curve Tj intersects L properly. Namely, the self-intersection 
index of Tj on X '  is negative (it resolves the cusp singularity k :j), and its image 
curve of Tj on A  must be an elliptic curve T; =  Tj because there is no rational 
curve on abelian surfaces. Since O is a canonical divisor on A, it follows from 
the adjunction formula that (T2) =  0 on A. Now it is clear that all components 
of L intersect Tj at most simply at one point and

-it;2) = (L ■ t;) = #{fc e {i,..., 4; Lk n t; + 0}.

In this case we extend Diagram (2) to the following Euclidean-Hyperbolic 
Change Diagram (EHC)

c 2 B
1 1 (8)

C2/A =  A  <- A' -»■ Xr +-- X r =  B / r

with vertical universal coverings, horizontal birational morphisms, and A ^  Z4, 
a lattice in C2.
Now we start from an abelian surface A  with (reduced) “elliptic divisor”

T  =  Ti +  • • • +  Th 6 Div A , Tj elliptic curve.

As in the above diagram we blow up all intersection points of the components 
of T. This is the set Sing T  of all singularities of the curve T. The inverse 
image of T  is the logarithmic canonical divisor

L +  T  = L x +  • • • +  Ls +  T[ +  • • • +  Th = K a, +  T

with exceptional (canonical) divisor L = K  v on A' as described in (7) and
elliptic proper transforms T ' on A . We look for a criterion which allows to de­
cide whether A  is a neat ball quotient surface X ’v with smooth compactification 
divisor T '. Then we are again in the situation described in the EHC-diagram 
(8). In this case we call T  a hyperbolic elliptic divisor on A. We set

Sj := Tj n Sing T , s := #  Sing T , Sj := # S 3 .

Since all components Tj of T' are contractable (to a cusp point), the self­
intersections (T 2) are negative. So we notice

1 <  Sj <  s ,  j  =  l , . . . , / i
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as first necessary criterion for T  to be hyperbolic. It is equivalent to claim that 
s > 0, because each elliptic curve intersects properly each pair of non-parallel 
elliptic curves on an abelian surface.

h

Definition 5.2. The singularity rate o f the (intersecting) divisor T  =
i = 1

denoted and defined by

is

i = 1

Theorem 5.3. ([9])

i) For each elliptic divisor T  on an abelian surface A the singularity rate 
t(T) is not greater than 4.

ii) T  is hyperbolic i f  and only i f  t(T) =  4.

For the proof in [9] we needed the precise characterization of ball quotient 
surfaces [7] in general, working with (rational) orbital heights, combined with 
the Cyclic Covering Theorem for construction of suitable cyclic covers of A  
of general type.

Example 5.4. ([9]) Let A  be the biproduct E x E  o f the elliptic curve 

E : Y 2 = X 3 + X  , A  = A(C) =  C2/A , A =  Z[i]2 .

E  has complex multiplication with the field  Q(i) o f Gaufi numbers. On C2 we 
define eight lines by the equations

w +  u =  0 , u — v — 0 , u + iv — 0 , u — iv — 0 ,
(9)

U +  LO\ — 0 , U ~\~ Cc?2 — 0 , V +  U)\ — 0 , V T“ Cl?2 — 0 ,

with A-incongruent half periods 00-1,002 C |  A \  f- i  A. Along the universal 
covering C2 —> A their images are elliptic curves Xi, . . . ,  T8 on A. For 
T  = T\ +  • • • +  Th it is not difficult to determine the pairwise intersection 
points, see [9]. The hyperbolic condition (ii) is satisfied again:

51+52 +  53 +  54 +  55 +  36 +  57 +  58 — 4 +  4 +  4 +  4 +  2 +  2 +  2 +  2
=  24 =  4.6 =  4.5. ( 10)

Remark 5.5. The corresponding ball lattice V is Picard modular. This has 
been proved also in [9] showing that A' is a finite covering o f the projective 
plane with orbital Apollonius cycle blown up at K \, K 2, AT such that T is a 
normal subgroup o f finite index in SU{{2,1), Z[i]). We refer back to Section 2.
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6. Dimension Formulas for Modular Forms

In the case of a neat coabelian lattice T we dispose of dimension formulas for 
[I\n]cusp and almost all [T. n].

Theorem 6.1. ([10]) For neat coabelian lattices T with elliptic compactifica- 
tion curve T ' — T[ +  • • • +  T !h it holds that

dim [r, n]cusp 

dim[r, n]

1, if n — 1; 
if n > 1.

1, if n — 0 ;
3(2)5 +  h , if n > 1.

( 11)

(12)

The proof is a combination of Riemann Roch, Kodaira vanishing, Baily Borel 
embedding theorems, (long) exact sequence and local compactification tech­
niques. The dimension formulas recover the number h of cusp points:

Corollary 6.2. For n > 2  and coabelian neat ball lattices V it holds that

# { X r \  X r ) =  h =  dim([T, n]/[T, n]cusp) ,

Using the EHC-Diagram (8) we want to transfer certain A-periodic meromo- 
morphic functions on C2 to T -modular forms. We work with global coordinates 
u,v  on C2 and z1, z2 on B. By abuse of language we call the former euclidean 
and the latter hyperbolic coordinates. So we dispose around each point

F e i  \  supp T  — A' \  supp(L +  T') — X r \  supp L (13)

simultaneously on local euclidean coordinates u, v and local hyperbolic coor­
dinates Zi,Z2.
Via holomorphic sections of logarithmic pluricanonical bundles the C-linear 
isomorphisms

H°(A' ,n{L + T'))  -> [T,n]. /  ^  := i„(f)

are realized in two steps. First by local euclidean-hyperbolic coordinate transfer

f  ■ ( d u A  dv)m  = p (n\ d z 1 A dz2)m  (14)

around any point P  as in (13). Then we consider as local analytic function 
on the ball ®. We use the same notation 'plri) for its (unique) analytic extension 
to B, which belongs to [T,n]. Since /  belongs also to H°(A'7N ( L  +  T')) 
for all N  > n, it produces a series of T-modular functions pX)  = iN(f).  
Fortunately, we are able to understand the quotients pX ) / pX)  as powers of a 
remarkable cusp form, one and the same for all / .
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Proposition 6.3. There is a cusp form q = 7]r generating the vector space 
[I\ fcusp such that the diagram

H° { A' , n{ L +  T ) )

ir

[T, n]

-> H°(A ' ,N{L  + T'))

Ln

■7]N —n
-A [r, tv]

are commutative for all 0 < n < N. This means that

f (K) = <■«(/) = p - n ■ <„(/) =  VN~n ■ A ’ .

Proof: With the constant function 1 =  l A> £ H°(Af, O) on A'  we define

rj = r]r := (15)

or, by local equation (14),

1a> ■ ( du A du) =  du A dv = 7] ■ dzi A dz2 . (16)

For products /  • h, f  e n(L  +  T %  h e H°(A ' ,m(L  +  T')) the
corresponding local equations yield

Ln+m{f ‘ h) — Ln(f)  • Lm(h) E H° (A ' , (tI +  77l)(L +  T')) .

Especially, for h = 1A> 6 H°(A ' : m(L  +  T ')), m  — N  — n, we get

' 1a ' ) ^n(y) ‘

From the definitions (16) and (15) it is clear that 0 f  q 6 [r, 1]. In Lemma 7.3 
below we will see that q must be a cusp form. The dimension formula (11) for 
n = l  yields

[r, l]CUSp = Cq = Ci]r .

□
Convention. For each /  e H ° { A \ N ( L  +  T ')) there is a minimal n G N such 
that /  £ H°(A ' , n(L +  T')). We omit the index n, if n is choosen for /  in this 
minimal manner setting

T = t'(f) = tn(f) = LN(f)/7]N~U .

Clearly, <p is not divisible by q. Starting from a F-modular form <p{N) e 
[r, N] we see that n is defined as smallest natural number such that p (N) is 
decomposable into p (n)qN~n jn the ring of holomorphic functions on B.
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It may happen that

f - g  = h,  f  e k(L  +  T ' ) ,

g e H°(A ' : m(L  +  T ' ) , h e  H °( A \  n(L + T ' ) ,

but n < k +  m,  even if k and m are minimal choosen. Setting <p = ik(f),  
7 =  tm{g) and % =  in(h) it is easy to see from the definition of Lk+m that 
the above inhomogeneous relation transferes by means of the 77-form to the 
homogenized relation

V • 7 =  vk+m~n ■ X ■

So the abstractly defined 77 plays algebraically the role of a homogenizing 
element. It gives also the chance to determine 77 as a root of the quotient of 
A ’ l / x  ° f  explicitly known modular forms p  • 7, ;y. More generally, each 
(inhomogeneous) polynomial relation

0 = £  Ci/i1 ■ f f  , c, g € ,  i =  (a  , . . . ,  i r ) ,
ierr

in the ring H°(A ' , *(L +  T ')) := U^Lo H°(A' ,n{L  +  T ’)) transfers to a ho­
mogeneous relation

0 =  (18)
i<ENr

in [r,iV] with functions f j  e H 0(A' ,kj (L + T >)), pj = i k f f j ) ,  f l 1 ■ ■■
f f  ^ H°(A',rii(L +  T ')), TV — max{77i}. One has only to multiply the 
inhomogeneous polynomial with (dw A dv;)A, to apply the transformations 
(17) together with (14) to each summand and to cancel the common factor
(d^i A d ^ )^ .

Remark 6.4. Via quotients o f functions one gets the well-defined and well- 
known isomorphism o f function fields

T : mtx(A)  ^  =  9ttet(B)r ,

f / g  ^  ^ ( f / g )  ■= ^n{f)/^n{g) ,
f , g e H ° ( A ' , n ( L  +  T ) ) .

Especially, f  =  / / 1  6 H°(A' ,n(L  +  T) corresponds to in{ f ) /gn-
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7. Modular Transfer of Abelian Functions

We write ( f ) A or (/)w  for the (principal) divisor on A or A'  of an (abelian) 
function /  G 9Aetr(A) =  9Aet(A'). For the A-periodic meromorphic function 
F  on C2 corresponding to /  we define

(F)a := ( f ) A G Div A  , {F)a, := ( / ) A, G Div A ' .

Similarly, for a T-modular function cp G 97let(B/r) =  Wlzv(A') we use the 
notation (p)A> for the corresponding divisor on A'. The divisor (co)A of higher 
differential forms cj G H ° (A , (Q2 © ") on A is globally defined by patching 
local divisors of the functions /  appearing in local presentations u; — f ( d u  A 
du)®n. Comparing after blowing up local coordinates around points we get

(du A du)^/ =  a* ( (du A du)^) =  L ,

hence

a*( (u)A) =  cr*((f)A) +  n L  =  ( / ) A/ +  raL .

