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1. Introduction

We consider the Lagrangian formalism, where Lagrangians have the potential func-
tions. In the previous papers [1-3], the periodicity of some families of S'-equiva-
riant CMC (constant mean curvature) surfaces in the Berger sphere or the hyper-
bolic three-space was proved by making use of the conservation laws, in particu-
lar, we find that the potential functions of Lagrangians which correspond to S*-
equivariant CMC-H surfaces contain the constant mean curvature H itself (see §3
and also [4]). Throughout the paper, we consider some extended harmonic map-
pings via Euler-Lagrange equations (Propositions 1 and 5). The extended harmonic
mapping can be considered as a natural extension of harmonic mapping, since the
potential function of corresponding Lagrangian to harmonic mapping is vanishing.
We give examples of extended harmonic mapping and extended harmonic CMC-H
immersion (§3). By using the conservation laws (Theorems 2, 3 and §6) with re-
spect to the Hamiltonians, we investigate a certain geometric relationship between
an extended harmonic mapping and a smooth mapping with vanishing tension field
(Theorems 4 and 6).
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2. Euler-Lagrange Equations

Let ¢ : (M,g) — (N,h) be a smooth mapping, where (M, g) and (N, h) are
Riemannian manifolds of dimension two and three with Riemannian metrics g and
h, respectively. Then we consider the following Lagrangian of ¢

2 3
= % > §70:0%0i6 hap(6) — G(6) e))
i,j=1a,f=1
where ¢ := y® o ¢, @ = 1,2,3, and (2!, 2?), (y',4?,y>) are local coordinate
systems on M, respectively N, 01¢® and 02¢“ denote the partial derivatives 8%1&"
and ‘92 ¢“, and we will make use of the notation

2
= Z gijdxi ® da’
ij=1

3
= " has(@@)(dy o) ® (A5 ot
a,f=1

G(¢) :=Go ¢, G € C(N).
The formula (1) does not depend on the way we choose local coordinates systems
of M and N, since the first term of the right hand side of (1) means Strace,(¢*h).
Then we can define the generalized (canonical) momenta

i._ 9L
pa T 8(8@“)’
Here p}, and 9;¢* can be regarded as the components of tensor fields. Under the
transformations of the local coordinate systems: (2!, z2) — (z1, 22) and (y!, y2, v°)

— (g/Nl,gP,g/N?’), we have

i=1,2  a=123.

~ ~ ozt ay 63/5 j
B9 oL LU T RIS v oL T
ﬂ v Pp
Zlﬁlaxﬂay ]Lgleﬁy
Thus we have the tensor fields d¢ ([5]) and p

Y

2 3 9
= Z Z z¢a dl‘ (8 a)¢(x)
1=1 a=1

p(z) = Z pr;(aii)gg ® (dy*)pw), =€ M.
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Then the Lagrangian (1) of ¢ implies that

2 3
— ZZ Zjaj(bﬁhaﬁ
j=1 =1

Proposition 1. Let (M, g) be the Euclidean plane (R?, go), where gq is the stan-
dard metric on R2. Then, under the Lagrangian (1) of ¢ : (R?, go) — (N, h), the
statements a) and b) below are equivalent

a) Euler-Lagrange equations

0Ly
Za@pa g =0 @=123 )
b)
7y = — grad, G(¢) 3)
where T4 stands for the tension field of ¢ ([6]) and
3
a 9G(¢) 9
grady, G(¢)(z) = aglh (o)) 960 )(ﬂf)(ayﬁ)¢(x), z e R%.

Proof: The formula (1) of the Lagrangian of ¢ implies that L4 can be expressed
as Ly = Lg( ¢, do), then we have

2 2 3
Z 8129; = Z Z 8i(8i¢aha'y(¢))
i=1

=1 a=1

2 3
=) > 076" han (¢ +Z Z drgn e (9) 5 4

i=1 a=1 i=1 a,f=1 8¢ﬁ

and
8L¢ . 1 2 3 @ gahaﬁ(¢) aG(¢)
o ~ 32 2 MO T T

Then we have

3 S Ol (9) 10has(9) 9G(9)
- Jo = of han 1f .
_;;(‘M hm(d>)+;a§1( S 3 g )00+
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On the other hand, we have as well

