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1. Introduction

We consider the Lagrangian formalism, where Lagrangians have the potential func-
tions. In the previous papers [1–3], the periodicity of some families of S1-equiva-
riant CMC (constant mean curvature) surfaces in the Berger sphere or the hyper-
bolic three-space was proved by making use of the conservation laws, in particu-
lar, we find that the potential functions of Lagrangians which correspond to S1-
equivariant CMC-H surfaces contain the constant mean curvature H itself (see §3
and also [4]). Throughout the paper, we consider some extended harmonic map-
pings via Euler-Lagrange equations (Propositions 1 and 5). The extended harmonic
mapping can be considered as a natural extension of harmonic mapping, since the
potential function of corresponding Lagrangian to harmonic mapping is vanishing.
We give examples of extended harmonic mapping and extended harmonic CMC-H
immersion (§3). By using the conservation laws (Theorems 2, 3 and §6) with re-
spect to the Hamiltonians, we investigate a certain geometric relationship between
an extended harmonic mapping and a smooth mapping with vanishing tension field
(Theorems 4 and 6).
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2. Euler-Lagrange Equations

Let ϕ : (M, g) → (N,h) be a smooth mapping, where (M, g) and (N,h) are
Riemannian manifolds of dimension two and three with Riemannian metrics g and
h, respectively. Then we consider the following Lagrangian of ϕ

Lϕ =
1

2

2∑
i,j=1

3∑
α,β=1

gij∂iϕ
α∂jϕ

βhαβ(ϕ)−G(ϕ) (1)

where ϕα := yα ◦ ϕ, α = 1, 2, 3, and (x1, x2), (y1, y2, y3) are local coordinate
systems onM, respectivelyN, ∂1ϕα and ∂2ϕα denote the partial derivatives ∂

∂x1ϕ
α

and ∂
∂x2ϕ

α, and we will make use of the notation

g :=

2∑
i,j=1

gijdx
i ⊗ dxj

h(ϕ)(x) :=
3∑

α,β=1

hαβ(ϕ(x))(dy
α)ϕ(x) ⊗ (dyβ)ϕ(x)

G(ϕ) := G ◦ ϕ, G ∈ C∞(N).

The formula (1) does not depend on the way we choose local coordinates systems
of M and N , since the first term of the right hand side of (1) means 1

2traceg(ϕ
∗h).

Then we can define the generalized (canonical) momenta

piα :=
∂Lϕ

∂(∂iϕα)
, i = 1, 2, α = 1, 2, 3.

Here piα and ∂iϕα can be regarded as the components of tensor fields. Under the
transformations of the local coordinate systems: (x1, x2)→ (x̃1, x̃2) and (y1, y2, y3)

→ (ỹ1, ỹ2, ỹ3), we have

∂̃jϕ̃
α =

2∑
i=1

3∑
β=1

∂xi

∂x̃j
∂ỹα

∂yβ
(ϕ) ∂iϕ

β, p̃iα =

2∑
j=1

3∑
β=1

∂x̃i

∂xj
∂yβ

∂ỹα
(ϕ) pjβ.

Thus we have the tensor fields dϕ ([5]) and p

(dϕ)(x) =

2∑
1=1

3∑
α=1

∂iϕ
α(dxi)x ⊗ (

∂

∂yα
)ϕ(x)

p(x) =

2∑
i=1

3∑
α=1

piα(
∂

∂xi
)x ⊗ (dyα)ϕ(x), x ∈M.
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Then the Lagrangian (1) of ϕ implies that

piα =
2∑

j=1

3∑
β=1

gij∂jϕ
βhαβ(ϕ).

Proposition 1. Let (M, g) be the Euclidean plane (R2, g0), where g0 is the stan-
dard metric on R2. Then, under the Lagrangian (1) of ϕ : (R2, g0) → (N,h), the
statements a) and b) below are equivalent

a) Euler-Lagrange equations
2∑

i=1

∂ip
i
α −

∂Lϕ

∂ϕα
= 0, α = 1, 2, 3 (2)

b)
τϕ = − gradhG(ϕ) (3)

where τϕ stands for the tension field of ϕ ([6]) and

gradhG(ϕ)(x) =

3∑
α,β=1

hαβ(ϕ(x))(
∂G(ϕ)

∂ϕα
)(x)(

∂

∂yβ
)ϕ(x), x ∈ R2.

