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CHAPTER I 

Preliminaries about the Integers, Polynomials,
and Matrices 

Abstract. This chapter is mostly a review, discussing unique factorization of positive integers,
unique factorization of polynomials whose coefficients are rational or real or complex, signs of
permutations, and matrix algebra.
Sections 1–2 concern unique factorization of positive integers. Section 1 proves the division

and Euclidean algorithms, used to compute greatest common divisors. Section 2 establishes unique
factorization as a consequence and gives several number-theoretic consequences, including the
Chinese Remainder Theorem and the evaluation of the Euler ϕ function. 
Section 3 develops unique factorization of rational and real and complex polynomials in one inde-

terminate completely analogously, and it derives the complete factorization of complex polynomials
from the Fundamental Theorem of Algebra. The proof of the fundamental theorem is postponed to
Chapter IX.
Section 4 discusses permutations of a finite set, establishing the decomposition of each permu-

tation as a disjoint product of cycles. The sign of a permutation is introduced, and it is proved that
the sign of a product is the product of the signs.
Sections 5–6 concern matrix algebra. Section 5 reviews row reduction and its role in the solution

of simultaneous linear equations. Section 6 defines the arithmetic operations of addition, scalar
multiplication, and multiplication of matrices. The process of matrix inversion is related to the
method of row reduction, and it is shown that a square matrix with a one-sided inverse automatically
has a two-sided inverse that is computable via row reduction. 

1. Division and Euclidean Algorithms 

The first three sections give a careful proof of unique factorization for integers
and for polynomials with rational or real or complex coefficients, and they give
an indication of some first consequences of this factorization. For the moment
let us restrict attention to the set Z of integers. We take addition, subtraction, 
and multiplication within Z as established, as well as the properties of the usual 
ordering in Z. 
A factor of an integer n is a nonzero integer k such that n = kl for some 

integer l. In this case we say also that k divides n, that k is a divisor of n, and 
that n is a multiple of k. We write k | n for this relationship. If n is nonzero, any 
product formula n = kl1 · · · lr is a factorization of n. A unit in Z is a divisor 

1 
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of 1, hence is either +1 or −1. The factorization n = kl of n 6 0 is called = 
nontrivial if neither k nor l is a unit. An integer p > 1 is said to be prime if it 
has no nontrivial factorization p = kl. 
The statement of unique factorization for positive integers, which will be given

precisely in Section 2, says roughly that each positive integer is the product of
primes and that this decomposition is unique apart from the order of the factors.1 

Existence will follow by an easy induction. The difficulty is in the uniqueness. We
shall prove uniqueness by a sequence of steps based on the “Euclidean algorithm,”
which we discuss in a moment. In turn, the Euclidean algorithm relies on the
following. 

Proposition 1.1 (division algorithm). If a and b are integers with b 6= 0, then 
there exist unique integers q and r such that a = bq + r and 0 ≤ r < |b|. 
PROOF. Possibly replacing q by −q, we may assume that b > 0. The integers 

n with bn ≤ a are bounded above by |a|, and there exists such an n, namely 
n = −|a|. Therefore there is a largest such integer, say n = q. Set r = 
a − bq. Then 0 ≤ r and a = bq + r . If r ∏ b, then r − b ∏ 0 says that 
a = b(q + 1) + (r − b) ∏ b(q + 1). The inequality q + 1 > q contradicts the 
maximality of q, and we conclude that r < b. This proves existence. 
For uniqueness when b > 0, suppose a = bq1 + r1 = bq2 + r2. Subtracting, 

we obtain b(q1 − q2) = r2 − r1 with |r2 − r1| < b, and this is a contradiction 
unless r2 − r1 = 0. § 

Let a and b be integers not both 0. The greatest common divisor of a and 
b is the largest integer d > 0 such that d | a and d | b. Let us see existence. 
The integer 1 divides a and b. If b, for example, is nonzero, then any such d 
has |d| ≤ |b|, and hence the greatest common divisor indeed exists. We write 
d = GCD(a, b). 
Let us suppose that b 6= 0. The Euclidean algorithm consists of iterated ap-

plication of the division algorithm (Proposition 1.1) to a and b until the remainder 
term r disappears: 

a = bq1 + r1, 0 ≤ r1 < b, 
b = r1q2 + r2, 0 ≤ r2 < r1, 
r1 = r2q3 + r3, 0 ≤ r3 < r2, 

. . . 

rn−2 = rn−1qn + rn, 0 ≤ rn < rn−1 (with rn 6= 0, say), 
rn−1 = rnqn+1. 

1It is to be understood that the prime factorization of 1 is as the empty product. 
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The process must stop with some remainder term rn+1 equal to 0 in this way since 
b > r1 > r2 > · · · ∏ 0. The last nonzero remainder term, namely rn above, will 
be of interest to us. 

EXAMPLE. For a = 13 and b = 5, the steps read 

13 = 5 · 2 + 3, 
5 = 3 · 1 + 2, 

3 = 2 · 1 + 1 , 

2 = 1 · 2. 

The last nonzero remainder term is written with a box around it. 

Proposition 1.2. Let a and b be integers with b 6 = GCD(a, b).= 0, and let d 
Then 

(a) the number rn in the Euclidean algorithm is exactly d,
(b) any divisor d 0 of both a and b necessarily divides d,
(c) there exist integers x and y such that ax + by = d. 

REMARK. Proposition 1.2c is sometimes called Bezout’s identity. 

EXAMPLE, CONTINUED. We rewrite the steps of the Euclidean algorithm, as
applied in the above example with a = 13 and b = 5, so as to yield successive 
substitutions: 

13 = 5 · 2 + 3, 3 = 13 − 5 · 2, 
5 = 3 · 1 + 2, 2 = 5 − 3 · 1 = 5 − (13 − 5 · 2) · 1 = 5 · 3 − 13 · 1, 

3 = 2 · 1 + 1 , 1 = 3 − 2 · 1 = (13 − 5 · 2) − (5 · 3 − 13 · 1) · 1 

= 13 · 2 − 5 · 5. 

