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Abstract. Let B C C2 be the unit ball and F be a lattice of SU(2, 1). Bear-
ing in mind that all compact Riemann surfaces are discrete quotients of the
unit disc A C C, Holzapfel conjectures that the discrete ball quotients 1B/F
and their compactifications are widely spread among the smooth projective
surfaces. There are known ball quotients 1B/F of general type, as well as
rational, abelian, K3 and elliptic ones. The present note constructs three non-
compact ball quotients, which are birational, respectively, to a hyperelliptic,
Enriques or aruled surface with an elliptic base. As a result, we establish
that the ball quotient surfaces have representatives in any of the eight En-
riques classification classes of smooth projective surfaces.

1. Introduction

In his monograph [4] Rolf-Peter Holzapfel states as a working hypothesis or a phi-
losophy that ... up to birational equivalence and compactifications, all complex
algebraic surfaces are ball quotients.” By a complex algebraic surface is meant a
smooth projective surface over C. These have smooth minimal models, which are
classified by Enriques in eight types - rational, ruled of genus > 1, abelian, hyper-
elliptic, K3, Enriques, elliptic and of general type. Hie compact torsion free ball
quotients B/T are smooth minimal surfaces of general type. Ishida [10], Keum
[11,12] and Dzambic [1] obtain elliptic surfaces, which are minimal resolutions of
the isolated cyclic quotient singularities of compact ball quotients. Hirzebruch [2]
and then Holzapfel [3], [7], [9] have constructed torsion free ball quotient compact-
ifications with abelian minimal models. In [9] Holzapfel provides a ball quotient
compactification, which is birational to the Kummer surface of an abelian surface,
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136 Azniv Kasparian and Boris Kotzev

i.e., to a smooth minimal K3 surface. Rational ball quotient surfaces are explic-
itly recognized and studied in [6], [8]. The present work constructs smooth ball
quotients with a hyperelliptic or, respectively, a ruled model with an elliptic base.
It provides also a ball quotient with one double point, which is birational to an
Enriques surface. All of them are finite Galois quotients of a non-compact torsion
free B/ I‘(_ﬁ’g), constructed by Holzapfel in [9] and having abelian minimal model
of the toroidal compactification. As a result, we establish the following

Theorem 1 (Weak Form of Holzapfel’s Conjecture). Any of the eight Enriques
classification classes of complex projective surfaces contains a ball quotient sur-
face.

2. Ball Quotient Compactifications with Abelian Minimal Models

Let us recall that the complex two-ball
B = {(21,22) € C*; |z1|* + 2| < 1} = SU(2,1)/S(U(2) x U(1))

is an irreducible non-compact Hermitian symmetric space. The discrete biholo-
morphism groups I' C SU(2, 1) of B, whose quotients B/T" have finite SU(2, 1)-
invariant measure are called ball lattices. The present section studies the image T’
of the toroidal compactifying divisor 77 = (B/T)’ \ (B/T) on the minimal model
Aof (B/T), whenever A is an abelian surface. It establishes that for any subgroup
H C Aut(A,T) there is a ball quotient B/T'jy, birational to A/H.

Lemma 1. If a ball quotient B/T is birational to an abelian surface A then B/T
is smooth and non-compact.

Proof: Assume that B/T is singular. For a compact B/T set U = B/T". If B/T is
non-compact, let U = (B/T")’ be the toroidal compactification of B/T. In either
case U is a compact surface with isolated cyclic quotient singularities. Consider
the minimal resolution ¢ : Y — U of p; € U8 by Hirzebruch-Jung strings
£
E; = Y E!. The irreducible components E! of E; are smooth rational curves of
i=1
self-intersection (E!)? < —2. The birational morphism Y --+ A transforms E!
onto rational curves on A. It suffices to observe that an abelian surface A does not
support rational curves C, in order to conclude that B/T is smooth. The compact
smooth ball quotients are known to be of general type, so that B/T" is to be non-
compact.

