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Abstract. In the present paper we investigate an alternative two-axes decom-
position method for rotations that has been proposed in our earlier research.
It is shown to provide a convenient parametrization for many important phys-
ical systems. As an example, the kinematics of a rotating rigid body is con-
sidered and a specific class of solutions to the Euler dynamical equations
are obtained in the case of symmetric inertial ellipsoid. They turn out to be
related to the Rabi oscillator in spin systems well known in quantum com-
putation. The corresponding quantum mechanical angular momentum and
Laplace operator are derived as well with the aid of infinitesimal variations.
Curiously, the coefficients in this new representation happen to depend only
on one of the angles, which simplifies the corresponding system of ODE’s
emerging from separation of variables. Some applications of the hyperbolic
and complex analogues of this construction in quantum mechanics and rela-
tivity are considered in a different paper cited below.
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Introduction

Finding new representations of an old problem may seem like a triviality, but quite
often proves to be extremely fruitful both from a practical and theoretical point
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of view. Moreover, the technique in many cases comes from a most unexpected
field and through an utterly vague analogy, e.g. the Lax representation in inte-
grable systems that is now a standard in the theory. The approach proposed here
is certainly nothing like the famous Lax representation, but it illustrates how an
engineering idea may have consequences for the theory. Namely, we consider a
decomposition of finite rotations alternative to the classical one proposed by Euler,
in which the first axis is fixed while the second one depends dynamically on the
compound transformation’s parameters. A similar idea has been used in [11, 15]
in a kinematical context, but not fully developed until [3]. Although our method is
naturally related to the classical Euler decomposition, the advantages of working
with a factorization into just two, rather than three rotations, are numerous. To be-
gin with, the expressions are simplified greatly and unlike any Euler type scheme,
it allows for a restriction to the rational case, which has some practical implemen-
tations as well. The interesting part begins, however, when we consider variations
(Lie derivatives) of the previously obtained solutions. This allows us for instance
to obtain a peculiar representation of the quantum mechanical angular momentum
operator and the associated Laplacian (whose coefficients depend only on one of
the decomposition angles) that projects well on homogeneous spaces of SO(3)
such as the two-sphere. As can be expected, the spherical harmonics in this case
can be obtained via separation of variables in terms of Legendre polynomials. On
the other hand, considering rigid body kinematics in the dynamical reference frame
described above is also quite advantageous - the system one obtains for the case of
rotational inertial ellipsoid looks much simpler than the one resorting on Euler an-
gles. Moreover, going one step farther we derive a specific class of solutions to the
dynamical equations of a rotating rigid body that mimics the Rabi oscillator [14]
well known in the quantum mechanics of spin systems and quantum computation.
For a similar treatment of the hyperbolic case (both three and four-dimensional) we
refer to a recent paper of ours [8] focused on the possible applications to relativity
and quantum mechanical scattering on the line. It also provides various examples.

1. Vectorial Parametrization of Rotations

The vector-parameter for SO(3) was initially introduced as a vector c along the

axis of rotation n with magnitude, equal to τ = tan
φ

2
· However, as we argue in

[4], this quantity is not a vector at all and should be treated as a point in projective
space RP3, equipped with an additional operation. These properties are naturally
obtained via projection from the spin covering group. Such parametrization ap-
pears to be very convenient for several reasons. On the one hand, it gives a topo-
logically adequate description of the orthogonal group SO(3) ∼= RP3 unlike other
known alternatives, such as the Euler angles, which use parameters on the torus
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T3 and hence, involve singularities such as gimbal lock. On the other, quaternion
multiplication projects to an efficient composition law for two vector-parameters
in the form

〈c2, c1〉 =
c2 + c1 + c2 × c1

1− (c2, c1)
(1)

which is associative and constitutes a (nonlinear) representation1 of the group in
its automorphisms, corresponding to left-deck transformations, i.e., R(〈c2, c1〉) =
R(c2)R(c1). Moreover, this representation follows naturally from a central pro-
jection of the three-sphere (division by the real part of the quaternion) and yields
rational expressions for the matrix entries of the corresponding rotation via the
Cayley map (or using Euler’s substitution in Rodrigues’ formula)

R(c) = Cay(c×) =
1− c2 + 2 c ct + 2 c×

1 + c2
(2)

where c ct denotes the tensor (dyadic) product and c× - the Hodge conjugate of c
defined as c×a = c× a.