2

’ 23 Ohor(6) 1 Ohas(d)
r 0;p"0;0° = h*Y ay\¥) - Ylaf D% 0;0°
gﬁZl s (8)0:6°0,0 ;;:1 (O g5 5 g )" 00

where I'" 5 denote the coefficients of Levi-Civita connection of (N, h). As a con-
sequence we have

& oG
_Za%uz S T (000°067 + 3 () o).

i=1 a,f=1 y=1

Finally, since

3 2 2 3
0
o= O 0H+> > FZB<¢>ai¢aai¢ﬁ>(@)¢

p=1 i=1 i=1 a,8=1
and
G(o), 0
grad, G Z R (¢ S ( “)

vk=1 8(15 %

we obtain
6L¢ 0
o, G(0) = Y (3 S M) o
Y =1

from which, it is proved that a) and b) are equivalent. [ |

Let ¢ be as in Proposition 1. In this paper, if the tension field 7, of ¢ is given by
the formula (3) for some G € C*°(N), then such a smooth mapping ¢ is called
an extended harmonic mapping and G(¢) the potential function associated with
¢. When we give an extended harmonic mapping ¢ such that the associated po-
tential function is G(¢) = G o ¢, we always consider the Lagrangian (1) and the
corresponding Euler-Lagrange equations (2) throughout the paper. In particular, ¢
is called an extended harmonic immersion, if ¢ is an extended harmonic mapping
and an immersion.

3. Extended Harmonic Mapping

Let ¢ : (R?,gg) — (H3(—1),h) be an extended harmonic mapping with the as-
sociated potential function G(¢), where h stands for the following Riemannian
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metric on the hyperbolic three-space H3(—1) of constant curvature — 1

3

> hapdy® ® dy”
a,f=1

= dy! @ dy! + cosh? y' dy? ® dy? + cosh? y* cosh? y? dy® ® dy?
under a suitable parameterization of H3(—1).
Then, from (1), we have
1
Ly = 5((019)2 + (920)* + ((1p)? + (D2p)?) cosh? 0

2 2 2 2 N\ @
+((019)” + (92¢)7) cosh” f cosh” @) — G(9)

where 0 = ¢!, ¢ = ¢%, 1) = ¢%, 010 = 520, 0,0 = 5250, etc.
By using Lagrangian (4) and Euler-Lagrange equations (2), we have

8(;(;5) = —Af+ %gg(grad @, grad ¢) sinh 26
—i—%go(grad 1, grad 1) sinh 26 cosh?

3?;@ = —cosh® Ay + %go(grad ¥, grad 1) cosh? 0 sinh 2¢
—go(grad 6, grad ¢)sinh 26

a(;(f) = — cosh® f cosh® A — go(grad 6, grad 1) sinh 260 cosh? ©

—go(grad ¢, grad ) sinh 2 cosh? @

where A and grad stand for the Laplacian and the gradient operator on (R, go),
respectively.

As usually 6, ¢ and ¢ are called cyclic coordinates with respect to the Lagrangian
4, if

dLy 0Ly OLy

00 Oy o
which does not depend on the way to choose a local coordinate system on H3(—1).

0

If 8, p and 1) are cyclic coordinates, then we have

(9G8(;5) = %(go(grad o, grad ) + go(grad 1, grad 1) cosh? ¢) sinh 20

(%)
oG 1 . oG
850(]5) = §go(grad ¥, grad 1)) cosh? @ sinh 2¢, 81(/?) =0.
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Assume that 0, ¢ and ) are cyclic coordinates with respect to Lg. Then, since 7
= — grad;, G(¢), from (5), we have

X 0
Ty = _5(90(grad ¢, grad ¢) + go(grad 1, grad ) cosh® ) sinh 26 (37341)(1)
(6)

1 ) 0
—§go(grad ¥, grad 1) sinh 2¢ (8—y2)¢

Let ¢ : (R2, gg) — (H3(—1),h) be an extended harmonic CMC (constant mean
curvature) - H immersion with associated potential function G(¢) = G o ¢, where
H stands for the constant mean curvature of ¢ and we assume that H is a positive
constant. Then h(®)(7y, 74) = 4H?. By using (6), we have

1 .
h(9) (1, Tp) = i(go(grad @, grad ¢) + go(grad v, grad ) cosh? @)2 sinh? 20

1
—i—zgo (grad v, grad 1/1)2 sinh? 2¢ cosh?

from which, we have
(go(grad o, grad ¢) 4 go(grad 1, grad 1) cosh? )? sinh? 26
+ go(grad 1, grad 1»)? sinh? 2 cosh? § = 16H>.
Hence we can take the parameter function p = p(x!, 22) such that
(go(grad @, grad ) 4 go(grad 1, grad 1) cosh? ) sinh 20 = 4H cos p

and
go(grad ¥, grad 1) sinh 2 cosh § = 4H sin p.