Assume that there is a rational curve C' C A. Its desingularization f : C — C can
be viewed as a holomorphic map F' : C — A Homotopy lifting property applies to
I' and provides a holomorphic immersion F:C — A = C2 in the universal cover
A of A, due to simply connectedness of the smooth rational curve C. Its image



Weak Form of Holzapfel's Conjecture 137

ﬁ(é ) is a compact complex-analytic subvariety of C2, which maps to compact
complex-analytic subvarieties pr,{F'(C)) C C by the canonical projections pr,:

C? —» C,1 < i < 2. Thus, pr;(F(C)) and, therefore, F(C) are finite. The
contradiction justifies the non-existence of rational curves on A.

O

The next lemma lists some immediate properties of the image T’ of the toroidal
compactifying divisor 7' of A’ = (B/T") on its abelian minimal model A.
Lemma 2, Let A" = (B/T") be a smooth toroidal ball quotient compactification,
&
¢ : A" = A be the blow-down of the (—1)-curves L = > L; on A’ to an abelian
j=1
surface A and T}, 1 <1 < h be the disjoint smooth elliptic irreducible components
of the toroidal compactifying divisor T' = (B/T) \ (B/T). Then
i) T; = &(T)) are smooth irreducible elliptic curves on A
i)y T80 = S~ T;NT; = &(L)
1<i<j<h
iii) T; N T8 £ () and the restrictions & : T! — T; are bijective for all
1< <h

Proof: i) According to the birational invariance of the genus, the curves T; = £(T7)
have smooth elliptic desingularizations. It suffices to show that any curve C' C A
of genus one is smooth. If ' is singular then its desingularization C is a smooth
elliptic curve. Therefore, the composition C — C < Aofthe desingulariza-
tion map with the identical inclusion of C is a morphism of abelian varieties. In
particular, it is unramified, which is not the case for C — C. Therefore any curve
C C A of genus one is smooth.

ii) The inclusion 758 C > T;n T} follows from 1). For the opposite in-
1<i<j<h

clusion, note that {[4ny, = Idgang) + A"\ L — A\ (L) guarantees T; =

§(T}) # &(I]) = T and different elliptic curves on an abelian surface intersect

transversally at any of their intersection points. Thus, 75 = Y~ 1T; N T;.
1<i<j<h
The disjointness of T yields >~ T; NT; C &(L). Conversely, the Kobayashi
1<i<j<h

hyperbolicity of B/T" requires card(L; N 1") > 2 forall 1 < j < s. However,
card(L; N T/) < 1 by the smoothness of T; = £(T7), so that there exist at least
two 17 # T, with card(L; N T)) = card(L; NT}) = 1. In other words, the point
§(L;) € T; N Tj. That verifies the inclusion §(L) € >~ T; N T}, whereas the
1<i<j<h
coincidence £(L) = > T;N7Tj.
1<i<j<h
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iii) If 7; N €(L) = @ then the intersection numbers (7/)? = T? coincide. By the
Adjunction Formula

0=—e(T;) =T} + KaTi =T} + Op.T; = T}

so that (T7)? = 0. That contradicts the contractibility of T/ to the corresponding
cusp of B/T and justifies T; N T8 £ () forall 1 < 4 < h.
Note that {|rny, = Id |znyp + T; \ L — T; \ (L) is bijective. In order to define
¢t TN E(L) — T N L, letus recall that for any p € £(L) the smooth rational
curve £~1(p) has card(¢~1(p) N T}) < 1. More precisely, card(¢ 1 (p) NT}) = 1
if and only if p € T;, so that for any p € T; N &(L) there is a unique point
{q(p)} = T/ N £~1(p). That provides a regular morphism ¢~1(p) = ¢(p) for
all p € T; N €(L).