The geometry around cusps (Jacobi-Fourier series, see [5] or [7]) forces us to 
set ( dz1 A dz2)A’ — — T ' and extend it to

{p{dzl A dz2)®n)A' = (a )A' ~  n T

definigng (<p)A' £ Div A' for modular fonns V C [r,n]. The coefficients 
coincide with the zero orders of along irreducible (local) curves on B lifted 
from A' and, by definition, at cusps related with the elliptic compactification 
curves T-. With the definition (14) of in we are able to compare divisors, 
namely

( f ) A>+nL = (<p)AI - n T ' , <p = Ln( f ) ,

hence

(<PU> = (f)A>+n(L + T ) ,  (19)

which can be also used as short natural definition. For instance,

(^A'  =  (l)w +  (L +  T') =  L  +  T ' , 7] =  t i ( l ) .

We want to define for <p a cycle (of zeros) on B. For this purpose we choose 
a representative set k — {«1?.. .  ,Kh} of T-cusps on the boundary of B corre­
sponding elementwise to the elliptic cusp curves T [. . . . .  on A'. Let

Divre B — Zfti © • • ■ © Z kh
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be the free abelian group generated by the points k1: . . . ,  nh. For cp we denote 
the (zero) order at k3 by vKj(p) coinciding with the X)-coefficient of (p )a>- 
The cusp cycle of p  on k is defined as

( p ) n  ■ =  V K1 (<£>)«! H---- +  VKh ( t p ) K h =  VT;  ( p ) ^  + ----- h VTL ( f ) K h

= {n + vTl (/))« ! H-------h (n +  vTh (f))Kh .

The value of the modular function

T_ = •'n(f) 
f]n f)n

is well-defined as

T (/)  at Kj

T ( / ) K ) f(fcj) =  f (Tj)  = f (Tj)  G CU {00}

via Hartogs’ theorem, if the value is finite.

Remark 7.1. Also f  itself has a well-defined values f ( n :, ) at K:r Each is 
defined as the constant term o f the Fourier-Jacobi (power) series o f p at k3 
(after fixed normalized transfer to a standard cusp, see [5]). There is no pole. 
In correspondence with (20) <p =  in ( /)  does not vanish at k:] iff vT; ( /)  — —n. 
In this case we call p  non-cuspidal at In the opposite case we say that p 
is cuspidal there.

Lemma 7.2. (disc criterion) Assume that the stabilizers GP at P  € S  =  SingT 
o f the group

G = G (A , T) = {g € Aut A; g(T) =  T}  

are bigger than the cyclic (Tk-centralizer) groups

^Tk(G) {g E G; g\Tk — IdTfc} , VTfc 3 P .

Then the smooth rational curves p(Lj) on B/T are compactified disc quotients

L j ~ p ( L j )  =  % / r % , j  =  

where the are linear subdiscs o f the ball B and

=  N r (H)j)/ ZG(J}j) , N r (H)j) — {7 G T ; 7(0^) — Bj} .

Proof: The stabilizer condition implies the existence of an element g G Gp 
with P  as isolated fixed point. This element acts on A ' as reflection with 
LP = a~1(P) as reflection curve. The elements of G act also on B/T c  X r 
and lift to B along the universal covering B —> B/T. Especially, g is lifted to
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a reflection on B because of local isomorphy. The reflection curve is a linear 
disc Bj because Aut B consists of linear transformations. □

Through the paper we will assume that the disc criterion of the lemma is 
always satisfied. We choose representative discs B.,- lifting Lj, j  =  1 , . . . ,  h, 
set B =  {B1;. . . ,  B/t} and define the free abelian group

DivD B =  ZBj © • • • © ZD/j.

For each T-modular function p = in( f ) we denote the zero orders along B  ̂
by vBj (p). They coincide with vLj ( /) , which is equal to the L:J-coeffictient of
(p )a ' =  {f)A' +  n(L  +  T ') G Div A ' . We write

(v7)® VD! +  • • • +  vBh (v?)Bh
= {n +  vLl (/))B i +  • • • +  [n +  vLh ( / ) )O/j G DivD B ,

which defines also the B-cycle

M b :=  M b +  M «  (21)
on

Divjg, B := DivD B © DivK B =  ZBX © • • • © ZBfe © Z/sy © • • • © Znh .

For instance,

=  Bi +  • • • +  B/,, +  Ki +  • • • +  ks .

By the way we proved

Lemma 7.3. The r]-function ©(1) has simple zeros at the cusps and also along 
the discs lifted from the lines Lj. It has no other zeros on B.

For p — Ln ( /)  we want to relate the Tj -coefficients of ( / ) a  with the coefficients 
of (©)]□,. Let D be a divisor on A, D' =  a'{D) its proper transform and 
D* — a*(D) its inverse image on A ' . The embeddings

o ' , a *: Div A  —> Div A r =  a'(D iv A) © ZLi © • • • © ZL s

are connected by the formula

a*{D)=a ' (D)  + p ( D ) - L ,

where

p(D)  • L gi(D)Li  +  • • • +  jis{D)Ls

with the s-tuple

p(D) = (p1 (D) , . . . ,  p s{D)) G Zs
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of multiplicities Pj(D)  — pPj (D ) of D at P,. Notice that the multiplicity map 
/1 : Div A  —>■ Z s is additive. Important is the multiplicity tupel of T

K T ) ■= (tu ■ --As)-

We set for /  G SDter(A)

K f )  — K ( J ) a ), M l )  — (t'T,(/), • • • ,VTh(f))  ,
M f )  ■ T  ■- vTl U)T[  +  • • • +  uT, (Z)T'

Restricting to functions /  G H °(A , /FT), k  > 0, we get

(Z)a' =  ^ '( ( / ) a) +  m( /)  • L =  <t' ( ( / ) a) +  *>t ( /)  • T'  +  ^ ( /)  • L (22)

where ( /)^  is the positive part (zero divisor). Restricting to the part of the 
divisor supported by T ’ + L we write

{f)L+T ' = K f ) - L  + vT( f ) - r .  (23)

We proved

Lemma 7.4. 77ze abelian function f  with poles only on T  belongs to 
H ° ( A nL +  k T ' )  i f  and only if

i) M /)  > ~ ( n , . . . , n )  e Z ”;
ii) M f )  > ~(k,  S 1 h.

Assume that k  = n and the conditions (i) and (ii) are satisfied. Then the T- 
modular form <p — tn(f)  of weight n is well-defined. From (19), (21), (22) 
and (23) it follows that

(<p)a> = o ' ({ f )QA) +  ( K f )  +  (n , . . . ,  n)) ■ L +  (uT(/)  +  ( n , . . . ,  n)) • T ' , 
(^ )l+t' =  ( K f )  +  ( n , . . . ,  n)) ■ L +  (ur (/)  +  ( n , . . . ,  n)) ■ T  ,

(^)d =  ( K f )  +  ( n , . . . ,  n)) • B +  (uT(/)  +  ( n , . . . ,  n)) ■ k ^ 4)
=  (vL(f)  +  (n, • •. ,n)) - D +  (uT(/)  +  (n , . . . , n)) • «

where ED, vL(f),  k stand for (D1;. . . ,  Bs), (vLl ( / ) , . . . ,  vLs ( /))  respectively 
k = (ui . . . . .  /v/J and the -’s are understood as sum of componentwise products 
again. We see also more immediately now that

Corollary 7.5. An abelian function f  G 97ter(A) belongs to H°(A\n(L  +
T')) for a suitable n > 0 i f  and only i f  the support o f its pole divi­
sor on A is supported by T. The smallest possible n coincides with 
— minjO, P i ( f T h e  T-modular form p — Ln(f), f  G 
H°(Af n(L +  T')), is a cusp form i f fvT( f ) > - ( n  -  1 , . . . ,  n -  1).
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8. Some Classical Elliptic Theta Functions and their Quotients

First we remind to some classical quasi-periodic functions on C with respect 
to a lattice Z2 =  A c  € . Fixing notations we work with half periods

with A' =  A \  {0}. This is an odd function. The WeierstraB ^-function is 
defined as

The following basic properties can be found in several textbooks on function 
theory, e. g. [15] and [17].
1) a(z  +  2cok) =  — Q2rtk{z+uk) . (J ẑ 'j w^j1 constants r]k := Ci^k), k = 1,2.
2) The quotient E[[=1 cr(z — a*)/]1[=1 cr(z — bi), cii,bi £ C, is an elliptic 

function if and only if J2l=i(ai ~  bi) — 0.

We have choosed the notations and detailled presentation of [17] in order 
to recognize the series expansion of the cr-function in the most convenient

cui, cu2, u;3 — cui +  o;2 G — A

such that

A =  Z • 2u>i_ +  Z • 2cj2 , r  := cu2/Vi £ H; Im r  > 0 . 

The classical cr-function on C is defined by

3) a(z) = 2ujx em 2“i • $ i { ^ ) / $ i { 0 ) ,  with classical theta series

r

where
OO

M z )  = M z , t ) = ( - ! )" « " ’ e2~
n =  — oo

OO

=  1 +  2 • ^ ( —1 )nq "2 cos(27rn2:) , q — e
n = 1

manner.
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4) The derivative of the WeierstraB ((-function is the negative of the WeierstraB 
^-function of the lattice A: Ciz ) =  — p(z).

The quasi-periodic property 1) indicates that a(z) is a theta function in a general 
sense. It extends really to:
T) a(z  +  2to) = ip (2to) e^ 2AL+-9 , to G |A .
Thereby A —> C is the additive homomorphism defined by

C(z +  A) =  C(z) +  77(A), A € A .

This is correct because is a A-periodic function by 4). The homorphism 
extends linearly to r/: C —> C. Moreover, p  is the character on (A,+) with 
exact sequence

0 -» 2A -»> A ^  {±1} 1.

We refer to [12], Appendix 2.
Altogether one gets a group homomorphism

\  A -  OL, (Q  , w ~  £"(z) := v>(2w) e’ (" » .

We need it for the functional relations

a(z + to) = eLJ(2z)cr(z — to)
e2̂ za(z -  to) , 
- e 2̂ za(z -  to) ,

if to £ A ; 
if a; € |  A \  A .

(25)

9. X-quotients in Dimension 2

Let K  =  Q (\/—d, d € N+, be an imaginary quadratic number number field, 
D = 0 K its ring of integers, c e  C* a constant specified later. For the C2- 
lattice

A =  Ai x A i , Ai =  cD

We want to construct A-periodic functions on C2 in explicit manner. We will 
pick them out from the image of the following map:

M at2(If) x (C2mx C 2i x C 2n) ->■ 50ler(C2) , m , l , n  € N

sending (M; H A v 
p  A' P to

/j, A v
p  P n<=l rij= l *Tm3A, E[fc=l a m2i'k

n i=1 n i=i 0̂x3 a'. rife=i crtn2̂ :
(26)
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where

M  e M at2( i f ) , p , p ' £/ rr'm A, A ' g C1, z/, if  g Cn ,

rtii, m2 are the rows of M, m3 =  trii +  m2, and

with
Vm,p{U’V) := a (m ‘ U +  Z3) >

m =  (m1, m 2) 6 7F2 , u =  (u, u) 6 C2 ,
p £  C,  m - u  =  miM +  m 2r .

