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Abstract. The C-spectral sequence is a cohomological theory naturally as­
sociated with a space of infinite jets, which allows to write down many con­
cepts of the variational calculus by using the same logic of the standard dif­
ferential calculus. In this paper we use such a language (called Secondary 
Calculus by A. Vinogradov) to describe a delicate aspect of the variational 
calculus: the appearance of some “natural” boundary conditions in the con­
text of variational problems with free boundary (e.g., transversality condi­
tions). We discover that the Euler-Lagrange operator is actually a graded 
operator, producing simultaneously the standard Euler-Lagrange equations 
and these new boundary conditions as different homogeneous components of 
an unique object. Simple applicative examples will be presented.

1. Introduction

When a system of nonlinear PDEs is formalized as a natural geometrical object, 
one can use the common tools of differential calculus (e.g., locality, differential co­
homology, symmetries, etc.) to reveal some aspects of the equations, which could 
be hardly accessed by just using analytic techniques (the first steps in this direction 
were moved by Dedecker 1978, Gel’fand and Dikii 1975, Hordenski 1974, Olver 
and Shakiban 1978, Tulczyjew 1975, 1977, 1980, and Vinogradov 1977, 1978).
The present work was sustained by the belief that the right geometrical portrait 
of a system of nonlinear PDEs is the so-called diffiety (see [3,6] and references 
therein) and that the analitic machinery which is commonly used to look for so­
lutions of PDEs just draws attention away from the more conceptual, and hence 
more interesting, aspects of the problem.
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Figure 1. If Columbus had had the possibility of look the Earth from 
the space, he probably would have chosen a different route than the one 
he actually took, for it would be the shortest.

For example, when searching for the potential of a closed form cv in Rn, one can 
choose the coordinate path and build up a family of solutions F  +  k, where the 
constant k  arises from the integration process, or the cohomological way, and ob­
serve that the homotopy equivalence of Rn and {0} allows to recast the problem 
on a zero-dimensional manifold. In this perspective, the above family looks like 
k -h ( iv ) ,  where now the number k is the true solution, and h(uo) is just an algebraic 
compensation due to the homotopy formula.
In this paper we present a not-so-trivial circumstance where the use of diffieties 
and the relative to them cohomological methods is highly advisable, since they 
avoid the classical analitical proofs and provide far-reaching generalizations.

1.1. A Toy Model

Fig.l provides a visual proof of the next

Theorem  1 (The problem of Columbus). Given the ounces T-\ and To in E 2, the 
problem o f finding, among the (non self-intersecting) (smooth) ounces which start 
from a point o f T i and ends to a point o f To (without crossing Ti UT2 in any other 
point), those whose length is (locally) minimal, admits a unique solution v.

Above result contradicts the fact that the Euler-Lagrange equations associated with 
the length functional are second order. However, by manipulating the first vari­
ational formula, it has been discovered that the extremal v in fact fulfills some 
hidden boundary conditions, which where called transversality conditions.
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We will show, in a natural geometric language, that such conditions in fact arise for 
a large class V  of variational problems, yet keep using the problem of Columbus 
as a toy model.

1.2. The Main Problem V

The formal definition of our main problem reads as follows 

Definition 1. Given

•  a manifold E  with non-empty boundary d E
•  an integer n  <  dim E
•  the set A dm (P) = {L } such that

* L is an n-dimensional compact connected submanifolds o f E
* L is nowhere tangent to d E
* and d L  is non-empty and coincides with L  n  d E

•  and, finally, an horizontal n-form  to € X” ( J ° ° (E , n)) 

the problem o f finding the (local) extrema fo r  the action

determined by uj on the elements o f  A dm (P), is called a free boundary variational 
problem V.

1.3. The Natural Strategy

In a coordinate-free approach, the first attack to the problem of Columbus would 
be to transform the domain E  into the total space of the trivial bundle ir : [0,1] x 
(0,1) [0,1]. Since our theory is a natural construction, such a rectified problem
of Columbus isequivalent to the original one, and it can be stated as follows

(1)

•  E  = [0,1] x (0,1), and d E  = {0,1} x (0,1)
•  n  =  1

•  Adm('P) =  r(7r)

•  the horizontal one—form to € A1(J°°(7r)) is given by to =  f ( x , y , y f)dx,

and we want to find the (local) extrema for the action

(2)
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Figure 2. A variational problem in the two-dimensional disk.

Figure 3. Any problem V  has locally a fibered structure.