2. Two-Axes Decompositions

In [12] and [4] the generalized Euler decompositions of SO(3) and SO(2, 1) have
been thoroughly investigated. Here we focus on the case of two axes denoting
ck = τk ĉk (k = 1, 2), where ĉk are the unit vectors along the axes of rotations

in the decomposition and τk = tan
φk
2

- are the corresponding scalar parameters.
Using the Euler invariant axis theorem, we easily obtain that the decomposition
R(c) = R(c2)R(c1) is possible if and only if r21 = g21 with the notation

gij = (ĉi, ĉj), rij = (ĉi,R(c) ĉj).

As for the solutions, they can be retrieved directly from the composition laws in
the form

τ1 =
ρ̃3

g1[2ρ1]
, τ2 =

ρ̃3
g2[1ρ2]

(3)

with the notation ρk=(c, ĉk), ρ̃3=(ĉ1, ĉ2, c) and a[ibj] = aibj−ajbi.

In [2] we propose decomposition of rotations into two factors, one of which has a
fixed axis and the other - a fixed angle. One slight variation of that approach is to
fix, instead of the latter, the angle γ = arccos |g12| between the two invariant axes

1The inverse element is represented by the opposite vector - c, and the identity by the zero vector.
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in the decomposition. Then, by formula (10) and (11) in [2] we have for the two
angles

φ1 = 2 arctan(
ρ1 − g12τ2
1 + g12ρ1τ2

), φ2 = arccos(
r11 − g212
1− g212

) (4)

where the second axis is determined from ĉ2 = τ−12 〈c,−τ1ĉ1〉. Note that for
g12 6= 0 real solutions exist only if | arccos r11| ≤ 2γ (see [6] for details), so it
is guaranteed only for g12 = 0, which is the case considered in [3, 11]. There,
however, we take an arbitrary fixed axis ĉ1 and determine ĉ2 as

ĉ2 = λ ĉ1× R(c) ĉ1, λ = (1− r211)−1/2. (5)

This ensures that the necessary and sufficient condition r21 = g21 is satisfied and
since formula (1) yields

ρ1ρ2 + ρ̃3 (6)

the solutions for τ1 and τ2 are easily obtained in the form

τ1 = ρ1, τ2 = ρ2 =

√
1− r11
1 + r11

(7)

which can be expressed in terms of the corresponding angles as

φ1 = 2 arctan ρ1, φ2 = arccos r11. (8)

In particular, n ⊥ ĉ1 yields φ1 = 0 and φ2 = φ as the second axis is, by construc-
tion, parallel to n. One exception is the case of a half-turn, i.e., R(c) = O(n) =
2 n nt − I, in which we end up with a one-parameter degenerate set of solutions,
similar to the gimbal lock setting familiar from the classical Euler representation
(cf. [1]). Moreover, for a specific choice of second axis ĉ2 ⊥ ĉ1 one has a de-
composition in the form O(n) = O(ĉ2)R(c1) with2 φ1 = 2](c2,n). In particular,
on may safely choose c2 = n × c1 and factorize into a pair of half-turns, i.e.,
O(n) = O(ĉ2)O(ĉ1).

Note that we may obtain the second vector-parameter directly from (1) as

c2 = 〈c,−c1〉 =
c− ρ1 (I + c×) ĉ1

1 + ρ21
· (9)

One easily completes the (orthonormal) basis with a third vector in the form

ĉ3 = ĉ1× ĉ2 = λ [r11 I− R(c)] ĉ1.

2Here and bellow ](n, ĉk) denotes the minimal positive angle between the two axes.
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In order to parameterize the group of rotations we choose the third parameter κ as
the normal component of the rate, at which ĉ2 varies with respect to R, i.e., if we
let dt denote the time derivative, we may write

dtĉ2 = dt(κ) ĉ1× ĉ2. (10)

2.1. Relation to the Classical Euler Angles

Note that if we choose ĉ1 to be the z-axis, the above factorization may be expressed
in terms of the standard Euler angles as φ1 = ϕ+ ψ and φ2 = ϑ. A direct way to
see this is to write the Euler decomposition in the form (see [1])