Theorem 9.1. For M  € Gl2(0) the meromorphic function
/.I \ V

f  \  f  / 
___  v-1 \1 A V£(u,u) =  E^ " (w,v)

/.s' A -periodic if

5 > . - / 4 )  =  - £ 0 . - ^ )  =  £ (
j=i fc=l

(27)

Proof: Since A =  (Ax x o) ® (o x Ai), it suffices to show that our S-quotients 
are A 1 -periodic for fixed u and for fixed v under the assumption (27). Fix 
v, for instance. We are in a similar situation as in 2), Section 8, which is a 
consequence of 1). For simplicity we work with the constant c =  1.
First case: M  =  ( o ? )• With mi =  (1,0), m2 =  (0,1), m3 =  (1,1) the factors 
of E(w, v) are:

m

Y[a(u  +  ,
1=1 

m

Y[a (u  + f f  ,
i = 1

l
o{u + V +  \ 3) ,

3 = 1 

l
er(u +  u +  A ' ) ,

3 = 1

Yl  cr(v +  uk) ,
k= 1 

n

n  a ( v + uk) ■
k = 1

According to 1), Section 8, in the denominator and numerator of the function
£(u  +  2cup, v), p — 1,2, appear six products

m m
( - l ) m Y l cr(u F  • exp(27]p J 2 (u F Pi F u p) ) ,

i = l  i = 1
l l

( - i ) ‘ n x «  +  v F Af) ■ exp(2?7p +  v F Xj F top) ) ,
J =  1 3 = 1
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m m
( - ! ) m I I  a (u +  dd ■ exp(2riP +  f i• +  wp) ) ,

i = l  i = 1
l l

(-1)* Y [  a(u  +  V +  A' ) • exp(2?7p ^ ( u  +  v +  A' +  wp) ) ,
j=i j =i

n n
J ]  ct(u +  uk) , J J  <7(v +  .
fe=l k = 1

Comparing products in numerator and denominator we see that ^2(u-\-2iiip, v) — 
E(w, u) holds, if

m  l m  l

y .  fi * — XX- * X! ̂
i=l j=l i=l j=l

Fixing u instead of v we get periodicity in the second argument, if the relations
l n  l n

Uk =  Y1 ^  uk
j =1 k =1 j = l fc=l

are satisfied. Both relations together are equivalent to (27). n

We let the group Gl2{K) act on M at2(7f) by multiplication from the right side.
jj, \ V 

/ \ / /

It transfers to an action on the space of our cr-functions aM — a . Fixing 
the upper translation indices and writing the variables as column we have

Emg(u , u) =  E M( G ( UV)) =  G*(Em) , G G Gl2( K ) .

Lemma 9.2. The function aM is A-periodic iff a mg A G~x A-periodic.

Proof: For ( p ) 6 A we get

Z Mg ( ( uv ) + G - 1 (%)) = Z M( G ( UV) + ( ap )) = Z m ( G ( uv )) = Z MG( u , v ) .

In order to furnish the proof of the theorem take G £ Gl2(D). We know 
already by our first step that E e , E  the unit matrix of order 2, is A-periodic, 
if the relations (27) are satisfied. Therefore, by the lemma, Er; =  E ,:-a is a 
G~xA — A-periodic function. The relations have not been changed, n

Remark 9.3. It may happen that some o f the six products in our E-quotient do 
not really occur. This means they are equal to 1. Indeed, we allowed m, l or 
n in (26) to be equal 0. In this case the corresponding difference sum in the 
relations (27) has to be substituted by 0, too. A new proof is not nessessary 
because it is the same to assume that for m, l or n the corresponding two
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products in numerator and denominator coincide, hence cancel. For instance 
l =  0 is equivalent to l > 0 and A =  A' e  C1.

Remark 9.4. Applications o f affine transformations o f C2 with Gl2(0)-linear 
part also do not change the linear relations (27). Besides o f the Gl2(0)-  
transformation one has only to change the p it p\ by p* +  c, p[ +  c, the vk, 
uk by pk +  d, i f  +  d, and the Aj, A' by X , +  c +  d, A' +  c + d, respectively, 
where (c, d) E C2 is the translation vector o f the affine transformation (image 
o f (0,0)).

10. Group Actions

The group action of Gl2(K)  on E-quotients is accomponied with the (m +  
l +  n)-th power of the translation group T2(C) =  (C2, +) via the upper index 
vectors:

The relations (27) are preserved, if we restrict the action to the multi-diagonal 
translation subgroup %1(C)m+l+n of %2(€ fm+l+n working with a* =  a', bj — 
bfi ck = c'k. Combined with the linear group we get an action of Gl2(K)  x 
Ti(C)m+z+n on the set of S-quotients, especially on the subset of S-quotients 
invariant with respect to a lattice commensurable with A (see Lemma 9.2). 
Moreover, the affine group Gl2(K) • ‘X2(C) acts as subgroup of Gl2(K)  x 
Ti(C)m+z+n on the set of S-quotients. The elements are identified with 
Gl3(C)-elements of form

G =  { ( ^  A  - , G e G h ( K ) ,  t e c 2}.

Identifying the argument vectors u,v  of our functions with <■ j the affine 
action of G is explicitly described by

G ‘F(u,v)  = G " F ( l )  = F ( G ( v) ) .

Applied to each factor of a E- quotient we get

(T*cr(m • u +  p) =  G*cr((m,0) • ( ^ +  p) =  cr((m,0)G ( +  p)

=  a(mG  ( ^ ) +  m • t +  p ) .

Further restriction yields an action of an imaginary quadratic version of the 
Heisenberg group

$) (K f  QA) := Gl2(K) ■ T(QA) ^  Gl2(K)  • %2{K)
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(with obvious notation) on the function field generated by E-quotients invariant 
under lattice translations commensurable with A. Restricting further we get with 
Theorem 9.1 the following

Corollary 10.1. The subgroup f)(:02,QA) := Gl2{D) ■ ‘T(QA) acts on the 
subfield E(C2,A), generated by all A-periodic T-quotients o f the field  
9JTet(C2, A) =  9?tcr(C2/A) o f abelian functions on the surface A  =  C2/A.

Explicitly, the action of

G — Q  e i } ( 0 2,QA)

on E- quotients can be written as

G* E
fi X u
p  \ '  P

M = E
H A v 
p  A' P

G M

with obvious action on pairs in the upper indices, e.g.

+ 1.
fii

G • ( P. G ■ 1 Mr-i

More simply, G acts on each a-factor crm by index multiplication

'Tm./i ^  G — cr(m,M)G' •

11. Elliptic Divisors of E-quotients and Relations

The inverse image of the canonical projection pA: C2 —> A — C2/A identifies 
the abelian function field C(A) =  SDTet(A) with the field 9DTer(C2, A) of mero- 
morphic A-periodic functions on C2. So each F  e 93icr(C2,A) corresponds 
uniquely to an abelian function /  such that F  = p*A(f).  We are mainly inter­
ested on abelian functions /  with elliptic divisors on A, or at least with elliptic 
pole divisors ( f ) ^ .  The elliptic curves on A  through O  correspond via p*A to 
QA-lines on C2, which are defined as affine complex lines on C2 going throug 
two different points of QA. We have bijective correspondences

{elliptic curves through O <E A}  -<=>- {QA-lines through O <G C2}/A 

{elliptic curves on A}  <==f> ({QA-lines on C2} +  C2) / A ,

where the action of C2 (and A) is defined by additive shifting. Intermediately 
we have also the correspondence

{elliptic curves with several .4-torsion points} 4=^ {QA-lines}/A.
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Here “with several /I-torsion points” means: more than one or, equivalently, 
with a dense subset of /1-torsion points. On this way each elliptic curve C on 
A is defined by a linear equation (remember A =  c ■ D 2)

C : au  +  /% +  /? =  0 , Q,/i G i f ,  p £ C.

We can and will assume that the coefficient pair (a, (3) is primitive, which 
means that a and j3 are integral and have no common O -factor except for 
units. If O k is a principal domain, the primitive coefficient pair (a, A) is the 
row of a Gl2{0 ) -matrix. It is uniquely determined by C up to D-mutiplication 
and p up to A-shifts after fixing a  and (3. Moreover, C has A-torsion points 
iff p E A 1.

fi A v

For our X!-quotients Xj) A " we assume that we cannot cancel factors of the 
denominator and the numerator, this means

^  \  1 A j  7̂  A j  1 V k  ^  V k

for all possible numerations. We restrict ourselves also to A-periodic X- 
quotients with upper indices lying in QAX and M  e Gl2(0).  The set of

H A v

all of them is denoted by X(D2, QAi). The divisor of Xj^ A v <G X(D2, QAi) 
on A  is an elliptic divisor whose components are universally covered by the 
following C2-lines

zeros: au + (3v +  pH — 0 ,
7 u + 5v + isk =  0; 

poles: cm +  (3v +  //' =  0 ,
pu +  Sv +  v'k =  0,

M =  ( “ ? )  e G h ( O ) ,

with relations
7Tt l 7%

= -  X ( /  -  K )  =  X ( ^  -  / )  • (28)
i =1 j =1 k=1

,u A v

We see that each elliptic component of the divisor Div,4 (X ̂ , A v ) has (several) 
A-torsion points.
Two elliptic curves on A are called parallel if and only if they have no common 
point or they coincide. If all components of an elliptic divisor are parallel, then 
we call it a parallel divisor. Each elliptic divisor D on A splits uniquely into

+  p)u  +  (7 +  +  Aj — 0 ,

(a  +  f3)u +  (7 +  +  Aj =  0 ,

K , K , V ‘j,V‘'j,Vk,v'k e QAi = c K ■
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the sum of maximal parallel subdivisors. They are called the parallel compo-
H \  v

t \ t /
nents of D. The divisor of v has in general three parallel components 
described by

cm +  (3v +  Hi — 0 , cm + f3v +  ^  =  0 ,
i =  1, . . . ,  m  ,

{a +  f3)u +  (y +  6)v +  Xj — 0 , (a (3)u +  (7 +  <5)v +  =  0 ,
j  =  1 , . . . ,  I,

yw +  Sv +  vk =  0 , yu +  +  v'k =  0 ,
k =  1, . . . ,  n

with coefficient relations (28).
The case of two parallel components happens iff precisely one of the upper 
index bounds l , m , n  vanishes. We loose nothing if we assume that m  =  0. 
The two parallel components are described by the elliptic curves with linear 
equations

cm +  j3v +  Hi =  0 , au  +  /5u +  / i - = 0, i = 1, . . .  , m  ,

respectively

yw +  Sv +  uk — 0 , yu +  Sv + v'k = 0 , k =  1, . . . ,  n ,

with coefficient relations
m m  n n

i=l i=l fc=l fe=l

The cases with only one parallel component are exhausted by l =  n =  0. Then 
the zero and pole equations are

cm + j3v + ^  = 0 , cm +  +  /c • =  0 , i =  , m / 0 ,

with only one relation

m  m

y !  k ’ i  =  '
i =1 i=l

The elliptic divisors on zl of all possible abelian E-quotients are called E - 
divisors. Their pole divisors are called E-pole divisors. The minimal number
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of components of a

li
]-pole divisor is

if it has precisely 3 
if it has precisely 2 
if it has precisely 1

parallel components; 
parallel components; 
parallel component.