Thus we see that 1 = 13x + 5y with x = 2 and y = −5. This shows for the 
example that the number rn works in place of d in Proposition 1.2c, and the rest
of the proof of the proposition for this example is quite easy. Let us now adjust
this computation to obtain a complete proof of the proposition in general. 

PROOF OF PROPOSITION 1.2. Put r0 = b and r−1 = a, so that 

rk−2 = rk−1qk + rk for 1 ≤ k ≤ n. (∗) 

The argument proceeds in three steps. 
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Step 1. We show that rn is a divisor of both a and b. In fact, from rn−1 = 
rnqn+1, we have rn | rn−1. Let k ≤ n, and assume inductively that rn divides 
rk−1, . . . , rn−1, rn . Then (∗) shows that rn divides rk−2. Induction allows us to 
conclude that rn divides r−1, r0, . . . , rn−1. In particular, rn divides a and b. 
Step 2. We prove that ax + by = rn for suitable integers x and y. In fact, 

we show by induction on k for k ≤ n that there exist integers x and y with 
ax + by = rk . For k = −1 and k = 0, this conclusion is trivial. If k ∏ 1 is given 
and if the result is known for k − 2 and k − 1, then we have 

ax2 + by2 = rk−2, 
(∗∗)ax1 + by1 = rk−1 

for suitable integers x2, y2, x1, y1. We multiply the second of the equalities of 
(∗∗) by qk , subtract, and substitute into (∗). The result is 

rk = rk−2 − rk−1qk = a(x2 − qkx1) + b(y2 − qk y1), 

and the induction is complete. Thus ax + by = rn for suitable x and y. 
Step 3. Finally we deduce (a), (b), and (c). Step 1 shows that rn divides a and 

b. If d 0 > 0 divides both a and b, the result of Step 2 shows that d 0 | rn . Thus 
d 0 ≤ rn , and rn is the greatest common divisor. This is the conclusion of (a); (b)
follows from (a) since d 0 | rn , and (c) follows from (a) and Step 2. § 

Corollary 1.3. Within Z, if c is a nonzero integer that divides a product mn 
and if GCD(c, m) = 1, then c divides n. 

PROOF. Proposition 1.2c produces integers x and y with cx + my = 1. 
Multiplying by n, we obtain cnx + mny = n. Since c divides mn and divides 
itself, c divides both terms on the left side. Therefore it divides the right side,
which is n. § 

Corollary 1.4. Within Z, if a and b are nonzero integers with GCD(a, b) = 1 
and if both of them divide the integer m, then ab divides m. 

PROOF. Proposition 1.2c produces integers x and y with ax + by = 1. 
Multiplying by m, we obtain amx + bmy = m, which we rewrite in integers 
as ab(m/b)x + ab(m/a)y = m. Since ab divides each term on the left side, it 
divides the right side, which is m. § 

2. Unique Factorization of Integers 

We come now to the theorem asserting unique factorization for the integers. The
precise statement is as follows. 
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Theorem 1.5 (Fundamental Theorem of Arithmetic). Each positive integer 
n can be written as a product of primes, n = p1 p2 · · · pr , with the integer 1
being written as an empty product. This factorization is unique in the following
sense: if n = q1q2 · · · qs is another such factorization, then r = s and, after some 
reordering of the factors, qj = pj for 1 ≤ j ≤ r . 

The main step is the following lemma, which relies on Corollary 1.3. 

Lemma 1.6. Within Z, if p is a prime and p divides a product ab, then p
divides a or p divides b. 

REMARK. Lemma 1.6 is sometimes known as Euclid’s Lemma. 

PROOF. Suppose that p does not divide a. Since p is prime, GCD(a, p) = 1. 
Taking m = a, n = b, and c = p in Corollary 1.3, we see that p divides b. § 

PROOF OF EXISTENCE IN THEOREM 1.5. We induct on n, the case n = 1 being 
handled by an empty product expansion. If the result holds for k = 1 through 
k = n − 1, there are two cases: n is prime and n is not prime. If n is prime, then 
n = n is the desired factorization. Otherwise we can write n = ab nontrivially 
with a > 1 and b > 1. Then a ≤ n − 1 and b ≤ n − 1, so that a and b have 
factorizations into primes by the inductive hypothesis. Putting them together
yields a factorization into primes for n = ab. § 

PROOF OF UNIQUENESS IN THEOREM 1.5. Suppose that n = p1 p2 · · · pr = 
q1q2 · · · qs with all factors prime and with r ≤ s. We prove the uniqueness by 
induction on r , the case r = 0 being trivial and the case r = 1 following from
the definition of “prime.” Inductively from Lemma 1.6 we have pr | qk for some 
k. Since qk is prime, pr = qk . Thus we can cancel and obtain p1 p2 · · · pr−1 = 
q1q2 · · · qbk · · · qs , the hat indicating an omitted factor. By induction the factors 
on the two sides here are the same except for order. Thus the same conclusion 
is valid when comparing the two sides of the equality p1 p2 · · · pr = q1q2 · · · qs . 
The induction is complete, and the desired uniqueness follows. § 

In the product expansion of Theorem 1.5, it is customary to group factors that
are equal, thus writing the positive integer n as n = pk1 · · · pkr with the primes 1 r 
pj distinct and with the integers kj all ∏ 0. This kind of decomposition is unique 

kjup to order if all factors pj with kj = 0 are dropped, and we call it a prime
factorization of n. 

Corollary 1.7. If n = pk1 · · · pkr is a prime factorization of a positive integer 1 r 
n, then the positive divisors d of n are exactly all products d = pl1 · · · plr with1 r
0 ≤ lj ≤ kj for all j . 
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REMARK. A general divisor of n within Z is the product of a unit ±1 and a 
positive divisor. 