Then, under the assumption of cyclic coordinates, we can choose the associated
potential function G(¢) as follows

G(9) —2H(/cospd9+/COShHSinpdg@).

Consequently, the associated potential function G(¢) contains the constant mean
curvature  itself.

4. Hamiltonians and Conservation Laws

Let ¢ : (R% go) — (N, h) (dim N = 3) be an extended harmonic mapping with

the associated potential function G(¢). Then we define the Hamiltonians H é)l) and
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Hf) with respect to ¢

Zama“ — Ly(6,dg)

Zam“ — Ly(¢,do)
where Ly = Ly (¢, dg) is given by the Lagrangian
123
L¢ = 5 Z Z 8i¢a8i¢ﬁhaﬂ(¢) - G(QZ))

i=1 a,f=1
Then we have

3
o H) Z DRe°ph + Y 016°01p}

a=1

3
Zgiﬁ 1¢oz ZaaL¢> 1¢a Za 1 nga‘

Hence, by using Euler-Lagrange equations (2) and the formula

3
ph=> 0 hap(e), i=12  a=123

B=1
we have
3 3
81H(§51) - Z(ggi 02p0)0 Z ggﬁ@@“ - szaﬂ??(?a
a=1 a=1
g 0 9 )
= - ; 02(016°pg) = —0a(h(9)(94(5 1), $+(55)))-
Similarly we have
o H? = _al(h(¢)(¢*( ) m(axl))) (8)

Thus we have

Theorem 2 (Conservation laws). Let ¢ : (R2, go) — (N, h) be an extended har-
monic mapping with associated potential function G(¢) and assume additionally
that h(9) (¢« (521 ), ¢+(322)) is constant as a smooth function on R?. Then

81H(§,1) — 82Hf) —0.
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On the other hand, the direct computation implies that
M _ 9\ _ KRS
HY = 2 (h(0)(0n (o), 62 (p) = h(8) (62 (o), 62 (o)) + CH0)

HE = L(h(0)(6: (). 0u( o)) — h(8)(0u (o), b4(op) + GL0).

Furthermore, if ¢ is conformal as a smooth mapping between Riemannian mani-
folds, then there exists a positive smooth function o on R? such that

M) (64 () 0ul5 ) = 0003 s o), 1= 1,2

Hence, by using (7), (8) (Theorem 2), we have

Theorem 3. Let the extended harmonic mapping ¢ : (R?, go) — (N, h) be such
that the associated potential function G(¢) is conformal as a smooth mapping
between Riemannian manifolds. Then

a) (conservation laws)
HHY = 0,H =0

b)

Y =Y = G(9).

Under the assumption of Theorem 3, we have

2

2 N 9G(9) ,, 0 D 0G(¢) o
O:Z axl ;O; 960 0ip 8"; 960 grad ¢

i=1
and
3 oG 0
7o = — grad, G(¢) = — Z h(@) 6¢(f) (aT/B)QS
a,f=1

Consequently, we have

Theorem 4. Let (N, h) be a Riemannian manifold (dim N = 3) and ¢ : (R?, go)
— (N, h) be an extended harmonic mapping with associated potential function
G(¢) = G o ¢ and assume that ¢ is conformal as a mapping between Riemannian
manifolds. If grad ¢, grad ¢? and grad ¢> are linearly independent at each point
on (R, go), where this linear independence does not depend on the way we choose
a local coordinate system on N, the tension field T4 vanishes.
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5. Complex Lagrangian

Let ¢ : (C,g0) — (N,h) be a holomorphic mapping, where (C, gg) is the 1-
dimensional complex Euclidean space ([6]) with metric gy := Re(dz ® dz) =
2 | dz' ® dat, where z = z' + /=122 stands for the standard coordinate of
C and (N, h) is an n-dimensional complex manifold with Hermitian metric A, re-
spectively.