The parallel components of each E-divisor with precicely two of them are (par­
allel) E-divisors themselves corresponding to the product of two E-quotients. 
These are reducible E-divisors, where a S -divisor is called irreducible or 
simple iff it is not the sum of two smaller E-divisors. So the most simple S- 
divisors are those with two parallel pole components {binary), with three parallel 
pole components {ternary parallel) and with three (pairwise) non-parallel pole 
components {triangular). 
binary:

au  +  f3v +  p =  0 , cm + j3v +  p' =  0,
au A- f3v + v = 0 , au  +  j3v +  v' =  0,

with relation

p +  v =  p! +  v ' .

ternary parallel:

au  +  (3v +  p 
au  +  j3v +  v 
au  +  f3v + A

with relation

=  0 , au  +  (3v +  p' — 0 ,
=  0 , au + (3v + u' — 0 ,
=  0 , au  +  (3v +  A' =  0 ,

p -\- v -\- \  — p v A .

triangular:

{a /3)u 

with relations

au  +  (3v +  p =  0 , 
(7 +  S)v +  A =  0 , 
yu  +  Sv +  v =  0 ,

au  +  f3v +  p' =  0 , 
(ck +  /5)u +  (7 T  +  A; =  0 ,

j u  +  +  z/ — 0 ,

p — p! =  A — A' =  v — v ' .

The E-divisors generate an additive subgroup Div>: A  of the principal divisor 
subgroup of Div A. The additive decomposition of a divisor D e  Divs A into 
irreducible E-divisors is not unique as we will see below. That’s the source
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of algebraic relations between different products of simple abelian E-quotients. 
Namely, if

D = A  +  • • • +  Dk = C1 +  • • • +  Cm (29)

are two different decompositions of D = Div/t (F) into E-divisors D r — 
Div A(Fi), Cj =  DivA(Gj) with A-periodic E-quotients Ft, G:l, then we have 
a relation

f i  ■ ■ ■ • • fk = const • gi ■ . . .  • gm (30)

for the corresponding abelian E-quotients fi, gj e  9Jier(A) because the quotient 
of the two products in (30) has no zeros and poles on A. This relation pulls 
back along pA to

Fi • . . .  • Fk =  const • Gi ■ . . .  ■ Gm (31)

We have the following problems:

I. Find divisors in Div>: A  with different E -decompositions (29).
II. Determine the constants in the corresponding relations (31).

III. Transfer such relations to relations between modular forms.

Basically, we look for relations between products of special binary, ternary and 
triangular E-quotients. Let us start with

E-quotients of P-type

These are special abelian binary E-quotients

a(au  +  (3v +  k +  to) ■ a(au  +  (3v +  k, — to) 
al3K a(au  +  (3v +  k) • a(au  +  f3v +  k) ’

sDcrTi3/? =  D ,  c u G~A^ \ Ax ,  k 6 C.

zeros: au  +  j3v +  (k +  cu) =  0, au  +  j3v +  (k — to) = 0; 
pole: au  +  (3v +  k =  0 (double).

This means that the pole divisor of P  on A  consists of a double elliptic curve 
described in the second row, and the zero divisor is also a double elliptic curve 
described in the first row. The zero curve is a shift of the pole curve by a 
honest 2-torsion point of A.
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Triangular SI-quotients of A-type
These are special triangular E-quotients

^  o{au  +  pv  +  jii +  lj) ■ a((a  +  7 )u +
M,IJl cr(au +  (3v +  /ii) • <r((a +  7)21 +

+  (/3 +  5)t? +  /i3 — Cl?) • Cr(/5w +  +  /U2 +  Cl?)
+  (/? +  <5)v +  /U3) • cr(/3w +  5t? +  fi2)

M =  ( 7 )  e G i2( 0 ) ,  M= ( » ) e C 3 , a ^ A , .

zeros: +  (3v +  +  cl? =  0,
(a +  7)m +  {(3 +  £)w +  /i3 -  cl? =  0, 
f3u “I- 5v “I- X̂2 T" Cl? — O5 

poles: aw +  [3v +  fii — 0,
(a +  7 )u + (P + 5)v +  ^ 3 = 0 ,
Pu + 5v + n 2 = 0 .

A-P-relations
Now we get the first relations. To the above A-function A =  A1̂  we 
correspond E- quotients of P-type

P  TDLO p  TDUJ p  ]D — iO __ -puJ
* jraf3tJ,i ’ 1 - * ’ -3 * a+7,/3+5,/̂ 3 -f a+7,/3+5,p3 *

The products D 2 and P1 ■ P2 ■ P?, have obviously the same divisor on A. 
Therefore we get as special case of (31) a relation written as

A 2 =  const ■P1 ■ P2 ■ P3 . (32)

E-quotients of Q-type
These are special ternary E-quotients of parallel type.

p)U; iW 2 ^ 3 __
^ a . p K  *

a(au  +  Pv + k +  Cl?i ) • aiau  +  Pv + k +  Cl?2) ■ ff(au +  Pv +  k +  Cl?3) 
a(aw +  Pv +  ft) • (j(aw +  Pv +  k) • a(aw +  /Ti? +  k) ’

D a  +  D/3 =  D, « e C, with (honest) half periods 07, t =  1, 2, 3, satisfying
cl?! +  cl?2 +  cl?3 =  0, and with

au  +  Pv +  (k +  Cl?i ) =  0 ,
zeros: au  +  /it? +  (k +  cl?2) =  0 , pole: aw +  Pv +  k — 0 (triple).

au  +  Pv +  (k +  Cl?3) =  0 ,

The pole divisor is a triple elliptic curve. The zero divisor is the simple sum 
of the elliptic curves, which are shifts of the zero curve by the three different 
honest 2-torsion points of A.
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Parallel P-Q-relations
Take Q — Q ^ p 3UJ3 as above. We correspond to Q the X-quotients of P-type

p ___p w i  p ___ p w  2 P __ T ) U  3
■*1 ' ^ a f3 n  5 -*2  • ^ a ( 3 n  ? ^ 3  • P a p / t  •

The square Q2 and P| • P> • Pi have the same divisor on A. Therefore we get 
the special relations

Q2 = C - P 1 -P2 -Ps , C e C * .  (33)

as described in (31).
Triangular P-Q-relations

These are triangular relations between functions of P -type and Q-type. First 
we need precise transformation laws for these functions. For this purpose we 
introduce for half periods uj the notation

a p q r  '■= a (Pu +  qv +  r +  lv)  , (p, q, r) E  C 3 .

The lower index is understood as covector representing the linear function

/  =  pu +  qv +  r : ( \  ) ^  (p, q, r) • ( j  )

The affine transformations (M ,fi) with M  =  € Gl2{0),  p =  ( ^ )  £
C2, act on the space of linear functions via

{Mf i )*: f  ^  (p, q, r) ^ 7 s S  ^ =  (pa  +  <n,p/3 +  q$,PPi +  qpi  +  r ) .

It holds that

(M /i)V ^ r =  ^ MiU)*(jV7 r) ,

especially:

( M P ) * < 0 0  =  , ( M p ) * < 10 =  < « 5 , 1̂ 2 ’
(M^)- a 110 Cra+7,/3+(5,/xi+/Li2 •

Observe that the transformations work for arbitrary w e C .  The actions extends 
to £ -quotients, especially we get for P-  and Q-type functions the elementary 
transformation laws

(A P)*pr0o =  p „ v , (A P)*P0“10 =  P “5m ,
(34)

(A P)*P“ 0 = -r a+7,/3+5,jt/i+^2 ’
=  c x r s. (35)_ CJ2̂9.3

Va+7,/3+5, î+/i2 ‘
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We consider for half periods oj1, cc2, a;3 with cui +  uj2 +  oo3 — 0 the determinant 
functions in 2; (with constants u and v, at the moment ^ A-|)

D{z) =  det
( i
1

V 1

c r ( z - \ - L O \ ) a { z  — L O i ) o - ( z + u > i ) c r ( z + U 2 ) < r ( z + U 3 )

a ( z ) 2 c f ( z ) 3

< j ( u  +  U > l ) < j ( u  +  U>2 ) < j ( u + W 3 )

a { u ) 2 a ( u ) 3
<j ( u  +  O Jl ) < j ( v  — u i l  ) a  ( v + to 1 )  a  ( v + u i 2 )  0  ( v + u i 3 )

a ( v ) 2 < j ( v ) 3

This is a At -periodic function by 2) of Section 8. It has obviously zeros at 
z — u and z = v and only (triple) poles on A,. By Abel’s theorem the third 
pole sits at —(it +  v). At 2 =  —(it +  v) we get

/ 1
f 1  ^ i i o

r ) - O J i , - W 2 r
W 1 1 0

- U 3 \

0  —  d e t 1 Aoo W 1 0 0

A  -Aio
f | W l W 2 W3
W 0 1 0 /

Applying (M, //■)* we receive with (34) and (35) 

Proposition 11.1. For half periods

LO — UJi, UJ2 5 ^3 ? k-h +  ^2 +  ^3 — 0

of  At, {pf ,P2 idi  +  P2) £ C3 and g'j 6 Gl2(D) it holds that

( (V U -y V put
-r a+7,/3+5, î+^2

_/0 Wl a>2 , — UJ3
a+j,(3+5,fxi+/J-2

0 =  det 1 pui
1 aPfi 1

/~\LO\UJ2X)3
1

{ 1 puj
r "fŜ 2

12. The Ram achandra-Kronecker Constant

First we look for most simple equations of elliptic curves E  with complex 
multiplication. We restrict us to the principal case E n d E  =  £) =  E(C)  =  
C/A, A =  c • D, c G C*. Different constants c do not change the isomorphy 
class but the Weierstrafi equation of elliptic curves. The problem is to find c 
with Weierstrafi equation of E  with simplest integral coefficients. It has been 
solved in 1964 by Ramachandra in [16] employing Kronecker’s limit formula.