PROOF. Certainly any such product divides n. Conversely if d divides n, write 
n = dx for some positive integer x . Apply Theorem 1.5 to d and to x , form the
resulting prime factorizations, and multiply them together. Then we see from the
uniqueness for the prime factorization of n that the only primes that can occur in 
the expansions of d and x are p1, . . . , pr and that the sum of the exponents of pj
in the expansions of d and x is kj . The result follows. § 

If we want to compare prime factorizations for two positive integers, we can
insert 0th powers of primes as necessary and thereby assume that the same primes
appear in both expansions. Using this device, we obtain a formula for greatest
common divisors. 

Corollary 1.8. If two positive integers a and b have expansions as products 
k1 l1of powers of r distinct primes given by a = p · · · pkr and b = p · · · plr , then 1 r 1 r 

min(k1,l1) · pmin(kr ,lr )GCD(a, b) = p1 · · r . 

PROOF. Let d 0 be the right side of the displayed equation. It is plain that d 0 

is positive and that d 0 divides a and b. On the other hand, two applications of
Corollary 1.7 show that the greatest common divisor of a and b is a number d 
of the form pm1 · · · pmr with the property that mj ≤ kj and mj ≤ lj for all j .1 r
Therefore mj ≤ min(kj , lj ) for all j , and d ≤ d 0. Since any positive divisor of 
both a and b is ≤ d, we have d 0 ≤ d. Thus d 0 = d. § 

In special cases Corollary 1.8 provides a useful way to compute GCD(a, b),
but the Euclidean algorithm is usually a more efficient procedure. Nevertheless,
Corollary 1.8 remains a handy tool for theoretical purposes. Here is an example:
Two nonzero integers a and b are said to be relatively prime if GCD(a, b) = 1. 
It is immediate from Corollary 1.8 that two nonzero integers a and b are relatively 
prime if and only if there is no prime p that divides both a and b. 

Corollary 1.9 (Chinese Remainder Theorem). Let a and b be positive rela-
tively prime integers. To each pair (r, s) of integers with 0 ≤ r < a and 0 ≤ s < b 
corresponds a unique integer n such that 0 ≤ n < ab, a divides n − r , and b 
divides n − s. Moreover, every integer n with 0 ≤ n < ab arises from some such 
pair (r, s). 

REMARK. In notation for congruences that we introduce formally in Chapter IV,
the result says that if GCD(a, b) = 1, then the congruences n ≡ r mod a and 
n ≡ s mod b have one and only one simultaneous solution n with 0 ≤ n < ab. 
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PROOF. Let us see that n exists as asserted. Since a and b are relatively 
prime, Proposition 1.2c produces integers x 0 and y0 such that ax 0 − by0 = 1. 
Multiplying by s − r , we obtain ax − by = s − r for suitable integers x and y. 
Put t = ax + r = by + s, and write by the division algorithm (Proposition 1.1) 
t = abq + n for some integer q and for some integer n with 0 ≤ n < ab. Then 
n − r = t − abq − r = ax − abq is divisible by a, and similarly n − s is divisible 
by b. 
Suppose that n and n0 both have the asserted properties. Then a divides 

n − n0 = (n − r) − (n0 − r), and b divides n − n0 = (n − s) − (n0 − s). Since 
a and b are relatively prime, Corollary 1.4 shows that ab divides n − n0. But 
|n − n0| < ab, and the only integer N with |N | < ab that is divisible by ab is 
N = 0. Thus n − n0 = 0 and n = n0. This proves uniqueness.
Finally the argument just given defines a one-one function from a set of ab 

pairs (r, s) to a set of ab elements n. Its image must therefore be all such integers 
n. This proves the corollary. § 

If n is a positive integer, we define ϕ(n) to be the number of integers k with 
0 ≤ k < n such that k and n are relatively prime. The function ϕ is called the 
Euler ϕ function. 

Corollary 1.10. Let N > 1 be an integer, and let N = pk1 · · · pkr be a prime 1 r
factorization of N . Then 

r
kj −1 

ϕ(N ) = 
Y 

pj ( pj − 1). 
j=1 

REMARK. The conclusion is valid also for N = 1 if we interpret the right side 
of the formula to be the empty product. 

PROOF. For positive integers a and b, let us check that 

ϕ(ab) = ϕ(a)ϕ(b) if GCD(a, b) = 1. (∗) 

In view of Corollary 1.9, it is enough to prove that the mapping (r, s) 7→ n given 
in that corollary has the property that GCD(r, a) = GCD(s, b) = 1 if and only if 
GCD(n, ab) = 1. 
To see this property, suppose that n satisfies 0 ≤ n < ab and GCD(n, ab) > 1. 

Choose a prime p dividing both n and ab. By Lemma 1.6, p divides a or p divides 
b. By symmetry we may assume that p divides a. If (r, s) is the pair corresponding 
to n under Corollary 1.9, then the corollary says that a divides n − r . Since p
divides a, p divides n − r . Since p divides n, p divides r . Thus GCD(r, a) > 1. 
Conversely suppose that (r, s) is a pair with 0 ≤ r < a and 0 ≤ s < b such 

that GCD(r, a) = GCD(s, b) = 1 is false. Without loss of generality, we may 
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assume that GCD(r, a) > 1. Choose a prime p dividing both r and a. If n is the 
integer with 0 ≤ n < ab that corresponds to (r, s) under Corollary 1.9, then the 
corollary says that a divides n − r . Since p divides a, p divides n − r . Since p
divides r , p divides n. Thus GCD(n, ab) > 1. This completes the proof of (∗). 
For a power pk of a prime p with k > 0, the integers n with 0 ≤ n < pk 

such that GCD(n, pk) > 1 are the multiples of p, namely 0, p, 2 p, . . . , pk − p. 
There are pk−1 of them. Thus the number of integers n with 0 ≤ n < pk such 
that GCD(n, pk ) = 1 is pk − pk−1 = pk−1( p − 1). In other words, 

ϕ( pk ) = pk−1( p − 1) if p is prime and k ∏ 1. (∗∗) 

To prove the corollary, we induct on r , the case r = 1 being handled by (∗∗). If 
the formula of the corollary is valid for r − 1, then (∗) allows us to combine that 
result with the formula for ϕ( pkr ) given in (∗∗) to obtain the formula for ϕ(N ). 