Proof: The formula (1) of the Lagrangian of ϕ implies that Lϕ can be expressed
as Lϕ = Lϕ(ϕ, dϕ), then we have

2∑
i=1

∂ip
i
γ =

2∑
i=1

3∑
α=1

∂i(∂iϕ
αhαγ(ϕ))

=

2∑
i=1

3∑
α=1

∂2i ϕ
αhαγ(ϕ) +

2∑
i=1

3∑
α,β=1

∂iϕ
α∂hαγ(ϕ)

∂ϕβ
∂iϕ

β

and
∂Lϕ

∂ϕγ
=

1

2

2∑
i=1

3∑
α,β=1

∂iϕ
α∂iϕ

β ∂hαβ(ϕ)

∂ϕγ
− ∂G(ϕ)

∂ϕγ
·

Then we have

2∑
i=1

∂ip
i
γ −

∂Lϕ

∂ϕγ

=

2∑
i=1

3∑
α=1

∂2i ϕ
αhαγ(ϕ)+

2∑
i=1

3∑
α,β=1

(
∂hαγ(ϕ)

∂ϕβ
− 1

2

∂hαβ(ϕ)

∂ϕγ
)∂iϕ

α∂iϕ
β +

∂G(ϕ)

∂ϕγ
·
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On the other hand, we have as well

2∑
i=1

3∑
α,β=1

Γµ
αβ(ϕ)∂iϕ

α∂iϕ
β=

2∑
i=1

3∑
α,β,γ=1

hµγ(ϕ)(
∂hαγ(ϕ)

∂ϕβ
− 1

2

∂hαβ(ϕ)

∂ϕγ
)∂iϕ

α∂iϕ
β

where Γµ
αβ denote the coefficients of Levi-Civita connection of (N,h). As a con-

sequence we have

3∑
γ=1

(

2∑
i=1

∂ip
i
γ −

∂Lϕ

∂ϕγ
)hµγ(ϕ)

=
2∑

i=1

∂2i ϕ
µ +

2∑
i=1

3∑
α,β=1

Γµ
αβ(ϕ)∂iϕ

α∂iϕ
β +

3∑
γ=1

hγµ(ϕ)
∂G(ϕ)

∂ϕγ
·

Finally, since

τϕ =
3∑

µ=1

(
2∑

i=1

∂2i ϕ
µ +

2∑
i=1

3∑
α,β=1

Γµ
αβ(ϕ)∂iϕ

α∂iϕ
β)(

∂

∂yµ
)ϕ

and

gradhG(ϕ) =

3∑
γ,µ=1

hγµ(ϕ)
∂G(ϕ)

∂ϕγ
(
∂

∂yµ
)ϕ

we obtain

τϕ + gradhG(ϕ) =

3∑
γ,µ

(

2∑
i=1

∂ip
i
γ −

∂Lϕ

∂ϕγ
)hµγ(ϕ)(

∂

∂yµ
)ϕ

from which, it is proved that a) and b) are equivalent. �

Let ϕ be as in Proposition 1. In this paper, if the tension field τϕ of ϕ is given by
the formula (3) for some G ∈ C∞(N), then such a smooth mapping ϕ is called
an extended harmonic mapping and G(ϕ) the potential function associated with
ϕ. When we give an extended harmonic mapping ϕ such that the associated po-
tential function is G(ϕ) = G ◦ ϕ, we always consider the Lagrangian (1) and the
corresponding Euler-Lagrange equations (2) throughout the paper. In particular, ϕ
is called an extended harmonic immersion, if ϕ is an extended harmonic mapping
and an immersion.