R(n, φ) = R(ĉ1, ψ)R(ĉ2, ϑ)R(ĉ1, ϕ) = R (R(ĉ1, ψ) ĉ2, ϑ)R(ĉ1, ϕ+ ψ)

where we use conjugation and the norm-preserving property of R(ĉ1, ψ). The next
step is to show that there is a rotation about ĉ1 which sends the unit vector ĉ2 to
the unit vector (1− r211)−1/2 ĉ1× R(c) ĉ1. It is straightforward to see that it does
and its scalar parameter is given by

τ3 =
r21√

1− r211 − ω̊2

, ω̊2 = (R(c) ĉ1, ĉ1, ĉ2) . (11)

Assuming (ĉ1, ĉ2) = 0 (otherwise not every rotation can be decomposed), we may
label the axes ĉ1,2 withOZ andOX , respectively, and formula (11) coincides with
one of the two solutions for the classical Euler setting, namely

τ3 =
R13√

1− R2
33 − R23

=
sinψ

1 + cosψ
· (12)

On the other hand, as we argue in [6], the Euler decomposition of the rotation
R(n, φ) is possible with respect to non-orthogonal axes for an arbitrary angle φ as
long as ](n, ĉ1) ≤ arccos |g12| = ](ĉ1, ĉ2) and for an arbitrary axis n as long
as the angle satisfies the condition |φ| ≤ 2 arccos |g12|, in which case the analogy
with (8) is lost and one needs to use the more general formula (4) instead.

2.2. Rational Decompositions

This new type of decomposition provides one more interesting opportunity: namely,
it yields a setting that guarantees rational decomposition for an arbitrary rotation
with rational matrix entries R ∈ SO(3,Q). It is easy to show that this is not the
case with the standard Euler-type representations (see [5]), in which one always
ends up with some non-trivial Pythagorean relation3. Here, on the other hand, one
only needs to start with a unit rational vector ĉ1 and the above construction yields

ĉ2 = ĉ1× R(c) ĉ1

3In the hyperbolic case such a universal settings exist, e.g. the Iwasawa decomposition.
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which is not unit this time, since normalization over the rational numbers is non-
trivial. This effectively multiplies τ2 by the normalizing factor λ, i.e.,

τ1 = ρ1, τ2 =
1

1 + r11
(13)

and the solutions are rational too. Note that the only non-trivial part in this con-
struction is the initial choice of a unit vector with rational components. Fortunately,
we have generators of Pythagorean quadruples at our disposal, which may produce
infinitely many vectors with this property. Thus, we effectively introduce rational
parametrization of SO(3,Q) ∼= PQ3, which appears to be very convenient for vari-
ous kinematical and dynamical considerations, as seen in the continuous analogue.
Here, however, the time parameter should also be discrete and differentials - either
introduced purely algebraically or replaced by finite differences.

3. The Angular Momentum and the Laplacian

Next, we consider variations with respect to left shifts of the type

uLς̂ (t)c = 〈t ς̂, c〉, ς̂ ∈ S2. (14)

Direct differentiation yields in this case

∂ς̂φ1 = (1 + ρ21)
−1 [(ς̂, ĉ1) + ρ1(ς̂, c) + (c, ĉ1, ς̂)]

(15)
∂ς̂φ2 = λ δ [(ς̂, c)− ρ1(ς̂, ĉ1)− ρ1(c, ĉ1, ς̂)]

and without much trouble we also find that ∂ς̂κ = (∂ς̂ ĉ2, ĉ3), or

∂ς̂κ=λ2δ
{

(1+ρ21)(ς̂, [I− R(c)] ĉ1) + (1−r11)[(1+ρ1)(c, ς̂)+(c, ĉ1, ς̂)]
}
.

In particular, one may choose to work with the invariant axis of the compound
rotation ς̂ = n and derive

∂φφ1 =
sinφ1
sinφ

, ∂φφ2 =
sinφ2
sinφ

(
cosφ1−cosφ

1−cosφ2
), ∂φκ =

sinφ1 sinφ2
sinφ

thus obtaining for example the differential of φ in the form

dφ = sinφ(cscφ1 dφ1 +
1−cosφ2

cosφ1−cosφ
cscφ2 dφ2 + cscφ1 cscφ2 dκ).