Proposition 12.1. Let r(z) be the T-function on C extending n 1—> n! on N. 
For

O =  Z +  Z i , c =  ^  v /7rT( l /4) / r ( 3/ 4) , £8 a primitive 8-th unit root

the elliptic curve Ejcifih +  Zi) has Weierstrafi equation

Y 2 = 4(X3 +  X )  = 4(X  +  i ) (X -  i )X . (36)
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Proof: We remind to the following ingredients. The Eisenstein series of a 
C-lattice A are defined as

Gk =  GA := A“\  2 < k e 2 Z .
AGA-

With

92 = 92 = 6OG4 , 93 = 93 = 140(76

we get the WeierstraB equation

E:  4X 3 -  g2X  -  g3 = 4(X -  ex) (X  -  e2){X -  e3)

with

e i = p ( u i ) ,  e2 =  p(u)2) ,  e3 =  p(cu3) .

From the definitions follows

G ?  = c~k , g f  =  c"4̂  , g f  =  c" V  .

The j -invariant of the isomorphy class of E  is

3e = g l / X ,  A = g \ -  27g\ (discriminant).

For the standard lattices Z +  Z r, t ( I  (upper half plane) the Eisenstein series 
have the explicit Fourier expansions

G k( r ) =  G l +ZT =  2C(k) +

with the Riemann ^-function C(t), q — q(r) = e27nT and ak_1(n) = Ŷ d\n 
By a formula of Euler (see e. g. [3], III, Prop. 7.14) the zeta-values ((k)  belong 
to QBknk = QtA. For r  — i it is clear now from the Fourier expansion that 
G4(i), hence also g2{\), must be a real number. Since (36) is obviously an 
elliptic curve with Q(i)-multiplication, we have r/3(i) =  0. Therefore g2(i) is 
the real root of A(i). By Ramachandra [16] the latter value is known:

A(i) =  ( V7 / 2 r ( l / 4 ) / r ( 3 / 4 ) ) 12.

hence

g*® = j ( r ( l / 4)/r(3/4))4 e t .
The constant we look for is

c = C s \ A / 2 r ( l / 4 ) / r ( 3 / 4 ) ,
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because

□

c(Z-)-Zi)
92 _  „-4„Z+Zi _  4 f - \  _  A— c 92 — c 92\i) — 4.

13. Abelian Prime Functions and Constants of Relations

For the C-lattice Ax =  Z • 2u>1 +  Z • 2uj2 the simplest and most interesting 
E-quotients are

<r(<*u +  (3v +  k +  u>) _  +u
WapK ■— — a

WapK ■ =

<j{au +  p v  +  k ) 
a{au  +  Pv +  k — lo)

o (au +  p v  +  k )
=  a  / a

with
zb (O __d=u;cr — aOipK,.. =  <7 (cm +  Pv +  k  ±  a;) .

These meromorphic functions are transcendental over 9Jlet(/l). For half periods 
uj we have a decomposition of our P-type functions

Pa0K — WaPn ' —
<t+w •

(7a / 3k

Following classical ideas of Jacobi in one variable (amplitudinus functions, 
elliptic integrals) we modify the simple E-quotients in order to get an alge­
braic decomposition of PPpK. For this purpose we introduce for uj e |A i the 
functions

'a f3n :=  e10 {au  +  p v  +  k ) =  p{2u)  =  ±  evPHau+pv+.) _

and set for half periods lv

W X  := - e "— a , —p ,  — K, u/P  =  e- v{uj)(au+ pv+K) a {a u  +  Pv +  k +  u) 
a{au  +  Pv +  k ) ’

■—  f U  ■ W ~ w — v (L o ) (a u + P v + K )  a ( a U  +  P V  T~ K  k-O

'  ■“  C“'5“ " “  6 a(au + Pv + K)

By definitions we decomposed P -type functions

= - W wk+ • .apn r r apK r r a(3ti (37)

On the other hand we deduce with

£ =  au Pv k ~  e a P K  ~
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from (25)

hence (37) can be written as

Proposition 13.1. For

the functions W ff l  and W f ’f i  are algebraic o f degree 2 over 93Ter(A). These 
are precisely the two different roots o f the P-type function P f3k. They are 
A'-periodic for a sublattice A' o f A o f index 2. This means that they belong to

A.

Proof: It only remains to prove the last statement. Omitting indices we deduce 
from the A-periodicity of P

W 2(u +  p) =  P (u  +  p) =  P(u) = W 2 (u ) , u =  (u, v) G C2 , p € A .

a surjective quadratic character on A. The kernel of S is the sublattice A' we 
look for. □

Definition 13.2. The W-type functions appearing in Proposition 13.1 are 
called abelian prime functions for A.

Now we are able to detennine the constant C  in our P -Q -relations (33).

Proposition 13.3. The constant in relation (33) is equal to —1; this means

the function field  OJTet(B) o f unramified abelian double cover B  =  C2/A ' of

Therefore

W (u + p) =  5(p)W(u) 5: A -> {±1}

Q2 =  - P 1 P2P3 (3 8 )

with abelian functions

Q = Q'ck/3k
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Proof: Instead of number triples a fn  we will write sometimes the correspond­
ing linear forms au + f3v + n as lower index, for instance — w^f3n with
2; =  au  +  j3v +  Ac. Then

q 2 =  « 0 2( < 2)2« 3)2

= - P P 2P3

because 77 is a homomorphism, see 1') in Section 8, and ujx +  o;2 +  ^3 =  0. □

Now consider the A-type function A ^  as in (32) and the related P-type 
functions

Pi := Pa/3/tti 5 P> := P7<5̂2 ’ P< := Pa+7,/3+<5,£t3 ’

Proposition 13.4. 77ie constant in relation (32) N equal to — e2??P^^1+/i2 
77zN means that

(Am. e2l?(cj)(/il+M2-M3)piP2P3 _

Proof: We set

aw +  fiv +  7x1 , z2 [3u +  Sv +  ,
£3 (ci +  7)w +  {/3 +  $)w +  7/3 =  +  £2 +  (/r3

By definitions we can write

hence

with factor

Ac0
M,n

co co — CO

WZ!WZ*WZS •)

A2 =  « ) 2« 2)2K T ) 2
LO LO — CO — CO — LO L0=  W Z1W Z2W Z3 W Z1 W Z2 W Z3 ■£

= eP iP2P3

Mi -  M2) •

£ = (_  e2v(^)zi )(_  g2??(̂ )̂ 2)(_  02j7(-P23 e2’7(̂ )(Ml+l‘2-M3)

□
Corollary 13.5. The normalized triangular abelian functions

--T)(u)(tJ,3-Hl-U2) AV

satisfy

{Dm , , ) 2 P iP*P3-
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At the end of the section we modify the triangular P-Q-relation of Proposi­
tion 11.1.

Proposition 13.6. With the notations there it holds that

^ ( P a + jP + S ^ + i^ ) 2
puj-r a+7,/3+5,̂ i+/i.2

_5̂ 25̂ 3 \
âH-7,/3+5,/̂ i+/X2

0 =  det 1 puj
r OLj3lll

piOJ lOJ2d23 wa/3/ti
l  1 poj

r i5/j,2
F̂ UJlL02̂ 3 J
^7^2 /

Proof: With 3 =  (a +  7, f3 +  p 1 +  p,2) we have by (25)
,LJ‘2 ,C<A3 __ 1 .= w: w:

— eWl {2z)eL°2 {2z)eUJi (2z) ■ w3 L°1 ■ w3 ^2 ■ u>3
_  Q  —  U > i , — U > 2 , — W 3

because

{2z)eU12 (2z)eLJs (2z) = ,a;i+o;2+̂ 3 (2z) =  e°(2^) -  1.

Now we have only to substitute one coefficient in the matrix of Proposition
11. 1. □

14. Further Normalizations of Functions and Relations

We divide each simple E-factor

=
a (a u  +  (3v +  p  +  cv) 

o{au  +  /3v +  fi)

of abelian E-quotients by the constant cr(— uS) and extend it to the E-quotients. 
So we define (with admissible indices as usual)

CJl u.

LO
otj3n

n U)-]_L02̂3
r\

^  M,fi

WLpn := (u)

= P Z p J v & M - u )
= Qa1̂ 3

= ■

(39)

Using a (—c0) =  —o{uj) it is easy to prove by o-(co)-divisions in Proposi­
tions 11.1, 13.6 and Corollary 13.5 the following

Theorem 14.1. For admissible indices as in the three propositions o f the pre­
vious sections, +  lvw +  tc3 =  0, it holds that

it (0 WlW2W3'i2 _ mwi mw33k J 'r apK F cifin 'r â K,’
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' 7+ 7,/? + <5,/2l +/22 / > a+7,/5+(5J(ui+/J2
,UJ2 ,CJ3

—i-2a+7,/3+<5,/ii+ M2 ̂
ii) det 1 'r aPm Hj22̂ 3 =  0,

V 1 'r̂ /dfj.2
1W2W3

* =  1,2,3,
iii) — P̂a/3/i1̂ P7(5/i2̂ Pa+7,/3+<5,A(3-

Corollary 14.2. Let Y 2 =  4(X — e1)(X  — e2)(X  — e3) be the Weierstrafi 
equation o f the elliptic curve E  with E (C) — C/A^ 77ze abelian function

P̂a/3fc :=  P̂a/?K +  ei 5 +  P& =  ^  > KGC ,   ̂=  1,2,3,

A correctly defined (independently on index i). It has a double pole divisor on 
I f f ir;: au  +  flv +  k — 0. Moreover, the following relations are satisfied:

t-apK
A

ii') det

= 0PT

1

\1

a/3/t

'Pa+7,/3+5,jui+/Li2
'Pa/3/xi
7̂(5̂ 2

e i ) ( T O „ -
_,a’2 ’CJs

e2)(!T s
\
otj3tz e 3 ),

a+7,/3+<5,/Ui+M2
n WlU2W3 

a / 3 / ii
n â iCJ2‘4-,3 

7(5/22

=  0.

Proof: We use the following well-known relations for the WeierstraB p- 
function, see e. g. [15], III, § 4:

,7 7  _  „ =  a (z +  ^ )
S 1 J ’ a ( u ,M P  v ( - ^ M z )  '

With z = au + (3v + k and definition (39) we have

p ( z )  -  e ,  =  .