U

According to Lemma 2, the image T' = &£(T") of the toroidal compactifying divisor
T' = (B/T) \ (B/T) under the blow-down ¢ : (B/T)" — A of the (—1)-curves is
h
a multi-elliptic divisor, i.e., T' = ) T; has smooth elliptic irreducible components
i=1
T;, which intersect transversally. Note also that (A, T’) determines uniquely (B/T)’
as the blow-up of A at 758,

Definition 2. A pair (A, T) of an abelian surface A and a divisor T C A is
an abelian ball quotient model if there exists a torsion free toroidal ball quotient
compactification (B/T), such that the blow-down & : (B/T) — A of the (—1)-
curves on (B/T)" maps the pair ((B/T)", T" = (B/T)" \ (B/T)) onto (A,T).

The next lemma explains the construction of non-compact ball quotients, which
are finite Galois quotients of torsion free non-compact B/T", birational to abelian
surfaces.

Lemma 3. Let A’ = (B/T)" = (B/T)UT" be a torsion free ball quotient compac-
tification by a toroidal divisor T, £ : A" — A be the blow-down of the (—1)-curves
on A’ to the abelian minimal model A and T = £(T"). Then
i) Aut{A,T) = Aut(A’,T") is a finite group
it) any subgroup H C Aut(A,T) lifts to a ball lattice Ty, such that T is a
normal subgroup of Ty with quotient group Ty /T = H and B/T'y is a
non-compact ball quotient, birational to X = A/H.

Moreover, if X = A/H is a smooth surface then B /T gy is a smooth ball quotient.

Proof: i) If G = Aut{A,T), then Lemma 2 ii) implies the G-invariance of £(L).
By the means of an arbitrary automorphism of the smooth projective line P!, one
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extends the G-action to L and, therefore, to

A= (A\L)UL = (A\ &(L)) UL

h
The G-invariance of 77 = > T/ follows from Lemma 2 iii). That justifies the
i=1
inclusion G C Aut{A’,T"). For the opposite inclusion, note that the union L of
the (—1)-curves is invariant under an arbitrary automorphism of A’. As a result,

there arises a G-action on £(L) agd A= (A\¢L)U&L) = (A \L)ugL).

The multi-elliptic divisor T = > T; is G-invariant according to Lemma 2 iii).
i=1
Consequently, Aut{ A", T") C G, whereas G = Aut{A’, T").

In order to show that ( is finite, let us consider the natural representation
¢ : G — Sym(Ti,...,Ty) ~ Sym,,

in the permutation group of the irreducible components T; of T". It suffices to
prove that the kernel kery is finite, in order to assert that (G is finite. For any
g = Tpgo € ker ¢ C Aut{A) with linear part g, € GL2(C) and translation part 7,
p € A, we show that g, and 7, take finitely many values. Note that the identical
inclusions 7; C A are morphisms of abelian varieties. Thus, for any choice of an
origin 04 € T; there is a C-linear embedding &; : i = C < C2 = 4 of the
corresponding universal covers. If £,{1) = (a;, b;) then

T; = Eq b, = {(ait, bit)(mod w1 (A)) ; t € C} C A.

If the origin 64 ¢ T;, then for any point {F;,Q;) € T; the elliptic curve T; =
Eq, p; + (Pi, Q). In either case, all v; = (a4, b;) are eigenvectors of the linear
part g, of g = 7,9, € kerp. We claim that there are at least three pairwise non-
proportional v;. Indeed, if all v; were parallel, then T8 = ), which contradicts
T; N T8 £ () for 1 < i < h by Lemma 2 iii). Suppose that among v1,..., v
there are two non-parallel and all other v; are proportional to one of them. Then
after an eventual permutation there is 1 < k& < h — 1, such that v, vy are linearly
independent, v; = p;v; forpy; € C,2 <i < kandv; = pjvpry forp; € Ck+2 <
i < h. Holzapfel has proved in [9] that any abelian ball quotient model (A, T) is

h : :
subject to > card(1; NT%"8) = 4 card(T*"). In the case under consideration
i=1