3. Extended Harmonic Mapping

Let ϕ : (R2, g0) → (H3(−1), h) be an extended harmonic mapping with the as-
sociated potential function G(ϕ), where h stands for the following Riemannian
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metric on the hyperbolic three-space H3(−1) of constant curvature −1

3∑
α,β=1

hαβdy
α ⊗ dyβ

= dy1 ⊗ dy1 + cosh2 y1 dy2 ⊗ dy2 + cosh2 y1 cosh2 y2 dy3 ⊗ dy3

under a suitable parameterization of H3(−1).
Then, from (1), we have

Lϕ =
1

2
((∂1θ)

2 + (∂2θ)
2 + ((∂1φ)

2 + (∂2φ)
2) cosh2 θ

(4)
+((∂1ψ)

2 + (∂2ψ)
2) cosh2 θ cosh2 φ)−G(ϕ)

where θ = ϕ1, φ = ϕ2, ψ = ϕ3, ∂1θ = ∂
∂x1 θ, ∂2θ = ∂

∂x2 θ, etc.
By using Lagrangian (4) and Euler-Lagrange equations (2), we have

∂G(ϕ)

∂θ
= −∆θ +

1

2
g0(grad φ, grad φ) sinh 2θ

+
1

2
g0(grad ψ, grad ψ) sinh 2θ cosh

2 φ

∂G(ϕ)

∂φ
= − cosh2 θ∆φ+

1

2
g0(grad ψ, grad ψ) cosh

2 θ sinh 2φ

−g0(grad θ, grad φ) sinh 2θ
∂G(ϕ)

∂ψ
= − cosh2 θ cosh2 φ∆ψ − g0(grad θ, grad ψ) sinh 2θ cosh

2 φ

−g0(grad φ, grad ψ) sinh 2φ cosh2 θ

where ∆ and grad stand for the Laplacian and the gradient operator on (R2, g0),
respectively.
As usually θ, φ and ψ are called cyclic coordinates with respect to the Lagrangian
(4), if

∂Lϕ

∂θ
=
∂Lϕ

∂φ
=
∂Lϕ

∂ψ
= 0

which does not depend on the way to choose a local coordinate system onH3(−1).
If θ, φ and ψ are cyclic coordinates, then we have

∂G(ϕ)

∂θ
=

1

2
(g0(grad φ, grad φ) + g0(grad ψ, grad ψ) cosh

2 φ) sinh 2θ
(5)

∂G(ϕ)

∂φ
=

1

2
g0(grad ψ, grad ψ) cosh

2 θ sinh 2φ,
∂G(ϕ)

∂ψ
= 0.
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Assume that θ, φ and ψ are cyclic coordinates with respect to Lϕ. Then, since τϕ
= − gradh G(ϕ), from (5), we have

τϕ = −1

2
(g0(grad φ, grad φ) + g0(grad ψ, grad ψ) cosh

2 φ) sinh 2θ (
∂

∂y1
)ϕ

(6)
−1

2
g0(grad ψ, grad ψ) sinh 2φ (

∂

∂y2
)ϕ.

Let ϕ : (R2, g0) → (H3(−1), h) be an extended harmonic CMC (constant mean
curvature) - H immersion with associated potential function G(ϕ) = G ◦ ϕ, where
H stands for the constant mean curvature of ϕ and we assume that H is a positive
constant. Then h(ϕ)(τϕ, τϕ) = 4H2. By using (6), we have

h(ϕ)(τϕ, τϕ) =
1

4
(g0(grad φ, grad φ) + g0(grad ψ, grad ψ) cosh

2 φ)2 sinh2 2θ

+
1

4
g0(grad ψ, grad ψ)

2 sinh2 2φ cosh2 θ

from which, we have

(g0(grad φ, grad φ) + g0(grad ψ, grad ψ) cosh
2 φ)2 sinh2 2θ

+ g0(grad ψ, grad ψ)
2 sinh2 2φ cosh2 θ = 16H2.

Hence we can take the parameter function ρ = ρ(x1, x2) such that

(g0(grad φ, grad φ) + g0(grad ψ, grad ψ) cosh
2 φ) sinh 2θ = 4H cos ρ

and
g0(grad ψ, grad ψ) sinh 2φ cosh θ = 4H sin ρ.

Then, under the assumption of cyclic coordinates, we can choose the associated
potential function G(ϕ) as follows

G(ϕ) = 2H(

∫
cos ρdθ +

∫
cosh θ sin ρ dφ).

Consequently, the associated potential function G(ϕ) contains the constant mean
curvature H itself.