§ 

We conclude this section by extending the notion of greatest common divisor to
apply to more than two integers. If a1, . . . , at are integers not all 0, their greatest 
common divisor is the largest integer d > 0 that divides all of a1, . . . , at . This 
exists, and we write d = GCD(a1, . . . , at ) for it. It is immediate that d equals the 
greatest common divisor of the nonzero members of the set {a1, . . . , at }. Thus,
in deriving properties of greatest common divisors, we may assume that all the
integers are nonzero. 

Corollary 1.11. Let a1, . . . , at be positive integers, and let d be their greatest 
common divisor. Then 

k1, j kr, j(a) if for each j with 1 ≤ j ≤ t , aj = p · · · p is an expansion of aj as1 r 
a product of powers of r distinct primes p1, . . . , pr , it follows that 

min1≤ j≤t {k1, j } min1≤ j≤t {kr, j }d = p1 · · · pr , 

(b) any divisor d 0 of all of a1, . . . , at necessarily divides d,
(c) d = GCD

°
GCD(a1, . . . , at−1), at 

¢ 
if t > 1,

(d) there exist integers x1, . . . , xt such that a1x1 + · · · + at xt = d. 

PROOF. Part (a) is proved in the same way as Corollary 1.8 except that Corollary
1.7 is to be applied r times rather than just twice. Further application of Corollary
1.7 shows that any positive divisor d 0 of a1, . . . , at is of the form d 0 = p1 

m1 · · · prmr 

with m1 ≤ k1, j for all j , . . . , and with mr ≤ kr, j for all j . Therefore m1 ≤ 
min1≤ j≤r {k1, j }, . . . , and mr ≤ min1≤ j≤r {kr, j }, and it follows that d 0 divides 
d. This proves (b). Conclusion (c) follows by using the formula in (a), and (d)
follows by combining (c), Proposition 1.2c, and induction. § 
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3. Unique Factorization of Polynomials 

This section establishes unique factorization for ordinary rational, real, and com-
plex polynomials. We write Q for the set of rational numbers, R for the set of 
real numbers, and C for the set of complex numbers, each with its arithmetic
operations. The rational numbers are constructed from the integers by a process
reviewed in Section A3 of the appendix, the real numbers are defined from the
rational numbers by a process reviewed in that same section, and the complex
numbers are defined from the real numbers by a process reviewed in Section A4
of the appendix. Sections A3 and A4 of the appendix mention special properties
of R and C beyond those of the arithmetic operations, but we shall not make
serious use of these special properties here until nearly the end of the section—
after unique factorization of polynomials has been established. Let F denote any 
of Q, R, or C. The members of F are called scalars. 
We work with ordinary polynomials with coefficients in F. Informally these 

are expressions P(X) = an Xn +· · ·+a1 X +a0 with an, . . . , a1, a0 in F. Although 
it is tempting to think of P(X) as a function with independent variable X , it is 
better to identify P with the sequence (a0, a1, . . . , an, 0, 0, . . . ) of coefficients, 
using expressions P(X) = an Xn + · · · + a1 X + a0 only for conciseness and for 
motivation of the definitions of various operations.
The precise definition therefore is that a polynomial in one indeterminate 

with coefficients in F is an infinite sequence of members of F such that all terms 
of the sequence are 0 from some point on. The indexing of the sequence is to begin
with 0. We may refer to a polynomial P as P(X) if we want to emphasize that 
the indeterminate is called X . Addition, subtraction, and scalar multiplication
are defined in coordinate-by-coordinate fashion: 

(a0, a1, . . . , an, 0, 0, . . . ) + (b0,b1, . . . , bn, 0, 0, . . . ) 
= (a0 + b0, a1 + b1, . . . , an + bn, 0, 0, . . . ), 

(a0, a1, . . . , an, 0, 0, . . . ) − (b0,b1, . . . , bn, 0, 0, . . . ) 
= (a0 − b0, a1 − b1, . . . , an − bn, 0, 0, . . . ), 

c(a0, a1, . . . , an, 0, 0, . . . ) = (ca0, ca1, . . . , can, 0, 0, . . . ). 

Polynomial multiplication is defined so as to match multiplication of expressions 
an Xn + · · · + a1 X + a0 if the product is expanded out, powers of X are added, 
and then terms containing like powers of X are collected: 

(a0, a1, . . . , 0, 0, . . . )(b0, b1, . . . , 0, 0, . . . ) = (c0, c1, . . . , 0, 0, . . . ), 
PNwhere cN = k=0 akbN−k . We take it as known that the usual associative,

commutative, and distributive laws are then valid. The set of all polynomials in
the indeterminate X is denoted by F[X]. 
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The polynomial with all entries 0 is denoted by 0 and is called the zero 
polynomial. For all polynomials P = (a0, . . . , an, 0, . . . ) other than 0, the 
degree of P , denoted by deg P , is defined to be the largest index n such that 
an 6= 0. The constant polynomials are by definition the zero polynomial and the 
polynomials of degree 0. If P and Q are nonzero polynomials, then 

P + Q = 0 or deg(P + Q) ≤ max(deg P, deg Q), 

deg(cP) = deg P, 

deg(PQ) = deg P + deg Q. 

In the formula for deg(P + Q), equality holds if deg P 6= deg Q. Implicit in the 
formula for deg(PQ) is the fact that PQ cannot be 0 unless P = 0 or Q = 0. A 
cancellation law for multiplication is an immediate consequence: 

PR = QR with R 6 implies P == 0 Q. 