h
card(T*"8) = Z Z card(T; N T})

i=1 j=k+1
- h
card(T; N T%"8) = Z card(T; NT;) for 1<i<k and
j=k+1
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k
card(T; N T"8) = Y " card(T;NT;) for k+1<j<h.
=1

h
Therefore . card(T; N T58) = 2card(T""8) # 4card(T*"8) and there are at
least threezpéirwise non-proportional eigenvectors vi, vo,vs of g,. Let A; be the
corresponding eigenvalues of v; and vg = pyvy + povs for some py, po € C*. Then
Agvg = go(vg) = p1A1v1 + p2Aovo implies that Ay = A3 = Ao and g, = A, [xis a
scalar matrix. On the other hand, g(T;) = go(7;) + p = T; forall 1 < i < h, so
that g, permutes among themselves the parallel elliptic curves among 77, ..., T}.
Since T; are finitely many, there is a natural number m, such that g* € keryp.
Therefore, \7* € End(T;) and \;™ € End(T;) forall 1 < i < h,dueto (¢7) ™! =
g, € kerp. Recall that the units group End*(T;) = Z* = {£1} for T; without
a complex multiplication. If the elliptic curve T; has complex multiplication by an
imaginary quadratic number field Q(v/—d), d € N, then End(7}) is a subring of

the integers ring O_, of Q(v/—d). The units groups O*; = (i), O* 4 = (ezﬁﬂ>,
and O* ; = (—1) for all d # 1, 3 are finite cyclic groups. As a subgroup of O* ,,
the units group End*(T;) is a finite cyclic group. Therefore A7 € End*(7};) and
Jo = Aolo take finitely many values.

Concerning the translation part 7, of g € kery, one can always move the origin
6.4 of A at one of the singular points of 7. Due to the G-invariance of T5"&, there
follows g(64) = 790(64) = 7(64) = p € T8, Therefore p takes finitely many
values and ker ¢ is finite.

ii) Since I"  SU(2,1) is a torsion free lattice, any subgroup H of
G = Aut(A", T") C Aut(A'\T') = Aut (B/T)

lifts to a subgroup I'y € Aut{B) = SU(2,1), which normalizes I" and has quo-
tient 'y /T = H. We claim that 'y is discrete. Indeed, T'yy = Uf:ﬂéf is a finite
disjoint union of cosets, relative to I'. Suppose that I'j; is not discrete and there is a
sequence {vy, }52; C I'y with a limit point v, € ; I". Then pass to a subsequence
{¥mn o1 C i, I, converging (o v,. As aresult {vy,; YW, ¥5, € T converges to
'yz-_o 1% € I and contradicts the discreteness of I'. Thus, I'yy D T is discrete and,
therefore, a ball lattice. Straightforwardly,

A'/H = [(B/T) /(T /DU (T"/H) = (B/Ty) U (T"/H) = (B/Th)

is the compactification of the ball quotient B/T sy by the divisor 77/H. The H-
Galois covers (g : A — A/H and (};, : A’ — (B/Ty) fit in a commutative
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diagram
A

Co Cor

A/H < BTy

with the contraction g of L/ H to ¢(L)/H.

Note that X = A/H is smooth exactly when H has no isolated fixed points on
A. The blow-up & : A’ — A replaces an arbitrary p; = £(L;) with stabilizer
Stabg (p;) by a smooth rational curve L; with Staby(q) = Stabg(p;) for all
q € L;. Therefore the blow-up ¢ does not create isolated H-fixed points on A" and

A'/H = (B/Ty) is a smooth compactification. Its open subset B/T gy is smooth.
O

3. Explicit Constructions

The present section applies Lemma 3 to a specific abelian ball quotient model over
the Gauss numbers (i), in order to provide ball quotient compactifications, which
are birational to a hyperelliptic, Enriques or a ruled surface with an elliptic base.