4. Hamiltonians and Conservation Laws

Let ϕ : (R2, g0) → (N,h) (dimN = 3) be an extended harmonic mapping with
the associated potential function G(ϕ). Then we define the Hamiltonians H(1)

ϕ and
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H
(2)
ϕ with respect to ϕ

H
(1)
ϕ :=

3∑
α=1

∂1ϕ
αp1α − Lϕ(ϕ,dϕ)

H
(2)
ϕ :=

3∑
α=1

∂2ϕ
αp2α − Lϕ(ϕ,dϕ)

where Lϕ = Lϕ(ϕ, dϕ) is given by the Lagrangian

Lϕ =
1

2

2∑
i=1

3∑
α,β=1

∂iϕ
α∂iϕ

βhαβ(ϕ)−G(ϕ)

Then we have

∂1H
(1)
ϕ =

3∑
α=1

∂21ϕ
αp1α +

3∑
α=1

∂1ϕ
α∂1p

1
α

−
3∑

α=1

∂Lϕ

∂ϕα
∂1ϕ

α −
3∑

α=1

∂Lϕ

∂(∂1ϕα)
∂21ϕ

α −
3∑

α=1

∂Lϕ

∂(∂2ϕα)
∂1∂2ϕ

α.

Hence, by using Euler-Lagrange equations (2) and the formula

piα =
3∑

β=1

∂iϕ
βhαβ(ϕ), i = 1, 2, α = 1, 2, 3

we have

∂1H
(1)
ϕ =

3∑
α=1

(
∂Lϕ

∂ϕα
− ∂2p

2
α)∂1ϕ

α −
3∑

α=1

∂Lϕ

∂ϕα
∂1ϕ

α −
3∑

α=1

p2α∂1∂2ϕ
α

(7)

= −
3∑

α=1

∂2(∂1ϕ
αp2α) = −∂2(h(ϕ)(ϕ∗(

∂

∂x1
), ϕ∗(

∂

∂x2
))).

Similarly we have

∂2H
(2)
ϕ = −∂1(h(ϕ)(ϕ∗(

∂

∂x2
), ϕ∗(

∂

∂x1
))). (8)

Thus we have

Theorem 2 (Conservation laws). Let ϕ : (R2, g0) → (N,h) be an extended har-
monic mapping with associated potential function G(ϕ) and assume additionally
that h(ϕ)(ϕ∗( ∂

∂x1 ), ϕ∗(
∂

∂x2 )) is constant as a smooth function on R2. Then

∂1H
(1)
ϕ = ∂2H

(2)
ϕ = 0.
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On the other hand, the direct computation implies that

H
(1)
ϕ =

1

2
(h(ϕ)(ϕ∗(

∂

∂x1
), ϕ∗(

∂

∂x1
))− h(ϕ)(ϕ∗(

∂

∂x2
), ϕ∗(

∂

∂x2
))) +G(ϕ)

H
(2)
ϕ =

1

2
(h(ϕ)(ϕ∗(

∂

∂x2
), ϕ∗(

∂

∂x2
))− h(ϕ)(ϕ∗(

∂

∂x1
), ϕ∗(

∂

∂x1
))) +G(ϕ).

Furthermore, if ϕ is conformal as a smooth mapping between Riemannian mani-
folds, then there exists a positive smooth function σ on R2 such that

h(ϕ)(ϕ∗(
∂

∂xi
), ϕ∗(

∂

∂xj
)) = σg0(

∂

∂xi
,
∂

∂xj
), 1 = 1, 2.

Hence, by using (7), (8) (Theorem 2), we have

Theorem 3. Let the extended harmonic mapping ϕ : (R2, g0) → (N,h) be such
that the associated potential function G(ϕ) is conformal as a smooth mapping
between Riemannian manifolds. Then

a) (conservation laws)

∂1H
(1)
ϕ = ∂2H

(2)
ϕ = 0

b)

H
(1)
ϕ = H

(2)
ϕ = G(ϕ).

Under the assumption of Theorem 3, we have

0 =
2∑

i=1

∂iG(ϕ)
∂

∂xi
=

2∑
i=1

3∑
α=1

∂G(ϕ)

∂ϕα
∂iϕ

α ∂

∂xi
=

3∑
α=1

∂G(ϕ)

∂ϕα
grad ϕα

and

τϕ = − gradhG(ϕ) = −
3∑

α,β=1

hαβ(ϕ)
∂G(ϕ)

∂ϕα
(
∂

∂yβ
)ϕ.