In fact, PR = 6QR implies (P − Q)R = 0; since R = 0, P − Q must be 0. 
If P = (a0, . . . , an, 0, . . . ) is a polynomial and r is in F, we can evaluate P 

at r , obtaining as a result the number P(r) = anrn + · · · + a1r + a0. Taking into 
account all values of r , we obtain a mapping P 7→ P( · ) of F[X] into the set of 
functions from F into F. Because of the way that the arithmetic operations on
polynomials have been defined, we have 

(P + Q)(r) = P(r) + Q(r), 
(P − Q)(r) = P(r) − Q(r), 

(cP)(r) = cP(r), 
(PQ)(r) = P(r)Q(r). 

In other words, the mapping P 7→ P( · ) respects the arithmetic operations. We 
say that r is a root of P if P(r) = 0. 
Now we turn to the question of unique factorization. The definitions and the

proof are completely analogous to those for the integers. A factor of a polynomial 
A is a nonzero polynomial B such that A = BQ for some polynomial Q. In 
this case we say also that B divides A, that B is a divisor of A, and that A is a 
multiple of B. We write B | A for this relationship. If A is nonzero, any product 
formula A = BQ1 · · · Qr is a factorization of A. A unit in F[X] is a divisor of 1,
hence is any polynomial of degree 0; such a polynomial is a constant polynomial
A(X) = c with c equal to a nonzero scalar. The factorization A = BQ of 
A 6= 0 is called nontrivial if neither B nor Q is a unit. A prime P in F[X] is a 
nonzero polynomial that is not a unit and has no nontrivial factorization P = BQ. 
Observe that the product of a prime and a unit is always a prime. 
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Proposition 1.12 (division algorithm). If A and B are polynomials in F[X]
and if B not the 0 polynomial, then there exist unique polynomials Q and R in 
F[X] such that 

(a) A = BQ + R and 
(b) either R is the 0 polynomial or deg R < deg B. 

REMARK. This result codifies the usual method of dividing polynomials in
high-school algebra. That method writes A/B = Q + R/B, and then one obtains 
the above result by multiplying by B. The polynomial Q is the quotient in the 
division, and R is the remainder. 

PROOF OF UNIQUENESS. If A = BQ + R = BQ1 + R1, then B(Q − Q1) = 
R1 − R. Without loss of generality, R1 − R is not the 0 polynomial since otherwise 
Q − Q1 = 0 also. Then 

deg B + deg(Q − Q1) = deg(R1 − R) ≤ max(deg R, deg R1) < deg B, 

and we have a contradiction. § 

PROOF OF EXISTENCE. If A = 0 or deg A < deg B, we take Q = 0 and 
R = A, and we are done. Otherwise we induct on deg A. Assume the result 
for degree ≤ n − 1, and let deg A = n. Write A = an Xn + A1 with A1 = 0 
or deg A1 < deg A. Let B = bk Xk + B1 with B1 = 0 or deg B1 < deg B. Put 
Q1 = anbk 

−1 Xn−k . Then 

A − BQ1 = an Xn + A1 − an Xn − anbk 
−1 Xn−k B1 = A1 − anbk 

−1 Xn−k B1 

with the right side equal to 0 or of degree < deg A. Then the right side, by 
induction, is of the form BQ2 + R, and A = B(Q1 + Q2) + R is the required 
decomposition. § 

Corollary 1.13 (Factor Theorem). If r is in F and if P is a polynomial in 
F[X], then X − r divides P if and only if P(r) = 0. 

PROOF. If P = (X − r)Q, then P(r) = (r − r)Q(r) = 0. Conversely let 
P(r) = 0. Taking B(X) = X − r in the division algorithm (Proposition 1.12), 
we obtain P = (X − r)Q + R with R = 0 or deg R < deg(X − r) = 1. 
Thus R is a constant polynomial, possibly 0. In any case we have 0 = P(r) = 
(r − r)Q(r) + R(r), and thus R(r) = 0. Since R is constant, we must have 
R = 0, and then P = (X − r)Q. § 

Corollary 1.14. If P is a nonzero polynomial with coefficients in F and if 
deg P = n, then P has at most n distinct roots. 
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REMARKS. Since there are infinitely many scalars in any of Q and R and 
C, the corollary implies that the function from F to F associated to P , namely 
r 7→ P(r), cannot be identically 0 if P 6 0. Starting in Chapter IV, we shall = 
allow other F’s besides Q and R and C, and then this implication can fail. For 
example, when F is the two-element “field” F = {0, 1} with 1 + 1 = 0 and with 
otherwise the expected addition and multiplication, then P(X) = X2 + X is not 
the zero polynomial but P(r) = 0 for r = 0 and r = 1. It is thus important to
distinguish polynomials in one indeterminate from their associated functions of
one variable. 

PROOF. Let r1, . . . , rn+1 be distinct roots of P(X). By the Factor Theorem 
(Corollary 1.13), X − r1 is a factor of P(X). We prove inductively on k that 
the product (X − r1)(X − r2) · · · (X − rk) is a factor of P(X). Assume that this 
assertion holds for k, so that P(X) = (X − r1) · · · (X − rk )Q(X) and 

0 = P(rk+1) = (rk+1 − r1) · · · (rk+1 − rk )Q(rk+1). 