Therefore

P̂a/3* (**,*>) := +  e*

is correctly defined. So (i') follows immediately from relation (i) in the theorem. 
For (if) one has in (ii) only to add -times the first column in the determinant 
to the second. □

15. Basic Non-Cuspidal Abelian Modular Forms

As in Section 5 we consider the minimal compact model A  =  C2/A of a 
neat coabelian ball quotient B/T with elliptic compactification divisor T  — 
f i  +  • • • +  Th. We use the notations of diagram (8). Without much loss of 
generality we assume as usual that

A — Â  x Ax, Ax =  cO , O =  L)k  , c £ C ,
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K  an imaginary quadratic number field,

T j ; CY j u (3j v K j,
Oij'.0  “I- Pj& — O , Kj G C .

The abelian functions

% $P.Oi j (3 j Kj j 5 0 /  := QLO\UJ20J3 
O t j P j K j  )

with half periods cok, lv1 +  co2 =  ^3 =  0, have poles 2Tj or 3Tj, respectively, 
on A. Therefore is an abelian function with pole divisor (2p +  3q)Tj.
Looking at multiplicities of divisors of these functions at points of Sing T, see 
(23), we see that the pole divisors on A' are

{V i)*  = - ( T , ) l+T' =  27] +  £  2L , ,
Pi 6 Tj

(Q ,)?  =  = 3 T ' + J 2  3 £ i ,
PiZTj

(<P‘ )S =  -(<P‘ )i+T. =  2LT] +  2fcL,, (40)
P.GT,

(93‘0 ; ) ?  =  -(<p‘0 3)i+T. =  (2k + 3)2] +  £  (2fc +  3)^  .
Pi£T;j

Therefore the abelian functions t y i , , typh belong to H°(A', 2p(L + T')). For 
p > 0 they are linearly independent because of independent T'  -parts of the 
pole divisors. The same is true for

*P?H, • • •, G H°(A)  (2P +  3)(L +  T ' ) ) , p >  0 .

Theorem 15.1. The modular transfers o f the above products o f and H- 
functions on A

tn(^3^2), if 2 < n even,
tn( ^ Tl_3),/2£2), if 3 < n odd,

fill exactly the non-cusp parts o f [T, n] for each n > 2. More precisely, 
has a zero (of order n) at the at all cusps except for Kj (and its T-transforms), 
where it actually does not vanish, and

[ r ,  n \ =  [T, n ] « p ©  C tt' ” * ©  • • • ©  C tt]*’ . (4 1 )
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Proof: Knowing the pole divisors of the abelian *}3- and 0 - functions on A', 
see (40), we get the D-cycles of their modular transforms by (24). Namely, 
setting

ttj = nj2) = L(Wj) ’ nj = nj3) = L(Qj) ’ j  =  1 , . . . ,  / i , (42)

we get

=  ^  i  4 "  2 K i  ,

hence

(* i)6 =  £  3D< +  X > < ’ ( « )

=  X) riO* +  X nKi ■
'L i/j

Looking at the cusp contributions one recognizes that the sums on the right- 
hand side of (41) must be direct. On the other hand we dispose the dimension 
formula in Corollary 6.2 yields

h = d im ([r,n ]/[r,n ]cusp) ,

which proves the theorem. □

A r-cusp form of weight n > 1 is called new iff it is not divisible by 7] in the 
graded ring R[T] of T-modular forms. Each subspace of [r, n]cusp complemen­
tary to 77 [r, n — 1] is called a space o f new cusp forms of weight n. Such a 
space will be denoted by [F, n]"™

Remark 15.2. Imagine an euclidean metric on [F, n]cusp like Peterssons scalar 
product for modular forms. Then the space [r, n c a n  and will be uniquely 
defined as orthogonal complement o f 77[r, n — 1] in [r, n]cusp.

Corollary 15.3. For n > 2 the application o f the modular transfer in changes 
the filtration

C = H0(A',O) C H°{A’,{L + T') C ••• c (n -  1)(L + T'))
C H°(A\ nL + ( n -  1 )T') c  n(L  +  T'))

to the 7]filtration

Cr]n c 1[T, 1] C • • • C 7 7[r, n -  1] C [r, n]cusp C [F, n]
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o f  [r, n] with splitting

[ r ,„] =  v [r,n - i ] ® [ r , ®  (Ctt*"1new

and dimensions

new
cusp

o,
3s — dim[r, 1],
3 s(n — 1) — h,

n — 1; 
n =  2; 
n > 3.

(44)

Proof: We have only to calculate the dimensions. For n > 3 the dimensions 
of the spaces

by the dimension formulas in Theorem 6.1. The cases n = 1,2 can be checked 
in the same way. □

Remark 15.4. The strategy o f finding explicit bases o f [T, n] for all n in con­
crete situations is reduced to solve this problem first for n =  1, then determine 
successively bases o f  [T, n]ffp for n — 2 ,3 ,4 , . . . .  Since there exists a natural 
number k such that f?[T] =  C[[T, 1] , . . . ,  [T, k]\, the procedure stops theoreti­
cally after finitely many steps. This happens iff the dimensions o f the n-th homo­
geneous parts o f the graded algebra C[[T, 1] , . . . ,  [T, k}\, which should be cal­
culable with the knowledge o f relations, coincide with dim[T,n] =  3 f f is  +  h 
for all n > 2.

Corollary 15.5. The rj-form is algebraic over the function fields C(7Tj,7r'-), 
j  =  1, . . .  ,h. More precisely, i f  A  =  E  x E , E  the elliptic CM-curve with 
Weierstrafi equation

[r,n] new
cusp [T, n]CUSp/?^[r, n 1]

are

E: Y 2 = 4X3 -  g2X  -  g3 = 4(X -  ef){X -  e2) (X  -  e3) ,

then the algebraic relations
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are satisfied. So, 77 is integral (algebraic) over C [tt7 . tt'] o f degree 6, i f  g3 f  0, 
and

4 4(7r3 -  t f )r f  =  ----------- -—
92tt

in the CM-case o f Gaufi numbers.

Proof: With our notations the relation (i') of Corollary 14.2 can be written as

<V2 — p 3 _  OEsn. _  ^4 
w  4 ^  4

We have only to apply r]-homogenization (18) to this relation. □

16. Generators of Low Cohomology Groups in the Case of GauB 
Numbers

The following model is closely connected with the earlier known Example 5.4. 
As there the underlying lattice is

A =  Ai x A i , Ax =  cZ[i],

with Ramachandra Kronecker constant c defined in Proposition (12.1), Sec­
tion 12. The WeierstraB equation for the elliptic curve E  with respect to A-, 
is

Y 2 =  4(X  -  ef ){X -  e2){X  -  e3) =  4(X -  i)(X +  i )X = 4(X 3 +  X ) , (45)

satisfied by the p- and p '-function of this lattice. As basic half periods of A 1 
we fix

1
:= c • -  , cv2 := c ■ 

From the first of the obvious relations

p(iz) = - p ( z ) ,

1 1 +  i-  , uh := c ■ ------
2 ’ 2

p'i iz)  =  ip(z ) , (46)

follows

P M  = ~ p{u2), p{u3) =  p(i^s) =  ~p(w3) ■

Therefore cu3 is a zero of p(z). Being a half-period it is a double zero and the 
only one by Abel’s theorem (up to Ax-shifts). Comparing with (36) we have 
without loss of generality (changing c by ic if necessary)

e1 =p(u>i) = i, e2 =  p(cv2) = - i , e3 =  p (u ;3 )= 0 .
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So p(z) has a double zero at u>3. Therefore p(z +  u>3) has a double pole at co3 
and a double zero at 0. The same holds for l /p(z) ,  hence it is a C* -multiple 
of p(z  +  ct-'s). Comparing the values at z = coj we see that

piz  +  co3) — 1 /p ( z ) , p(z  +  cc2) =  1 /p(z +  uji) , (47)

for later use.
We define the elliptic divisor T  — Ti +  • — f P6 on A by following (covering) 
linear equations:

T i: li u — 0 , T2 : 12 := v — 0 , T3 : [3 +  lv3 u +  v +  lv3 — 0 , 
T4 : [4 := u +  (1 +  i)u =  0 , T5: [5 := (1 -  i)u +  v =  0 ,
Tq : [6 +  o;3 u +  in +  o;3 — 0 . (48)

By calculations as explained in [1], 1.4, one finds precisely three intersection 
points Pi, P2, P3 of pairs of T-components represented by

P i : (^3? 0) 5 P2: (0, cu3) , P3 : (0,0) C -  A .

The indices are choosed such that

Pi ^ Tj i =  j  mod 3 . (49)

With s =  3, =  • • • =  s6 =  2 the hyperbolicity condition 4s =  Si is
satisfied.

Proposition 16.1. Blowing up the three intersection points P 4, P2, P3 on A =  
E  x E  one gets a Picard modular surface A' — X f

Proof: Tet B  be the abelian surface of Example 5.4. It is an unramified double 
covering of A. The eight elliptic curves on B  — E  x E  defined by (9) are the 
preimages of the six curves defined in (48). More explicitly, the Galois group 
of this covering is generated by additive shifting (t3, t3) on B, t3 the only 
non-trivial (1 +  i)-torsion point on E. Blowing up intersection points we get 
an unramified covering B ' over A'. The restriction to the finite parts (omitting 
both elliptic T '-divisors) yields commensurability of the corresponding ball 
lattices. Since the P-lattice is Picard modular by Remark 5.5, this also true for 
the ball lattice of (A ,T ). n

We recommend the reader to draw a picture of the six curves Tj through the 
three points Pi with our numerations. There are eight triangular subdivisors of 
T, namely

T4 + T 2 + T 3 , T4 + T 2 + T 6 , Ti + T 5 +  P3 , T i + T s  + n ,
t 2 +  t4 +  t 3 , t 2 +  t4 +  t 6 , P4 +  P5 +  P3 , P4 +  P5 +  t 6
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Each of them is a pole divisor of an abelian function of A-type. Namely, 
consider the eight Z[i]-uni modular matrices

M123 =  

-^156 =  

Af453 =

1 0 
0 1 1 ’
- 1  0 

1 — i 1

1 1 +  i
- 1  +  i - 1

M126 = 

M243

U ' =

1 0N
0 i,
0 - i
1 i +  i ; 5

i - 1  +  i 
1 - i  1

M 153 = i 0 
1 — i 1

Mm6 =  i + f )  ,(50)

Up to D*-multiples, the rows consists of u, /’-coefficient pairs of two of the 
linear equations (48) for the P4, T2, T4, T5 corresponding to the first two indices 
of the matrix. The D"-factors =  f n(ijk), m  = 1,2,3, with

'6  U\ l  mi 
£2(7 ) =  I m2 
.£3^/ \rrii +  m2

mi
m2 Mijk

for the eight above matrices are written as columns in the following factor 
matrix

/ l 1 i -1 —i - 1 1
s  =  (€m(ijk)) =  1 i 1 1 1 1 - 1 1

Vi 1 1 —i 1 1 i 1
(51)