Consequently, we have

Theorem 4. Let (N,h) be a Riemannian manifold (dimN = 3) and ϕ : (R2, g0)
→ (N,h) be an extended harmonic mapping with associated potential function
G(ϕ) = G ◦ ϕ and assume that ϕ is conformal as a mapping between Riemannian
manifolds. If grad ϕ1, grad ϕ2 and grad ϕ3 are linearly independent at each point
on (R2, g0), where this linear independence does not depend on the way we choose
a local coordinate system on N , the tension field τϕ vanishes.
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5. Complex Lagrangian

Let ϕ : (C, g0) → (N,h) be a holomorphic mapping, where (C, g0) is the 1-
dimensional complex Euclidean space ([6]) with metric g0 := Re(dz ⊗ dz̄) =∑2

i=1 dx
i ⊗ dxi, where z = x1 +

√
−1x2 stands for the standard coordinate of

C and (N,h) is an n-dimensional complex manifold with Hermitian metric h, re-
spectively.
We consider the following Lagrangian of ϕ

Lϕ =

2∑
i=1

n∑
α,β=1

∂iϕ
α∂iϕ̄

βhαβ̄(ϕ)−G(ϕ) (9)

where ϕα := ζα ◦ ϕ, ϕ̄α := ζ̄α ◦ ϕ, α = 1, ..., n and (ζ1, ..., ζn) is a complex
local coordinate system on N , and G(ϕ) = G ◦ ϕ, G is a complex valued smooth
function on N .
Note that we can represent a complex vector field ϕ∗( ∂

∂xi ), i = 1, 2 as follows

ϕ∗(
∂

∂xi
) =

n∑
α=1

∂iϕ
α(

∂

∂ζα
)ϕ +

n∑
α=1

∂iϕ̄
α(

∂

∂ζ̄α
)ϕ, i = 1, 2.

We define

dϕα :=

2∑
i=1

∂iϕ
αdxi, dϕ̄α :=

2∑
i=1

∂iϕ̄
αdxi, α = 1, ..., n.

Moreover, we can define the generalized momenta

piγ :=
∂Lϕ

∂(∂iϕγ)
, p̄iγ :=

∂Lϕ

∂(∂iϕ̄γ)
, i = 1, 2, γ = 1, ..., n.

Then we have

piγ =

n∑
α=1

∂iϕ̄
αhγᾱ(ϕ), p̄iγ =

n∑
α=1

∂iϕ
αhαγ̄(ϕ)

n∑
γ,µ=1

(

2∑
i=1

∂ip
i
γ −

∂Lϕ

∂ϕγ
)hγµ̄(

∂

∂ζ̄µ
)ϕ = τ

(−)
ϕ + grad

(−)
h G(ϕ)

n∑
γ,µ=1

(
2∑

i=1

∂ip̄
i
γ −

∂Lϕ

∂ϕ̄γ
)hγ̄µ(

∂

∂ζµ
)ϕ = τ

(+)
ϕ + grad

(+)
h G(ϕ)

where

grad
(+)
h G(ϕ) :=

n∑
γ,µ=1

hγµ̄
∂G(ϕ)

∂ϕ̄µ
(
∂

∂ζγ
)ϕ
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grad
(−)
h G(ϕ) :=

n∑
γ.µ=1

hγµ̄
∂G(ϕ)

∂ϕγ
(
∂

∂ζ̄µ
)ϕ

and

τ
(+)
ϕ :=

2∑
i=1

n∑
γ=1

(∂2i ϕ
γ+

n∑
α,β=1

Γγ
αβ(ϕ)∂iϕ

α∂iϕ
β+2

n∑
α,β=1

Γγ

αβ̄
(ϕ)∂iϕ

α∂iϕ̄
β)(

∂

∂ζγ
)ϕ

τ
(−)
ϕ :=

2∑
i=1

n∑
γ=1

(∂2i ϕ̄
γ+

n∑
α,β=1

Γγ̄

ᾱβ̄
(ϕ)∂iϕ̄

α∂iϕ̄
β+2

n∑
α,β=1

Γγ̄

αβ̄
(ϕ)∂iϕ

α∂iϕ̄
β)(

∂

∂ζ̄γ
)ϕ

where Γ·
·· stands for the coefficients of torsion-free affine connection of (N,h), and

the tension field τϕ of ϕ is defined as follows

τϕ =
2∑

i,j=1

gij0 ∇̂ ∂

∂xi
ϕ∗(

∂

∂xj
)

since g0 is the flat metric, where ∇̂ stands for the induced connection on the in-
duced bundle ϕ−1TN ([6]). Then τϕ = τ

(+)
ϕ + τ

(−)
ϕ .