Theorem 3 (Holzapfel [9]). Let us consider the elliptic curve E_1 = C/(Z 4 iZ)
with complex multiplication by the Gauss numbers Q(1), its two-torsion points

. 1 . .
Qo = 0(mod Z +-iZ), Q1= §(m0dZ +iZ), Q2 =1iQ1, Q3 =01+ Q2
the abelian surface A_1 = E_1 x E_1, the points
Qij = (Qi,Q;) € Ax_tor C Ay

and the divisor Tg’g) = f:sz- with smooth elliptic irreducible components
i=
Tpy=FEp; for 1<k<A4
Toia=Qm xE_1, Thie=FE_1xQ, for 1<m<2
Then (A_l,Tg’g)> is an abelian model of an arithmetic ball quotient B /I’(_ﬁig),
defined over Q(i).
Corollary 1 (Holzapfel [9]). 1) In the notations from Theorem 3, the multipli-

cations I = ( 6 ?), J = (é ?) byi € Zl[i| = End(E_,) on the first,
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respectively, the second elliptic factor F_ of A_q are automorphisms of
(4,74,

i) If I’(6 ) ", is the ball lattice, containing T( 8) s a normal subgroup with
quottent rf,?sg)_l/r(ﬁ 8) (- = 12J2> C Aut (A_l,TEG 8)>, then the
ball quotient B/ I’(6 8) ", is birational to the Kummer surface X3 of A_1.

i) If I’(6 8) _y Is the ball lattice, containing T( ) s a normal subgroup with
quottent I’(6 8) 1/ I’(6 8 = =(I,J) C Aut (A_l,T£618)>, then the ball quo-

tient B/ I’(6 8) _q Is a rational surface.

The entire automorphism group G(_Gig) = Aut (A_l, Tﬁ’g)> is described in the
next lemma.

Lemma 4. In the notations from Theorem 3, the group G (_ﬁig) = Aut (A_l, ng))

. i0 10 i 01
is generated by I = (0 1 ), J = (0 i)’ the transposition 6 = (1 0) of

the elliptic factors F._1 of A_1 and the translation 133 by QQ33. The aforementioned
generators are subject to the relations
I'=1d, J'=1d, #*=1d, 75=1d, IJ=JI
QIZJG), QJZIQ, IT33 :ngf, JT33:T33J, 9T33=T339.

and G (_Gig) is of order 64.

Proof: Any g € G(_G’g) leaves invariant

(T(ﬁ 8)>Smg Z TiNT; = Z Z Qmn + Qoo + Q33

1<i< <8 m=1n=1
Thus, g(T;) = T; implies s; = card(T; N T518) = card(T; N T58) = sy,
according to the bijectiveness of g. In the case under consideration, s; = sy =
s3 = 84 = 4 and s5 = sg = s7 = sg = 2, so that G(ﬁ’g) permutes separately
Ti,...,Tyand T, ..., Tg. In particular, the intersection N{_,T; = {Qoo, @33} is
G (_ﬁig)-invariant and any g = Tryy90 € G (_i ) transforms the origin 04_, = Qoo

into g(oa_,) = (U1,U2) € {Quo, W33} Straightforwardly, m33(1;) = T; for
1 < i < 4and m33(Tmt2n) = Ta—meon forl < m < 2, 2 < n < 3imply