The corresponding normalized A-type functions

^tjk ■ ^M,n

with the above matrices M  — M ijk and fi — (0,0, cn3). For instance,

a ( u  +  los ) cf( v  +  cu3)cr(u +  v )

(52)

5) 123
A^3

M 123,/U a (■u)a(v)a(u +  v +  cu3)

The (triangular) pole divisor on A  of this function is f  +Tj  + T k. The zero 
divisor is the sum of the pole components shifted by P1 (or P2 with the same 
effort). Altogether we get

(2)ijfc)n — (-P33 +  Tf) + ( P 33 + Tj) +  ( P 33 +  Tk) — (f  +  Tj +  Tk) ,

where P33 is one of the sixteen 2-torsion points

Py =  (uij, ujj) mod A

of A. The multiplicity triples are same: fi(T)ljk) — (—1, —1, —1). Therefore

(Qij^L+T' = —{L\ +  L 2 +  P3) — (Tj +  Tj +  Tk)
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implying

Qijk e H°(A',  (L +  T ' ) ) , 6ijk := e  [r, 1] . (53)

It is not difficult to recognize that the disc criterion 7.2 for (A, T ) is satisfied. 
This can be verified by the following

Proposition 16.2. The automorphism group G(A, T) can be identified with 
the (half) integral part f)(£)2, |A ) o f the Heisenberg group S)(K2 ,QA). Via 
linear parts it is isomorphic to the subgroup o f Gl2(D) generated by the three 
elements

0 i \  fO -1  
1 0 / ’ 1 1 1

0 1 
1 i

This is a central extension o f the rotation group 0 + =  ,S4 o f the octahedron 
with exact sequence

i - J  =  ( ( i ! ) ) - G ( A r ) - o + ^ i .

G ( A , T ) acts transitively on the set (Xi , . . .  ,T6} o f compononents o fT  with 
ineffective kernel I.

Proof: (idea) Send pairs of T-components to other pairs and check, which of 
these maps extend to (half) integral Heisenberg group elements. This has been 
done by MAPLE. □

We recommend the reader to draw a real 3-dimensional graph: Represent the 
boundarys of three discs B* over L, , % =  1. 2.3 by three mutually perpendicular 
big circles on the 2-sphere in R3. Correspond the six intersection points to six 
cusps and to the six T '-components contracted to cusp points on B/T. The 
intersection points span an octahedron. On this way the action of G ( A , T ) / I  
is via T-components visible as original octahedron rotation group.
By (24) the D-cycles of the modular forms (53) on B are

(Ajfc)p =  +  Kq +  Kr , {i ,3 , k ,p ,q , r }  =  (1 , . . .  ,6} . (54)

Definition 16.3. The algebraic functions _/), . . . ,  f r (on any smooth compact 
complex algebraic manifold V) satisfies the strong descending divisor condition 
iff there are linear combinations (j}. . . . .  qr o f them with strongly descending 
minimum chain o f divisors

(gfi > m inK ^), (g2)} > ■ ■ ■ > m i n j ^ ) , . . . ,  (#r )} . (55)

Thereby the minimum of several divisors is defined componentwise.
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Lemma 16.4. I f  f 1:. . . ,  f r satify the strong descending divisor condition, then 
they are linearly independent.

Proof: It suffices to prove that the linear combinations g1, . . .  ,gr in 16.3 are 
linearly independent. By assumption, the principal divisor [g3) has a component 
rijCj, Cj irreducible, which is lower than the Cj -components of all linear 
combinations of g1:. . . ,  g: , j  — 2 , . . . ,  r. Therefore gt cannot be a linear
combination of its predecessors. □

With these preparation we are able to determine the dimension of [T, 1],

Proposition 16.5. With notations o f this and the previous section it holds that

dim H (\A ' ,  L + T') = 5. (56)

Together with the constant function 1 the quadruple l&imjrnkrn> m  =  1, . . .  ,4,
yields a basis o f H ()(A' . L +  T'), i f  the cardinality o f j m, km} is
equal to 2 +  n for n — 1 , . . . ,  4.

Example 16.6. 1, £>123,2)1267 2) 153,£>243 ore linearly independent.

Proof: Without loss of generality we restrict us to the example. A minimum 
chain of pole divisors of these functions is

O > —(Ti +  T2 +  T3) > ~{TX +  T2 +  T3 +  T6)
> -(T i +  T2 +  T3 +  T5 +  T6) > — (Ti +  T2 +  T3 +  T4 +  T5 +  T6) .

Taking successively general linear combinations of first subsequences of the 
functions in 16.6 we get a sequence of functions with the above pole chain. But 
then we are in the situation of (55) with r  =  5. Therefore h°(A', L +  T !) > 5. 
By (54) and Remark 7.1 the modular forms 8ijk e  [T, 1] are non-cuspidal at 

nk and cuspidal at the other three cusps. Let 8 = / ] (D) be an element 
of [T, 1], We substract successively suitable C-multiples of forms 8ljk till we 
get a constant function. We do it for the general and worst case (V)T — 
— (T1 +  • • • +  T6). This means that 5 is non-cuspidal at all cusps k1, . . .  , k6. 
So we can find c1 e  C* such that 8 — c1812e is cuspidal at K\. Successively we 
find constants c:i, j  < 4, such that

p  ■= 8 — C18126 — c28153 — c38243 — c4(ii23 E [T, 1]

is cuspidal at k6: k5: k4, k3. For the abelian function /  G +  T')
with p  — i f f )  this means that {f )A > — T4 — T2. But H°(A, —Tx — T2) — 
C, because T4 and T2 intersect each other at precisely one point, namely O.
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Therefore the restrictions of /  <G TI(J(A. —7) —T2) on the elliptic fibres of the 
fibrations

A ^ T j  = A/Tk = E , {j,k} — {1,2} ,

with kernel Tk must be constants because they have at most one pole. So /  is 
a constant, hence p  e  £rj and

5  £  C l?  +  C $ 1 2 3  T- C $ 1 2 6  +  C $ 1 5 3  +  C $ 2 4 3  •

□
Corollary 16.7. The space ofT-modular forms o f weight 1 is generated by four 
forms o f (triangular) abelian E -quotients and r). For instance, the sequence //, 
$123, $126, $153, $243 «  « basis o f [T, 1],

Theorem 16.8. We dispose now on the complete list o f dimensions:

< M I \ » U  =  { J ’g ) i I ) )  (57)

1, n = 0;
dim[T,n] =  < 5, n — 1; (58)

^9 (2) +  6, n > 1.

Proof: Knowing s = 3 we have only to fill the [T, l]-gap in Theorem 6.1 with 
(56). □

Together with 44 we get

Corollary 16.9. For low dimensions we have

dim[T, 1] =  5 , dim[T, l]cusp =  1, dim[T, 1]"™ =  0 ,
dim[T, 2] =  15 , dim[T, 2]cusp =  9 , dim[T, 2 ] ^  =  4,
dim[T, 3] =  33 , dim[T, 3]cusp =  27, dim[T, 3]^J =  12 .

We look for new cusp forms of weight 2. Instead of co3-shifts we work with

% k ■= (59)

with the same matrices M  — M ijk and fixed // =  (0,0. uj f  as above. For 
instance.

®  123 ~
a(u +  uoi)a(v +  uof)a{u +  v +  cu2)

a {u)a{va{u +  v +  lj3)



56 R.-P. Holzapfel

We have the same triangular pole divisors T, +  T:l +  Tk as for T)'ljk but the zero 
divisors do not contain any of the points P \, Tk ■ T\ . Therefore the multiplicity 
triple at these points is equal to (—2, —2, —2), thus

(£*'ijk)L+r’ =  —2[L1 +  L 2 +  L 3) — (Tj +  Tj +  Tk) ,

implying

e  2 1  +  r ) ) ,  <5'i t  ~  e  [ U  2]cu,p ■

By the above descending pole divisor method it is easy to find four linearly 
independent functions Taking in account also the zero divisors and the
16 torsion points (four on each elliptic component) it is not difficult to generate 
a space [T, 2]"®̂  with four of the functions S'ijk. The check of details is left to 
the reader. We pick out

£*1 £*456 5 £*2 £*453 5 £̂ 3 £*246 5 £*4 £*156 5 (60)

as basis of a subspace of 2L +  T') complementary to L + T').
With Corollary 16.9 and Theorem 15.1 we get

Proposition 16.10. It holds that

[r, 2]0„„ = V[r, l] ® g s ' m ® C5453 © C5246 © ©̂156
[T, 2] =  [T, 2]CUSp © C7Ti © • • • © CtTq .

With index abbreviation as in (60) and

:= $123 , S2 := Si26 , $3 := 1̂53 ? 4̂ := 2̂43 (61)

we find also explicit cusp forms of weight 3

M 2 5 M 3 , M 4 , M l ,  M l , M l- (62)
The strong descending pole divisor condition for the corresponding products 

is satisfied. Therefore they are linearly independent. We find further 
explicit new cusp forms by multiplication with irm, m  =  1 , . . . ,  6.

Lemma 16.11. The product itm5ijk E [T, 3] is a cusp form iff rn  ̂ {i , j ,  k}.

Proof: The abelian functions defined in section 15 with double zero along 
Pm +Trn, where the point index must be taken modulo 3. Counting multiplicities 
at PUP2 ,P 3 we get

=  4Lm — 2 L — 2 T f

with L-index modulo 3. Therefore the divisor of is not smaller than
—2T'  iff m  (f {i , j ,  k }. Now we get the statement via modular transfer. □
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Going back to abelian functions it is easy to see that

Example 16.12. The modular forms 5i 7t5, £2^5, £4^5, £i7r6, S3ttq, 54^  are lin­
early independent.

Together with the six cusp forms (62) we get a 12-dimensional space generated 
by new cusp forms of weight 3. More is not possible by Corollary 16.9. On 
this way one gets with the notations of (42), Corollary 16.9 and Theorem 15.1 
the

Theorem 16.13. The homogeneous parts o f degree lower than 4 o f the graded 
subring

o f the ring ofT-modular forms f?[T] coincide with [T, k\, k — 0,1,2,3, re­
spectively.