Since the rj ’s are distinct, we must have Q(rk+1) = 0. By the Factor Theorem, 
we can write Q(X) = (X − rk+1)R(X) for some polynomial R(X). Substitution 
gives P(X) = (X −r1) · · · (X −rk )(X −rk+1)R(X), and (X −r1) · · · (X −rk+1)
is exhibited as a factor of P(X). This completes the induction. Consequently 

P(X) = (X − r1) · · · (X − rn+1)S(X) 

for some polynomial S(X). Comparing the degrees of the two sides, we find that 
deg S = −1, and we have a contradiction. § 

We can use the division algorithm in the same way as with the integers in
Sections 1–2 to obtain unique factorization. Within the set of integers, we defined
greatest common divisors so as to be positive, but their negatives would have
worked equally well. That flexibility persists with polynomials; the essential
feature of any greatest common divisor of polynomials is shared by any product
of that polynomial by a unit. A greatest common divisor of polynomials A and 
B with B 6= 0 is any polynomial D of maximum degree such that D divides A 
and D divides B. We shall see that D is indeed unique up to multiplication by a 
nonzero scalar.2 

2For some purposes it is helpful to isolate one particular greatest common divisor by taking the
coefficient of the highest power of X to be 1. 
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The Euclidean algorithm is the iterative process that makes use of the division 
algorithm in the form 

A = BQ1 + R1, R1 = 0 or deg R1 < deg B, 

B = R1 Q2 + R2, R2 = 0 or deg R2 < deg R1, 
R1 = R2 Q3 + R3, R3 = 0 or deg R3 < deg R2, 

. . . 

Rn−2 = Rn−1 Qn + Rn, Rn = 0 or deg Rn < deg Rn−1, 
Rn−1 = Rn Qn+1. 

In the above computation the integer n is defined by the conditions that Rn 6= 0 
and that Rn+1 = 0. Such an n must exist since deg B > deg R1 > · · · ∏ 0. We 
can now obtain an analog for F[X] of the result for Z given as Proposition 1.2. 

Proposition 1.15. Let A and B be polynomials in F[X] with B 6= 0, and let 
R1, . . . , Rn be the remainders generated by the Euclidean algorithm when applied 
to A and B. Then 

(a) Rn is a greatest common divisor of A and B,
(b) any D1 that divides both A and B necessarily divides Rn ,
(c) the greatest common divisor of A and B is unique up to multiplication 

by a nonzero scalar,
(d) any greatest common divisor D has the property that there exist polyno-

mials P and Q with AP + BQ = D. 

PROOF. Conclusions (a) and (b) are proved in the same way that parts (a) and
(b) of Proposition 1.2 are proved, and conclusion (d) is proved with D = Rn in 
the same way that Proposition 1.2c is proved.
If D is a greatest common divisor of A and B, it follows from (a) and (b) that 

D divides Rn and that deg D = deg Rn . This proves (c). § 

Using Proposition 1.15, we can prove analogs for F[X] of the two corollaries
of Proposition 1.2. But let us instead skip directly to what is needed to obtain an
analog for F[X] of unique factorization as in Theorem 1.5. 

Lemma 1.16. If A and B are nonzero polynomials with coefficients in F and 
if P is a prime polynomial such that P divides AB, then P divides A or P divides 
B. 
PROOF. If P does not divide A, then 1 is a greatest common divisor of A and 

P , and Proposition 1.15d produces polynomials S and T such that AS + PT = 1. 
Multiplication by B gives ABS + PT B = B. Then P divides ABS because it 
divides AB, and P divides PT B because it divides P . Hence P divides B. § 
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Theorem 1.17 (unique factorization). Every member of F[X] of degree ∏ 1 is a 
product of primes. This factorization is unique up to order and up to multiplication
of each prime factor by a unit, i.e., by a nonzero scalar. 
PROOF. The existence follows in the same way as the existence in Theorem

1.5; induction on the integers is to be replaced by induction on the degree. The
uniqueness follows from Lemma 1.16 in the same way that the uniqueness in
Theorem 1.5 follows from Lemma 1.6. § 

We turn to a consideration of properties of polynomials that take into account
special features of R and C. If F is R, then X2 + 1 is prime. The reason is that 
a nontrivial factorization of X2 + 1 would have to involve two first-degree real 
polynomials and then r2 +1 would have to be 0 for some real r , namely for r equal
to the root of either of the first-degree polynomials. On the other hand, X2 + 1 
is not prime when F = C since X2 + 1 = (X + i)(X − i). The Fundamental 
Theorem of Algebra, stated below, implies that every prime polynomial over C is 
of degree 1. It is possible to prove the Fundamental Theorem of Algebra within
complex analysis as a consequence of Liouville’s Theorem or within real analysis
as a consequence of the Heine–Borel Theorem and other facts about compactness.
This text gives a proof of the Fundamental Theorem of Algebra in Chapter IX
using modern algebra, specifically Sylow theory as in Chapter IV and Galois
theory as in Chapter IX. One further fact is needed; this fact uses elementary
calculus and is proved below as Proposition 1.20. 

Theorem 1.18 (Fundamental Theorem of Algebra). Any polynomial in C[X]
with degree ∏ 1 has at least one root. 

Corollary 1.19. Let P be a nonzero polynomial of degree n in C[X],
and let r1, . . . , rk be the distinct roots. Then there exist unique integers mj > 0 
for 1 ≤ j ≤ k such that P(X) is a scalar multiple of 

Qk 
=1 (X − rj )mj . The 

numbers mj have 
Pk

j=1 mj = n. 
j

PROOF. We may assume that deg P > 0. We apply unique factorization 
(Theorem 1.17) to P(X). It follows from the Fundamental Theorem of Algebra
(Theorem 1.18) and the Factor Theorem (Corollary 1.13) that each prime polyno-
mial with coefficients in C has degree 1. Thus the unique factorization of P(X)
has to be of the form c 

Qn 
=1(X − zl ) for some c 6= 0 and for some complex l

numbers zl that are unique up to order. The zl ’s are roots, and every root is a zl by
the Factor Theorem. Grouping like factors proves the desired factorization and
its uniqueness. The numbers mj have 

Pk
j=1 mj = n by a count of degrees. § 

The integers mj in the corollary are called the multiplicities of the roots of the 
polynomial P(X). 
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We conclude this section by proving the result from calculus that will enter
the proof of the Fundamental Theorem of Algebra in Chapter IX. 

Proposition 1.20. Any polynomial in R[X] with odd degree has at least one 
root. 