We consider the following Lagrangian of ¢

2 n
Ly=>_ > 04”0 hy5(¢) — G(¢) )
i=1 a,B=1
where ¢ := (Y0 ¢, ¢% := (Y0 ¢, a =1,...,n and (¢}, ...,¢") is a complex
local coordinate system on N, and G(¢) = G o ¢, G is a complex valued smooth

function on N.
Note that we can represent a complex vector field ¢. ( 5.7)» @ = 1,2 as follows

9 )
= Zai¢“(@)¢+zf%¢“(@)¢, 1=1,2.
a=1 a=1

0
¢*(a ’L)
We define
¢ = Z@iqﬁo‘dx’, do® = Z@iqgo‘dx’, a=1,..,n.
i=1 i=1

Moreover, we can define the generalized momenta
i._ 0Ly . OLg
P00y T sy

Then we have

PL=Y_00%ha(d),  PL= 0i¢%has(0)
a=1

a=1

_ Loy 9 (-) ()
Z Z YW (=)s =7, '+ grad;, ' G(9)
v,u=1 =1 a¢’y aCM

8L¢ 9 () (+)
> Zf‘% () =77 + grad)” G(9)
v,u=1 i=1 8¢W aCN

where
" _0G(¢), O
e 6(0) = 3 D (),

v,pu=1
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_ oG(¢), 0
grad( )G R (==)¢
" 7#21 g7 60‘
and
2 n n n 9
=YD (O D Ts(9)0i0° 0”42 Y T05(6)0i6°0:6°) (5o
i=1y=1 a,B=1 a,Bf=1 C
2 n n n
=D (Oi¢"+ Y T5(0)0:0° 007 +2 3 T 5(#)0i0°0:6”) (5 7>¢
=1 y=1 a,f=1 a,f=1 C

where I, stands for the coefficients of torsion-free affine connection of (N, k), and
the tension field 74 of ¢ is defined as follows

T¢—Zgéjv b5 )

i,5=1
since gg is the flat metric, where V stands for the induced connection on the in-
duced bundle ¢~ 'T'N ([6]). Then 7, = T(;(j) g C)

.
¢
Proposition 5. The following conditions a) and b) are equivalent.
a)
2
;&' Y =0, Zazp’Y 8(;57 =0, vy=1,..n.
b)
Té)_) == gradg_) G(¢), qu+) - _ gradgﬂ a(9).

6. Complex Hamiltonians and Conservation Laws

The Euler-Lagrange equations a) as in Proposition 5 are equivalent to

75 = — grad, G(¢)
where
grad;, G(¢) := gradﬁr) G(¢) + gradgf) G(9)
such a ¢ is called an extended harmonic mapping.
In the following, we define the Hamiltonians of ¢

n n
= 0i¢°ph+ > 0i6°pl, — Ly, i=1,2
a=1 a=1

where L is given by the formula (9).
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Then, from the direct computation, we have

OH = — 0 (00 (), 61 W))

OnHY = — 01 hy(n( 5 )m( )

furthermore, from the definitions of Hamlltomans, we obtaln

Bl - 1<h¢<¢*<%,¢*<il>> - %(@(%m*(%m +G(9)

HE) = 2 (ha(0u5g)s 6o 23)) = Pl ), b)) + GU6).
Consequently, if ¢ has the conformal properties such as

ho(64(p). 0u(og)) =

and 5 5
Bol64(r), 64 57)) = o645 oy). Bl 5 5) (10)
then we have the conservatlon laws.
aH =00 =0, HY =H =GC(9).
Then, under the assumption of the following theorem, we have
2
0G(P) 5 oy i
0= 0;G(¢ ;pdx’ 0;¢0%dx’
;( ;;a¢a¢ '+ ga 06 da?)
then
+ Z dqb“ =0
and
"5 . 0G(6) D 9G (), O
o= g, 6(0) = = Y 1) P (et P (e

a,f=1

Hence, we have

Theorem 6. Assume that ¢ : (C, go) — (N, h) is an extended harmonic, holomor-
phic mapping equipped with potential function G(¢) = G o ¢ with respect to the
Lagrangian (9), and assume ¢ has the conformal properties (10). If d¢,..., d¢™,
degl,...,do" are linearly independent over C (where this linearly independency does
not depend on the way to choose a complex local coordinate system on N), then
the tension field T4 of ¢ vanishes.
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