Proposition 5. The following conditions a) and b) are equivalent.

a)
2∑

i=1

∂ip
i
γ −

∂Lϕ

∂ϕγ
= 0,

2∑
i=1

∂ip̄
i
γ −

∂Lϕ

∂ϕ̄γ
= 0, γ = 1, ..., n.

b)
τ
(−)
ϕ = − grad

(−)
h G(ϕ), τ

(+)
ϕ = − grad

(+)
h G(ϕ).

6. Complex Hamiltonians and Conservation Laws

The Euler-Lagrange equations a) as in Proposition 5 are equivalent to

τϕ = − gradhG(ϕ)

where
gradhG(ϕ) := grad

(+)
h G(ϕ) + grad

(−)
h G(ϕ)

such a ϕ is called an extended harmonic mapping.
In the following, we define the Hamiltonians of ϕ

H
(i)
ϕ :=

n∑
α=1

∂iϕ
αpiα +

n∑
α=1

∂iϕ̄
αp̄iα − Lϕ, i = 1, 2

where Lϕ is given by the formula (9).
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Then, from the direct computation, we have

∂1H
(1)
ϕ = − ∂2 hϕ(ϕ∗(

∂

∂x1
), ϕ∗(

∂

∂x2
))

∂2H
(2)
ϕ = − ∂1 hϕ(ϕ∗(

∂

∂x1
), ϕ∗(

∂

∂x2
))

furthermore, from the definitions of Hamiltonians, we obtain

H
(1)
ϕ =

1

2
(hϕ(ϕ∗(

∂

∂x1
), ϕ∗(

∂

∂x1
))− hϕ(ϕ∗(

∂

∂x2
), ϕ∗(

∂

∂x2
))) +G(ϕ)

H
(2)
ϕ =

1

2
(hϕ(ϕ∗(

∂

∂x2
), ϕ∗(

∂

∂x2
))− hϕ(ϕ∗(

∂

∂x1
), ϕ∗(

∂

∂x1
))) +G(ϕ).

Consequently, if ϕ has the conformal properties such as

hϕ(ϕ∗(
∂

∂x1
), ϕ∗(

∂

∂x2
)) = 0

and

hϕ(ϕ∗(
∂

∂x1
), ϕ∗(

∂

∂x1
)) = hϕ(ϕ∗(

∂

∂x2
), ϕ∗(

∂

∂x2
)) (10)

then we have the conservation laws:

∂1H
(1)
ϕ = ∂2H

(2)
ϕ = 0, H

(1)
ϕ = H

(2)
ϕ = G(ϕ).

Then, under the assumption of the following theorem, we have

0 =

2∑
i=1

∂iG(ϕ)dx
i =

2∑
i=1

n∑
α=1

(
∂G(ϕ)

∂ϕα
∂iϕ

αdxi +
∂G(ϕ)

∂ϕ̄α
∂iϕ̄

αdxi)

then
n∑

α=1

∂G(ϕ)

∂ϕα
dϕα +

n∑
α=1

∂G(ϕ)

∂ϕ̄α
dϕ̄α = 0

and

τϕ = − gradhG(ϕ) = −
n∑

α,β=1

hαβ̄(ϕ)(
∂G(ϕ)

∂ϕ̄β
(
∂

∂ζα
)ϕ +

∂G(ϕ)

∂ϕα
(
∂

∂ζ̄β
)ϕ).

Hence, we have

Theorem 6. Assume that ϕ : (C, g0)→ (N,h) is an extended harmonic, holomor-
phic mapping equipped with potential function G(ϕ) = G ◦ ϕ with respect to the
Lagrangian (9), and assume ϕ has the conformal properties (10). If dϕ1,..., dϕn,
dϕ̄1,...,dϕ̄n are linearly independent over C (where this linearly independency does
not depend on the way to choose a complex local coordinate system on N ), then
the tension field τϕ of ϕ vanishes.
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