PROOF. Without loss of generality, we may take the leading coefficient to
be 1. Thus let the polynomial be P(X) = X2n+1 + a2n X2n + · · · + a1 X + a0 = 
X2n+1 + R(X). Since limx→±∞ P(x)/x2n+1 = 1, there is some positive r0 such 
that P(−r0) < 0 and P(r0) > 0. By the Intermediate Value Theorem, given in 
Section A3 of the appendix, P(r) = 0 for some r with −r0 ≤ r ≤ r0. § 

4. Permutations and Their Signs 

Let S be a finite nonempty set of n elements. A permutation of S is a one-one 
function from S onto S. The elements might be listed as a1, a2, . . . , an , but it 
will simplify the notation to view them simply as 1, 2, . . . , n. We use ordinary
function notation for describing the effect of permutations. Thus the value of a
permutation σ at j is σ( j), and the composition of τ followed by σ is σ ◦ τ or 
simply στ , with (σ τ )( j) = σ (τ ( j)). Composition is automatically associative, 
i.e., (ρσ )τ = ρ(σ τ ), because the effect of both sides on j , when we expand 
things out, is ρ(σ (τ ( j))). The composition of two permutations is also called 
their product. 
The identity permutation will be denoted by 1. Any permutation σ , being 

a one-one onto function, has a well-defined inverse permutation σ −1 with the 
property that σσ −1 = σ −1σ = 1. One way of describing concisely the effect
of a permutation is to list its domain values and to put the corresponding range ∂
values beneath them. Thus σ = 

µ 
1 2 3 4 5 is the permutation of {1, 2, 3, 4, 5}4 3 5 1 2 

with σ(1) = 4, σ(2) = 3, σ(3) = 5, σ(4) = 1, and σ(5) = 2. The inverse ∂µ 
4 3 5 1 2 permutation is obtained by interchanging the two rows to obtain and1 2 3 4 5 

then adjusting the entries in the rows so that the first row is in the usual order: ∂µ 
1 2 3 4 5 

σ −1 = .4 5 2 1 3 
If 2 ≤ k ≤ n, a k-cycle is a permutation σ that fixes each element in some 

subset of n − k elements and moves the remaining elements c1, . . . , ck according
to σ(c1) = c2, σ(c2) = c3, . . . , σ(ck−1) = ck , σ(ck ) = c1. Such a cycle may be 
denoted by (c1 c2 · · · ck−1 ck ) to stress its structure. For example take n = 5;∂µ 

1 2 3 4 5 then σ = (2 3 5) is the 3-cycle given in our earlier notation by .1 3 5 4 2 
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The cycle (2 3 5) is the same as the cycle (3 5 2) and the cycle (5 2 3). It is 
sometimes helpful to speak of the identity permutation 1 as the unique 1-cycle.
A system of cycles is said to be disjoint if the sets that each of them moves 

are disjoint in pairs. Thus (2 3 5) and (1 4) are disjoint, but (2 3 5) and (1 3)
are not. Any two disjoint cycles σ and τ commute in the sense that στ = τσ . 

Proposition 1.21. Any permutation σ of {1, 2, . . . , n} is a product of disjoint
cycles. The individual cycles in the decomposition are unique in the sense of
being determined by σ . 

∂µ 
1 2 3 4 5 EXAMPLE. = (2 3 5)(1 4).4 3 5 1 2 

PROOF. Let us prove existence. Working with {1, 2, . . . , n}, we show that any 
σ is the disjoint product of cycles in such a way that no cycle moves an element 
j unless σ moves j . We do so for all σ simultaneously by induction downward 
on the number of elements fixed by σ . The starting case of the induction is that 
σ fixes all n elements. Then σ is the identity, and we are regarding the identity 
as a 1-cycle.
For the inductive step suppose σ fixes the elements in a subset T of r el-

ements of {1, 2, . . . , n} with r < n. Let j be an element not in T , so that 
σ( j) 6 j .= Choose k as small as possible so that some element is repeated 
among j, σ ( j), σ 2( j), . . . , σ k ( j). This condition means that σ l ( j) = σ k ( j) for 
some l with 0 ≤ l < k. Then σ k−l ( j) = j , and we obtain a contradiction to 
the minimality of k unless k − l = k, i.e., l = 0. In other words, we have 
σ k( j) = j . We may thus form the k-cycle ∞ = ( j σ( j) σ 2( j) σ k−1( j)). The 
permutation ∞ −1σ then fixes the r + k elements of T ∪ U , where U is the set of 
elements j, σ ( j), σ 2( j), . . . , σ k−1( j). By the inductive hypothesis, ∞ −1σ is the 
product τ1 · · · τp of disjoint cycles that move only elements not in T ∪ U . Since 
∞ moves only the elements in U , ∞ is disjoint from each of τ1, . . . , τp. Therefore 
σ = ∞ τ1 · · · τp provides the required decomposition of σ . 
For uniqueness we observe from the proof of existence that each element 

j generates a k-cycle Cj for some k ∏ 1 depending on j . If we have two 
decompositions as in the proposition, then the cycle within each decomposition
that contains j must be Cj . Hence the cycles in the two decompositions must 
match. § 

A 2-cycle is often called a transposition. The proposition allows us to see
quickly that any permutation is a product of transpositions. 

Corollary 1.22. Any k-cycle σ permuting {1, 2, . . . , n} is a product of k − 1 
transpositions if k > 1. Therefore any permutation σ of {1, 2, . . . , n} is a product 
of transpositions. 
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PROOF. For the first statement, we observe that (c1 c2 · · · ck−1 ck ) = 
(c1 ck )(c1 ck−1) · · · (c1 c3)(c1 c2). The second statement follows by combining 
this fact with Proposition 1.21. § 

Our final tasks for this section are to attach a sign to each permutation and to
examine the properties of these signs. We begin with the special case that our
underlying set S is {1, . . . , n}. If σ is a permutation of {1, . . . , n}, consider the 
numerical products 

Y 
|σ(k) − σ( j)| and 

Y 
(σ (k) − σ( j)). 