Problems V  in which only sections of a fiber bundle tt are involved belongs to the 
so-called fibered case. A problem not belonging to such a case is illustrated in 
Fig.2. There E  is the two-dimensional closed disk D 2, d E  is the circle S 1, and 
n =  1. Then only the full lines belong to Adm ('P), while does not any of the 
dotted ones, for either it is tangent to d E  in some point, or its boundary is not the 
set o f its common points with dE , or it has got empty boundary.
The natural way to attack such a problem relies on the localizability of our theory. 
As suggested by Fig.3, consider the subset U of E.
And observe that, nearby a point of dE , an admissible submanifold for the prob­
lem V  coincides with the graph of a (local) section of tt in a neighborhood of the
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Figure 4. The naturality of our theory allows to reduce he problem of 
finding the least area membrane in a pipe of arbitrary shape, to a very 
trivial one.

origin. The reader should now be persuaded that our toy model is not so restrictive, 
since by localization and naturality, any problem V  can be reduced to the fibered 
case (see Fig.4). The remainder of the paper is devoted to show that the theory 
which describes the problems V  is just an aspect of the Secondary Calculus (in­
troduced by Vinogradov, see [6]) over a certain diffiety, wich we will call (B,C),  
naturally associated to the problem V , much as the problem d F  =  tv is an aspect 
of the differential cohomology of Rn. We stress that natural here means that if the 
data of the problem V  undergo a transformation, then the objects and morphisms 
which constitute the theory which describe V  also undergo a transformation, and 
the theory which describe the transformed problem is obtained.

2. Main Tools

Details about standard terminology and results of Secondary Calculus can be found 
in [6], To give a problem V  a natural location in the framework of Secondary 
Calculus, we have to introduce new tools.

Definition 2. (B,C),  where B  =  J oc(7r), tt : E  M , and C is the Carton 
distribution, is called the main diffiety associated with V.

Definition 3. (ôB,C qb), where dB  d=f (dM),  and Cqb is the restriction ofC  
to dB,  is called the sub-diffiety associated with V.

Notice that d B  =f 7T^}(dM) is a sort of “infinite prolongation” (see, e.g. [4]) 
of dM.  From now on, the problem V  may be identified with the pair of diffieties 
(B,  dB) ,  or simply with the main one B.
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2.1. The Term Eq of the Relative C-speetral Sequence

Observe that the new objects B  and d B  came with an evident interrelationship, 
which influences the cohomological theories associated with them. Indeed, much 
as to any submanifold it is possible to associate a short exact sequence of differen­
tial forms, to the sub-diffiety d B  it is possible to associate a short exact sequence 
of C-spectral sequences.

Definition 4.

0 E P(B,  dB)  -4 4 Eff idB)  0 (3)

is called the short exact sequence of Eq terms of C-spectral sequences associated 
with V
The term E q(B,  dB) ,  which is defined as

a n ,, drf C” n A ( B , d B )  + CP+1 
.9 B ) =  ------------^ ------------  (4)

can be understood as the sub-complex of E q whose elements vanish when they are 
restricted to d B , in fully accordance with the definition of a relative (with respect 
to the boundary) form on a standard manifold.
Inspired by this analogy, we give the next

Definition 5. Complex E g ( B , d B )  defined by (4) is called the Eq term of the 
relative (with respect to d B ) C-spectral sequence associated with B.

2.2. The Long Exact Sequence of E i  Terms

The analogy with standard manifolds, when we find the cohomology long exact 
sequence, goes even further, and the next result is immediately proven.

Lemma 1. The triangle

E P( B , d B ) --------— --------------EJ{ (5)

E p(dB).

is exact.

Definition 6. The triangle (5) is called a long exact sequence of E \ terms associ­
ated with B.
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2.3. The Main Object Associated with V

Complex E f  (B , d B )  appearing at the left vertex of (5), is just a column of the E \ 
term of a whole spectral sequence E ( B , dB) ,  whose other terms are beyond the 
scope of this paper.

Definition 7. E ( B , d B )  is called the relative C-spectral sequence, associated 
with the problem V.
All the objects needed to build up the theory are now ready. It is worth stressing 
that, together with objects, we have also introduced (in a more or less explicit way) 
new differentials and morphisms.
In the next section we will see how such objects and differentials and morphisms 
encode all the known information about the problem V , and also reveal some new 
aspects.

3. Main Results

Once inscribed in the framework of Secondary Calculus, the whole theory of the 
free boundary variational problems depends on a good definition of the Lagrangian. 
All the rest, is an (almost) algorithmic consequence of this definition.

3.1. The Lagrangian Associated with V
In the statement of V , only the Lagrangian density tv was involved (see Definition 
1). Observe that, for any u 6 r(7r), the map joo(u) sends d M  into dB . So, 
if tv is the differential of some form vanishing on d B , then joo(u)*(iv) will be 
the differential of some form vanishing on dM . By Stokes formula, the action 
determined by uo, evaluated on M , is zero.
In other words, the action of io is given only by its cohomology class modulo dB . 
Then we can say that the

Definition 8. The Lagrangian associated with V  is the relative to d B  cohomology 
class [w] e  E f n (B ,d B) .
From the point of view of Secondary Calculus, all the information about V  can 
be retrieved from the element [cc] of E®'n (B,  dB) ,  which should be called the 
secondary function associated with V.

3.2. The Graded Euler-Lagrange Equations

Following the same logic governing the standard calculus, one must apply the dif­
ferential d j ’”el to [cc] in order to get the equations for the extrema of V.
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Definition 9.
d (6)

is called the {left-hand side o f the) relative {or “graded”) Euler-Lagrange equa­
tions associated with V.
The theory will be complete when we show that “inside” d j’”el([cü]) there are both 
the (standard) Euler-Lagrange equations and the (generalized) transversality con­
ditions.