that 733 € G(_ﬁ’lg). Therefore G(_ﬁig) is generated by G(_ﬁig) N GLa(End(E_;)) =

G(_ﬁig) N GLgo(Zli]) and 733. Note that § € Aut{A_;) acts on Tfﬁl’g) and induces
the permutation (17, T3){(T5, T7)(T5, Tx) of its irreducible components. Therefore
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0 ¢ G(_ﬁig) and (I, J, 6) is a subgroup of G(_ﬁig) N GL2(Z[i]). On the other hand,
any g = ( f; ?) € G(_ﬁig) N GLo(Z[i]) acts on T, ..., Tz and, therefore, on
the set {ﬁ = fﬁ; =0xC, TIN“r,v = ?8 = C x 0} of the corresponding universal
covers. If g{0 x C) = 0 x C, g(C x0) = C x Othen 8 = v = 0, so that
a,8 € End{(F_1) = Z[i] and det{g) = ad € End*(F_1) = (i) = C, imply
g = I*J! forsome 0 < k,1 < 3. Similarly, for g(0xC) = Cx 0, g(Cx0) = 0xC
one has « = & = 0, whereas 3,7 € Z[i], 8y € Z[i]* = (i) and g = I*J'0 for
some 0 < k,I < 3. Consequently, G(_ﬁig) N GL2(Z[i]) = {I,J,6) and G(_Gig) =
(I, J,0,733). The announced relations among 733, I, J, 8 imply that

GO = [r T 0 <kI<3, 0<mn<1)

is of order 64.
O

Theorem 4. In the notations from Lemma 3, Theorem 3 and Lemma 4, let us
consider the subgroups Hgg = (133J%), Hgnr = (—I2,7331%), Hra = (J?)
of GO = Aut (A1, 7P), their tifings TGP |, TEY TR 10 bal
lattices and the blow-up Am of A_1 at the two-torsion points As_ior. Then

iy B/ I’gﬁ?_l is a smooth ball quotient, birational to the smooth hyperelliptic
surface A_1/Hyg

i) B/ I’(G’g)_1 is a ball quotient with one double point Orbgr,  {Qos), which is

Enr,
birational to the smooth Enriques surface Am /Henr

iii) B/ I’gﬁ)_l is a smooth ball quotient, birational to the smooth trivial ruled

surface A_1/Hpyg = F_1 X P! with an elliptic base F/_.

Proof: i) Recall that the Z-module 71 (E_1) = Z+iZ = Z+ (1+1)Z is generated
byl,1+iand Q3 = %(mod 71 (E_-1)). The translation 7, : E_1 — E_; is of
order 2, as well as the morphism

TQ,(—1): E_1 — E_4
70, (—1)(P) = —P+ Qs
with four fixed points
5@+ (Bi)arior = 5@ + Q5 0<i <3
According to [5], the quotient A_1/H gy by the cyclic group
Hup = (19, X 70,(—1))
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of order 2 is a smooth hyperelliptic surface. Lemma 3 ii) implies that B/ I’gﬁ)_l

is a smooth ball quotient, birational to A_1/Hpg.
ii) The quotient X g3 = As—- /(—1I2) is a smooth K3 surface, called the Kummer

surface of A_;. We claim that the involution 73312 acts on A et and determines
an unramified double cover

C:XngAm/< IQ>—>A2 tor/(—IQ,T3312>: /HEnr

More precisely, 1331° = T04({—1) X 7@, leaves invariant the two-torsion points
A _tor = {Qi; ; 0 <i,j < 3} and any choice of an automorphism of P! extends
73317 to an automorphism of As— . Note that 733/*(—I5) = (—Iz)733/?, so that

—tor

73312 normalizes (—I2) and there is a well defined quotient group Hgy,/{—12) =
(733I?) of order 2. That allows to define ¢ : X g3 — Am/HEnr as Hgne/{(—12)-

Galois cover. We claim that 73312 is a fixed point free involution on X g3, in order
to conclude that As—- /HEy, is a smooth Enriques surface. More precisely, the
fixed points of 73372 on the set X 3 of the (—I5)-orbits on As— lift to -fixed

points of 73372 on As— fore = £1. The e-fixed points (P, Q) € A_; are subject
to

—P+Q3 = P
Q+ Qs = Q.
For ¢ = 1 the equality ) + )3 = ¢ has no solution () € F_1, while fore = —1
the equation —P + Q3 = —P on P € E_; is inconsistent. Therefore 73372 has no
e-fixed points on A_1. By the very definition of the 733/2-action on As—, there
are no e-fixed points for 73372 on AA and 73312 1 X3 — X3 is a fixed point
free involution. As a result, A / HEm is a smooth Enriques surface.