17. Basic Relations in the Case of GauB Numbers

such that — is the pole divisor of With the same h! s we define

Theorem 17.1. The abelian functions ^ , 0 ^  and Dijk, S 3 defined in (52) or 
(59), respectively, satisfy the following algebraic equations

C[r/, #1, . . . , S4 , 5 ,̂ . . . , S f  7T1; . . . , 7T6,7iy , . . . , 7Tg]

We set := tylijK with

K =
cj3, for i — 3,6,
0, for i =  1, 2,4, 5

I. +  * =  1, . . . , 6,

l  1
II. det 1 f 2 {ijk)2^ 3 0 ( i jk)Qj = 0,

Wife £s{ijk)£lk)

in. &ijk =

IH'- =  ( 6 ( u ^ ) W  +  i +  i)(£3 (i jk)2y k +  i). for  (i , j , k)
(1, 2, 3), (1, 2, 6), (1, 5, 3), (1, 5, 6), (2,4, 3), (2,4, 6), (4, 5, 3), (4, 5, 6).
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Proof: The six equations (I) come from (i') of Corollary 14.2 specialized to 
our case of WeierstraB equation (45) with e\ — i, e2 — —i, e3 =  0.
The determinant relations are specialisations of (ii') in the same corollary. In 
the first two rows of the determinants in (ii') we have to take into consideration 
the multiplication factors listed in the columns of S in (51) assigning the the 
difference of linear forms in the -equations (48) and the rows used in the eight 
matrices (50). The multiplication of the arguments by i in the functions p(z) 
and p'(z) has the representation matrix ( ^ 9), see (46). A comparision with the 
definitions of O j via cr-fimction shows that this is also the representation 
matrix of this pair with respect to argument multiplication by i. The reader 
should check it first for ^  =  p(u), O-i =  2p'(u) and then for the other 9P;/, 
Qj  via substitutions =  l:j ■ u +  k:i . As the last row one has to take (1.9p(;0, 
O[feio), k =  3 or 6 in accordance with (ii'). Observe that

<Pifc)0(w, v) = tyk(u +  (J3, v ) , v) = Q k{u + cu3, v ).

With the classical determinant formula (addition theoerem) for p and p' one 
receives

( 1  p(co3) -p'(co3) \  ( l  0 0 \
0 =  det 1 p{z) - p' (z) =  det 1 p(z) - p ' ( z )

\1 p(z +  ^3) p'{z + UJ3)/ \1 p(z-h CO3) p'(z-\- C03))J
=  p'{z + COs)p(z) +  p(z  +  co3) p ' ( z ) .

Together with (47), we get

p(z  +  co3) =  — — , 
p(z)

and after linear u, v -substitutions for v

% k,o = tyk(u + &3, v) =  i/y$k , 

Substitution in

,, , p'{z)
p (z + co3) —---- — -

p (z ) 2

£hk,0 = O.k{u + C0 3 ,v)

det
( 1  & ( m 2%

1
\1 U i j k )2% k,0

£i(zjk)£ti \  
i 2{ijk)Q.j 

^3{ijk)0 .\kfij
=  0

Wk '

yields (II) after multiplying the third row by ^52k.
The last 16 relations (III) and (III') follow immediately from (iii) in Theo­
rem 14.1. □
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We look for the simplest algebraic relations of the generators of the graded ring 
of modular forms

\ jh  ^15 ■ • • 5 ^4 j 5 • • • j ^ 4  5 TTl 5 • • • 5 T"6 , 7Tj , . . . , 7Tg]

and for a projective embedding of B/T using all of them. For this purpose we 
set

:= ^i(w  +  w3,u) =  p(u + cj3) =  l/<Pi,

Oo :=  H i(u +  cu3, v) =  — —2 =  —Oi^Po
'Pi

and

7Tq — 1 /tTi , 7T0 :— 7TJ/7TJ

connected with the modular functions

T ( W  =  7727T0 , T ( 0 O) =  •

With the additional notations of (60) and similar index abbreviations D m for 
some T>ijk used in (61) we correspond to the 22 variables

x 0, y 0, u u . . . , u47v u ..

the 22 abelian functions

^ 0 ,> H i , • • , £ *4 ,

a n d  th e  2 2  a b e l i a n  m o d u la r  f u n c t io n s

2 / * i £4
V 7V0 ,

. oFSr 5 5 * * * 5 5 5 * *
7 77 77

. . u . v , . ..Y6 (63)

• •)^67H i , . • • 5 Hg ; (64)

being their T-images by Remark 6.4.

S'4 7Ti
*5 ? O ? *

7] 7}z

7T6 Tfj
• * 5 0 5 0 5r/2 rj6

K
’ * • ? Q 5rjd>

(65)

respectively.

Theorem 17.2. As well the 22 abelian functions (64) as the 22 modular func­
tions (65) satisfy the affine relations corresponding to the following 20 homo­
geneous equations after setting Z  =  1:

O) X QX x -  Z 2 , +  X, Y0 =  0;

Y f  = X 13 +  X 1Z 2 , Y22 =  X 2 +  X 2Z 2 , Y32 =  X 33 +  X3Z 2,
^  y 2  _ v 3  , y  7 2 V 2 __  Y 3 1 Y  7 2 V 2 __  V 3 i Y  7 2 -r 4 ^v4 “r , r 5 — a 5 , r 6 — ,
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T  -  y 2)x 3 + (—X 2 +  x 0)y 3 +  X 0y2 -  y 0x 2 = o, 
To - iy2)x 6 + (X 2 + x 0)Y6 + ix0y2 + y0x2 = o, 

H) (-Ye  +  Yq)X 4 +  (X0 ~  X 6)Yi +  X 0y6 -  Y0X 6 =  0, 
(_ y3 _  iy0) x 5 +  ( - X 0 -  X 3)Y5 -  X 0Y3 +  iY0X 3 = 0;

ZUl  -  X xX 2X 3 =  0 , ZUl  +  X xX 2Xe =  0,
IH) Z U 2 + X 1X 5X 3 = 0, Z U 2A+ X 2X AX 3 = 0;

Z V i  =  ( - X 4 +  i Z ) ( X 5 +  iZ)(Xe +  i Z), 
t ZV2 =  (X4 +  iZ ) (X 5 +  iZ)(—X 3 +  iZ),

111} zy32 = (x2 + iz)(x4 + iz ) ( x 6 + iz),
ZV42 = ( - X ,  +  i Z ) ( X 5 +  i Z ) ( X 6 + iZ).

Proof: The relations (O) are homogenized defining relations for *p0 and 0 O • 
Relations (I), (III) and (IIP) come from the corresponding affine relations in 
Theorem 17.1. For (II) we change from the determinant relations of Theo­
rem 17.1 to simpler determinant relations working with ^30, 0 O instead of *}3|, 
0 i .  We pick out the four index triples 123, 126, 146 and 153. Then we apply 
immediately (ii') of Corollary 14.2 with /u2 =  0, pt =  pi +  p 2 =  co3. □

Remark 17.3. The auxiliary functions 0o do not belong to the subspace 
*(L +  T')). They have the advantage to diminish the degrees o f the 

algebraic determinant equations. Moreover, starting with ^3,, *)32, from the 
above equations one can derive an explicit and shortest “triangular” system 
o f algebraic equations for our basic functions in the following order

P̂c>5 00, ^3  T 0.3 , ^6,0.6 , ̂ 4 ,04,  ^ 5  ... , 1)4 ,D[, ... , 1)44 5

where “triangular” means that each o f these functions satisfies an polynomial 
equation in one variable with coefficitions in the polynomial ring generated by 
its predesessors. For instance, the first determinant equation o f (II) yields after 
substitution 0 3 =  T P l  +  ^3 such a polynomial equation with coefficients in

Definition 17.4. A Baily Borel morphism <F: B -> is an everywhere 
defined projectivized analytic map from B defined by T-modular forms 
P o , , p N o f the same weight applied to ball points:

B  3  (3 1—> ( p o ( f )  : • • • : <pN ( f i ) )  6  P ^ .

It is also assumed, that there is no cusp, where all pi vanish simultaneously.
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Because of same automorphy factors and Hartog’s theorem T> factors through 
a well-defined analytic morphism ip: B/T —> FN, which can be extended 
uniquely to an algebraic morphism <p. If it is an embedding, that means an 
isomorphy onto its image surface, then we say that (p is a Baily-Borel embed­
ding. Such embeddings exist for each arithmetic group F acting on B by a 
celebrated theorem of Baily-Borel in [2], It works with a basis of [r, N] for 
sufficiently high N  > 0.

Theorem 17.5. The Baily-Borel map <F o f the 23-tuple ofT-modular forms

(foj Tii ■ • ■ i T 22) —
(r/3,7757r0,r/47To,7725i , . . . ,  r f 8^  r]5[ , . . . ,  77̂ ,  777̂ , . . .  ,777^,7^, (66)

o f weight 3 induces a Baily-Borel embedding

<p: B / r  —>• P22 .

Working with homogeneous coordinate functions (63), the points o f the im­
age surface satisfy the homogeneous equations (O), (I), (II), (III) and (III') o f 
Theorem 17.2.

Proof: At the cusp the modular form 7r- does not vanish by (43). For 
instance, using also (49), we have

(tT̂ )]g) =  3B2 +  3O3 +  3/v2 +  • ■ ■ +  3^5 .

It is clear that 71/ , . . . ,  7Tg distuinguish the cusps , k6. We see also that
tt[ does not vanish identically on D ,. Taking into account the other forms 7r' 
it follows that <f> is well-defined on Di U D2 U B3 outside of a discrete subset. 
Therefore ip is well-defined on L x U L 2 U L 3 c  B/T outside of a finite set of 
points sitting inside of B/T. But (p is also well-defined outside of L. Namely, 
with identifications

A* B/T \  supp(L) =  A' \  supp(L +  T') = A \  supp(T)

the map <p coincides on this open subset with the map to the affine space A22 
induced by the abelian functions (64). Namely, since 77 has no zeros over 
A*, we can divide our embedding modular forms (66) by i f .  Forgetting the 
0-coordinate we get the affine part of the map from A* into A22 by modular 
functions whose pullbacks along T, defined in 6.4, coincide with (64). It is 
elementary to check that the functions (64) have no common zero on A*: The 
torsion point P33 (or P13) is the only intersection point of of the zero divisors 
of 2) i , . . . ,  2)4 (or of IDj,. . . ,  2)4, respectively). So <p is well-defined on A*, 
thus <F is well- defined outside a discrete subset of B. Via Hartogs’ theorem 
we get <F on B by analytic extension.
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Next we prove that p  is injective. The elliptic functions p and p' embed the 
elliptic curve into P2. On the affine part we get an embedding of E  \  {()} into 
A2. Taking biproducts, the abelian functions ^3i, £h, *p2, 0-2 embed A into 
P2 x P 2 and A \  supp(Tj +  T2) into A4. They distuinguish also the tangent 
lines through O, which are the points of the space L 3 =  P1. Altogether p  is 
injective on A' \  supp(T/) — B/T.
As last step we prove that p  is an isomorphism onto its image surface. For this 
purpose we pull back p  to p ' : A! —► Im p  c  P22. This is a birational morphism 
contracting some connected exceptional curves. It contracts T'  to six elliptic 
cusp points. More is not possible because p'  coincides with p  outside of T ' , 
where it is injective. Therefore p  is an embedding. □
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