Note that the direct differentiation yields

dφ = cot
φ

2
(tan

φ1
2

dφ1 + tan
φ2
2

dφ2)

instead, but it is not correct for arbitrary rotations, since it neglects the fact that φ
actually affects the direction of the second axis. For the derivation of the above
formulae we use the compound vector-parameter representation

c = (τ1, τ2, −τ1τ2)t ⇒ 1 + c2 = (1 + τ21 )(1 + τ22 ) (16)
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and thus δ =
2

1 + c2
=

1

2
(1 + cosφ1)(1 + cosφ2).

Without much effort, we obtain the variations of the parameters φ1, φ2 and κ with
respect to right deck transformations in the form

∂ς̂φ1 = (1 + ρ21)
−1 [(ς̂, ĉ1) + ρ1(ς̂, c)− (c, ĉ1, ς̂)]

(17)
∂ς̂φ2 = λ δ [(ς̂, c)− ρ1(ς̂, ĉ1) + ρ1(c, ĉ1, ς̂)]

and finally

∂ς̂κ=λ2δ
{

(1−ρ21)(ς̂, [I−R] ĉ1) + (1−r11)[ρ1(c, ς̂)−(c, ĉ1, ς̂)−(ς̂, ĉ1)]

+ 2ρ1(ς̂, ĉ1,Rĉ1)}
which allows for a straightforward representation of the quantum mechanical an-
gular momentum operator (the technique is thoroughly explained in [7, 16])

L1 =
∂

∂φ1

L2 = sinφ1 tan
φ2
2

∂

∂φ1
+ cosφ1

∂

∂φ2
+ sinφ1 cscφ2

∂

∂κ
(18)

L3 = cosφ1 tan
φ2
2

∂

∂φ1
− sinφ1

∂

∂φ2
+ cosφ1 cscφ2

∂

∂κ
·

The associated Laplace operator (quantum hamiltonian), namely

∆ = sec2
φ2
2

∂2

∂φ21
+

∂2

∂φ22
− tan

φ2
2

∂

∂φ2
+ csc2 φ2

∂2

∂κ2
(19)

has one advantage - its coefficients depend solely on the second angle φ2.

With the aid of the standard notation (φ1, φ2)→ (ϕ, ϑ) one may rewrite the above
as

∆ = sec2
ϑ

2

[
∂2

∂ϕ2
+

∂

∂ϑ

(
cos2

ϑ

2

∂

∂ϑ

)]
+ csc2 ϑ

∂2

∂κ2
· (20)

Clearly, for orbits, on which the second axis ĉ2 is stationary, we obtain the restric-
tion of ∆ on the projective quadric (6), which turns out to be locally isomorphic to
a two-dimensional sphere, in the form

∆S2 = sec2
ϑ

2

∂2

∂ϕ2
+

∂2

∂ϑ2
− tan

ϑ

2

∂

∂ϑ
· (21)

With the aid of separation of variables the above can easily be decomposed into a
system of ODE’s in the form

Φ̈ + ν2Φ = 0, (1 + τ2) Θ̈− 2τΘ̇− 4ν2Θ = 0 (22)
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for the spherical harmonic

Ψ(ϕ, ϑ) = Φ(ϕ)Θ(τ), τ = tan
ϑ

2
·

The explicit solutions involve Legendre polynomials just as in the generic case

Ψ(ϕ, ϑ, κ) = Φ(ϕ)Θ(τ)χ(κ).

Note that with the change of variables ϑ → τ the nonconstant coefficients in the
ODE determining the second angle are all rational (both in the two and three-
dimensional case), which also simplifies our work.

4. Applications to Rigid Body Mechanics

The {φ1, φ2, κ} coordinates have been successfully exploited in [11] for the deriva-
tion of the system of differential equations governing the kinematics of rigid bodies
in the form4

φ̇1 = Ω1 − Ω3 tan
φ2
2

φ̇2 = Ω2 (23)

κ̇ = Ω1 + Ω3 cotφ2

where Ωk denote the components of the angular velocity in the so chosen basis.
The derivation is based on the explicit relation between the time derivative of the
vector-parameter and the angular velocity in the rotating frame [9, 10, 13]

ċ =
1

2
(Ω + (c,Ω) c− c×Ω) (24)

and take into account formula (10) and (16). Inverting the matrix of the above
system, one easily obtains

Ω1 = ẇ − cos v u̇

Ω2 = v̇ (25)

Ω3 = sin v u̇

where we make use of the notation u = κ− φ1, v = φ2 and w = κ.