3.3. The Structure of d j’"el([cü])

Even though Secondary Calculus assures that the relative (or “graded”) Euler- 
Lagrange equation

< r c l (M )  =  0 (7)
is satisfied by the extrema of V , the left-hand side of (7) cannot even called an 
“equation”. The problem is that, in general, E\ ' n { B , d B )  is not a module, so 
d i’rei(M ) cannot be interpreted as a differential operator.
The structure of dB,  is clarified by the next result, whose proof is omitted (see [5] 
for more datails).

Theorem 2 (Structure Theorem). n ~ l {dB) is isomorphic to the infinite je t space 
J ° ° (0 , where £ is a special oo—dimensional bundle over dM , called a normal jets 
bundle.

As a consequence, the diffiety d B  fulfills the Vinogradov one-line Theorem (see 
[6])-
The one-line Theorem for B  and of Theorem 2, combined, produce the next

Corollary 1. The one-line Theorem holds fo r  the relative C—spectral sequence as 
well.

Proof: Choreographic: first represent vertices of triangle (5) in the (p, g)-plane, 
then take into account the degrees of the maps into play, and finally observe that 
there is no other possibility for the relative C-spectral sequence but to be one-line 
(see Fig.5). □

3.4. The Short Exact Sequence of E \  Terms

Paraphrasing Corollary 1, we can say that the long exact sequence (5) is, in fact, a 
short one. The component p  =  1 plays a prominent role in our theory.
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+

Figure 5. Geographical proof of the relative one-line Theorem.

Definition 10. Sequence o f vectors spaces

0 — >2(dB) E \ ' n { B , d B )  ^ 3  ( 8)

is called the short exact sequence o f E-\ terms associated with V.

Lem ma 2. The sequence (8) splits.

Proof: An easy consequence of the Green C-formula (see [6]). □

Such a splitting is crucial for interpreting d j ’̂ ( M )  as a pair of equations.

3.5. The G raded E uler-Lagrange Equations

Now we know that the graded Euler-Lagrange equations d j ’̂ el ( [cu] ) look like an 
element

( C C ( 1 ) )
of the graded object Sc(dB) © x.
The second component is the (left-hand side of the) well-known Euler-Lagrange 
equations associated to ut.

Definition 11. The new entry f f  appearing as the first component q /d J ’̂ el([o;]), is 
called the (left-hand side o f the) transversality conditions associated with V. 
Such a choice of the name allowed us to be consistent with the already established 
terminology.
Thanks to the Structure Theorem, £[, is an element of a vector bundle over DM. 
As such, it will admit a coordinate expression, which we show below, though quite
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complicated

EE E E - ^ ’̂
3 =1 fe=0 T g N " -1

D l„-k ,Tl 1 7ouJ
d f

T+(i+l)ln ,

where m  is the dimension of tv.
Here f d x 1 A * * * A dxn is the local representation of tv, and x n 
for d M .  The D ’s are (compositions of) the total derivatives.

D $ J) (9)
d B /

0 is the equation

3.6. Example of Application to the Toy Model

Consider the setting of the problem of Columbus, but allow the Lagrangian den­
sity fd x  on E,  where f  =  f ( x , y , y f), to be arbitrary. Denote the corresponding 
Lagrangian on tt by uj =  gdx,  for a suitable function g =  g(x,  y, y').

Formula (9) tells that is simply 
(accordingly to our theory) look like

, so that the transversality conditions
dB

dy>
0. ( 10)

dB

If we pull-back the last expression on E,  we get the following expression

d f
d ÿ ,

Xr d f
dy7 V

r 0 (11)

where (a;r , y T) is a tangent to d E  vector, which is the classical formulation of the
transversality conditions (see, e.g. [1] and [2]).
When f  =  V 1 +  iv ')2 is the (restriction to E  of the) length functional (on R 2), 
equation (11) tell us exactly that the curve u must form a right angle with Ti and 
F 2 , while C ^ j^ l)  =  0 is equivalent to y"  =  0.
It is surprising that two conditions of such an heterogeneous natures (they are dif­
ferential equations imposed on sections of bundles over different bases and with 
non-isomorphic fibers are in fact the homogeneus components of the same graded 
object d l j el([fdx]).

3.7. Conclusions

Before this moment, formula (11), which we obtained just by using the naturality 
of a purely cohomological theory, could not be derived without introducing ad- 
hoc technicalities. Analogous formulae for two-dimensional problems (see Fig. 
4) need even more computations, and it is not hard to imagine that their difficulty 
grows exponentially as the dimension gets larger.
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On the contrary, thanks to the robustness of Secondary Calculus, we have managed 
to provide a simple description for any problem V  which belongs to much more 
wide and general class of problems, where we have Lagrangians of any order, and 
no restrictions on the topology of E.
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