Recall that the exceptional d1v1sor &5 tor(AZ-tor) of the blow-up
£2—t0r tAs—— = Ay

2 tor
of A_1 at Ao_ior is Hpye-invariant, so that &;_y,, descends to the contraction

£2 tor c A S tor /HEnr — A_ l/HEnr of gg_ltor(AZ tor)/HEnr to AZ tor/HEnr
particular, the smooth Enriques surface A / Hg,,;r is birational to A_1/Hgy;,.

The singular locus {A_1 /HEm)Smg C (Ag_tor /Hgn:), according to the smooth-
ness of Am / Hgypr. On the other hand, 7337 2 has no fixed points on As_ior, S0

that Az_tor/ HEny consists of eight double points
Orb g, (Qij) = Orbpy, (Q3-i3-;), 0<4,5 <3
and (/-l_l/H’Em)Sing = As_tor/ HEnr- Note that

sing
(T£6£8)> - {OrbHEnr (Qaa)v OrbHEnr (Qll)v OrbHEnr (QIQ)}
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is contained in (A_,/ Hgn:)¥ 8 and the birational morphism
6,8
5}{Enr : (B/r]g}nr,)—l> - A_l/HEnr
sing
resolves (ng)) by smooth rational curves of self-intersection (—2). There-

Enr,—

—_— N sing
fore (B / 768 ) consists of the following five double points:

OrbHEnr (QOI)’ OrbHEnr(QIO)’ OrbHEnr (QOZ)’ OrbHEnr (QQO)v OrbHEnr (QOS)’

Since

Orbpy,,, (Qom) € { m+6 \ ( 7% 8)> ] /Henr = (Tipi6 \ L) /Hene

sing
Orbitg,, (Qmo) € [Tm+4\ (765 ] /Hene = (Thpsa \ L)/ Henn

for all 1 < m < 2 belong to the compactifying divisor 77/ Hg,,, the ball quotient
B /I‘gi nf) has only one singular point

(/188 )™ = {Orba,,. (Qs)).

iii) The quotient X = A_;/Hpy = E_1 x [E_1/{{—1)}] of A_; by the reflec-
tion J2 = 1 x (—1) is a smooth surface, birational to the smooth ball quotient

B /I‘gﬁ) It is well known that C = F_;/{—1) is a smooth projective curve.

More premsely, if
1 1 1
=3+ > |t
AE(ZHZ)N\{0}

is the Weierstrass p-function, associated with the lattice Z+iZ = m (E_1), then
the map

’l,b : E_l \ {63_1} —_— ]P’Z

Yt +(Z+iZ)) = [1:p(t +(Z+1Z)) : p'(t +(Z+1Z))] = [L: p(t) : p'(t)]
extends by ¥(0g_,) = [0 : 0 : 1] = po to a projective embedding of E_;. The
image

P(E_1) = {[z:3:y] € P?; 2 = (z — p(Q1))(z — p(Q2))(z — p(Q3))}

is a cubic hypersurface in P2. As far as p(t) is even and p’(t) is an odd function
of ¢, the multiplication ;1 by —1 on E_; acts on ¢)(E_1) by the rule

pi(z:zyl) =[z:2: -yl
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The fixed points of this action are p,, and p(Q);) for 1 < ¢ < 3. The fibres of the
projection
2 9p(B-1) \ {poo} — P* \ {goo = [0: 1]}
O{z:z:y]) =z : ]
are exactly the pu_q-orbits on 9/(F_1) \ {ps}, so that its image

P\ {goo} = T(H(E-1) \ {poo}) = (W{E-1) \ {poc})/ (k-1

is the corresponding Galois quotient by the cyclic group {u_1) of order 2. Thus,

W(E_1)/(n-1) = (W(E-1) \{poc})/(-1) U{poo} = (B \ {4 }) U{pc} = P".
O
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