As far as dynamics is concerned, the above construction provides a suitable set of
parameters for the description of various systems. Consider the Euler equations of
motion

Ω̇1 = µ1 Ω2 Ω3, Ω̇2 = µ2 Ω1 Ω3, Ω̇3 = µ3 Ω1 Ω2 (26)

4To our knowledge, a particular case of this construction was first considered in [15].
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where the constants µk are expressed in terms of the eigenvalues Ik of the inertial
tensor as

µ1 =
I2 − I3
I1

, µ2 =
I3 − I1
I2

, µ3 =
I1 − I2
I3

·

If we assume the so chosen coordinate system is canonical for the inertial tensor,
direct differentiation of (25) yields

ü = µ3 v̇ ẇ − (µ3 + csc v) cos v u̇ v̇

v̈ = µ2(ẇ − cos v u̇) sin v u̇ (27)

ẅ =
(
µ1 sin v − (1 + µ3 cos2 v) csc v

)
u̇ v̇ + µ3 cot v v̇ ẇ.

In particular, for the case of symmetric inertial ellipsoid, i.e., µ1 = −µ2 = µ,
µ3 = 0, the above system is reduced to

ü = − cot v u̇ v̇

v̈ = µ(cos v u̇− ẇ) sin v u̇ (28)

ẅ = (µ sin v − csc v) u̇ v̇

which is significantly simpler compared to the standard representation based on
Euler angles for example. In particular, we have an obvious conservation law:
from the third equation in (25) and the first one in (28) it follows that

u̇ = Ω3 csc v, Ω3 = const. (29)

Combining the second and the third equation of (28), one obtains for the middle
parameter in the form (a, b and ϕ◦ being constants of integration)

...
v + ω2 v̇ = 0 ⇒ v = a cos(ωt+ ϕ◦) + b (30)

with the notation ω = µΩ3. The latter yields

u̇ = Ω3 csc (a cos(ωt+ ϕ◦) + b) (31)

ẇ = Ω3 cot (a cos(ωt+ ϕ◦) + b) + aω cos(ωt+ ϕ◦).

Although the integrals for u and w cannot be resolved in terms of elementary func-
tions, one may easily obtain the solutions for the angular velocity components Ωk

by direct substitution in (25). The evolution of the system turns out to be described
in these coordinates by the circle

Ω1(t) = aω cos(ωt+ ϕ◦), Ω2(t) = −aω sin(ωt+ ϕ◦). (32)
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However, expressing u(t) and w(t) from the system (31) in far non-trivial even if
we parameterize with the solution for v(t), which yields the integrals

u = ∓ 1

µ

∫
csc v dv√
a2−(v−b)2

, w = ∓ 1

µ

∫
cot v+µ(v−b)√
a2−(v−b)2

dv (33)

where the sign equals sgn(ωt+ ϕ◦) and we have a singularity at the origin.

Solving the above integrals, however, is unnecessary since we have already re-
duced the dynamical problem to a kinematical one. More precisely, in the so
chosen coordinate system we have a precessing angular velocity, for which case
there are well-known solutions due to Rabi [14], for which he won a Nobel Prize.
Nowadays Rabi cycles are famous mostly due to their implementation in quantum
computers, but the solutions may be directly related to the kinematics of a rigid
body with precessing angular velocity. We discuss this analogy in much more
detail elsewhere.

Final Remarks

The suggested alternative parametrization for the kinematics of a rigid body is
based on a specific decomposition method proposed earlier in [3]. A particular
class of solutions to the Euler dynamical equations is obtained as an example,
which is related to the well-known Rabi oscillator, and the quantum mechanical
angular momentum is given an alternative representation. One may ask the ques-
tion of possible extensions to both the hyperbolic case and higher dimensions.
These topics are thoroughly discussed in our recent paper [8] with an emphasis on
the Lorentz groups SO(2, 1) and SO(3, 1) as well as the possible applications in
special relativity and quantum mechanics. Moreover, the construction is shown to
work in general for SO(4), SO(2, 2) and SO∗(4) as real forms of SO(4,C), which
seems to be the ultimate extension to our approach due to the invertibility of the
quaternion algebra.
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