1≤ j<k≤n 1≤ j<k≤n 

If (r, s) is any pair of integers with 1 ≤ r < s ≤ n, then the expression s − r 
appears once and only once as a factor in the first product. Therefore the first
product is independent of σ and equals 

Q
1≤ j<k≤n (k − j). Meanwhile, each 

factor of the second product is ±1 times the corresponding factor of the first 
product. Therefore we have 

Y Y
(σ (k) − σ( j)) = (sgn σ) (k − j), 

1≤ j<k≤n 1≤ j<k≤n 

where sgn σ is +1 or −1, depending on σ . This sign is called the sign of the 
permutation σ . 

Lemma 1.23. Let σ be a permutation of {1, . . . , n}, let (a b) be a transposition, 
and form the product σ(a b). Then sgn 

° 
σ(a b)

¢ 
= − sgn σ . 

PROOF. For the pairs ( j, k) with j < k, we are to compare σ(k) − σ( j) with 
σ(a b)(k) − σ(a b)( j). There are five cases. Without loss of generality, we 
may assume that a < b. 
Case 1. If neither j nor k equals a or b, then σ(a b)(k) − σ(a b)( j) = 

σ(k) − σ( j). Thus such pairs ( j, k) make the same contribution to the product 
for σ(a b) as to the product for σ , and they can be ignored. 
Case 2. If one of j and k equals one of a and b while the other does not, there

are three situations of interest. For each we compare the contributions of two such
pairs together. The first situation is that of pairs (a, t) and (t, b) with a < t < b. 
These together contribute the factors (σ (t) − σ(a)) and (σ (b) − σ(t)) to the 
product for σ , and they contribute the factors (σ (t) − σ(b)) and (σ (a) − σ(t)) 
to the product for σ(a b). Since 

(σ (t) − σ(a))(σ (b) − σ(t)) = (σ (t) − σ(b))(σ (a) − σ(t)), 

the pairs together make the same contribution to the product for σ(a b) as to the 
product for σ , and they can be ignored. 
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Case 3. Continuing with matters as in Case 2, we next consider pairs (a, t) and 
(b, t) with a < b < t . These together contribute the factors (σ (t) − σ(a)) and 
(σ (t) − σ(b)) to the product for σ , and they contribute the factors (σ (t) − σ(b)) 
and (σ (t) − σ(a)) to the product for σ(a b). Since 

(σ (t) − σ(a))(σ (t) − σ(b)) = (σ (t) − σ(b))(σ (t) − σ(a)), 

the pairs together make the same contribution to the product for σ(a b) as to the 
product for σ , and they can be ignored. 
Case 4. Still with matters as in Case 2, we consider pairs (t, a) and (t, b) with 

t < a < b. Arguing as in Case 3, we are led to an equality 

(σ (a) − σ(t))(σ (b) − σ(t)) = (σ (b) − σ(t))(σ (a) − σ(t)), 

and these pairs can be ignored.
Case 5. Finally we consider the pair (a, b) itself. It contributes σ(b) − σ(a)

to the product for σ , and it contributes σ(a) − σ(b) to the product for σ(a b). 
These are negatives of one another, and we get a net contribution of one minus
sign in comparing our two product formulas. The lemma follows. § 

Proposition 1.24. The signs of permutations of {1, 2, . . . , n} have the follow-
ing properties: 

(a) sgn 1 = +1,
(b) sgn σ = (−1)k if σ can be written as the product of k transpositions,
(c) sgn(σ τ ) = (sgn σ )(sgn τ),
(d) sgn(σ −1) = sgn σ . 

PROOF. Conclusion (a) is immediate from the definition. For (b), let σ = 
τ1 · · · τk with each τj equal to a transposition. We apply Lemma 1.23 recursively, 
using (a) at the end: 

sgn(τ1 · · · τk ) = (−1) sgn(τ1 · · · τk−1) = (−1)2 sgn(τ1 · · · τk−2) 
k= · · · = (−1)k−1 sgn τ1 = (−1)k sgn 1 = (−1) . 

For (c), Corollary 1.22 shows that any permutation is the product of transpositions.
If σ is the product of k transpositions and τ is the product of l transpositions, then 
στ is manifestly the product of k + l transpositions. Thus (c) follows from (b).
Finally (d) follows from (c) and (a) by taking τ = σ −1. § 

Our discussion of signs has so far attached signs only to permutations of 
S = {1, 2, . . . , n}. If we are given some other set S0 of n elements and we want to 
adapt our discussion of signs so that it applies to permutations of S0, we need 
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to identify S with S0, say by a one-one onto function ϕ : S → S0. If σ is a 
permutation of S0, then ϕ−1σϕ is a permutation of S, and we can define sgnϕ(σ ) = 
sgn(ϕ−1σ ϕ). The question is whether this definition is independent of ϕ. 
Fortunately the answer is yes, and the proof is easy. Suppose that √ : S → S0 

is a second one-one onto function, so that sgn√(σ ) = sgn(√−1σ√). Then 
ϕ−1√ = τ is a permutation of {1, 2, . . . , n}, and (c) and (d) in Proposition 1.24 
give 

sgn√(σ ) = sgn(√−1σ√) = sgn(√−1ϕϕ−1σ ϕϕ−1√) 

= sgn(τ −1) sgn(ϕ−1σ ϕ) sgn(τ ) = sgn(τ ) sgnϕ(σ ) sgn(τ ) = sgnϕ(σ ). 

Consequently the definition of signs of permutations of {1, 2, . . . , n} can be 
carried over to give a definition of signs of permutations of any finite nonempty set
of n elements, and the resulting signs are independent of the way we enumerate
the set. The conclusions of Proposition 1.24 are valid for this extended definition
of signs of permutations. 

5. Row Reduction 

This section and the next review row reduction and matrix algebra for rational,
real, and complex matrices. As in Section 3 let F denote Q or R or C. The 
members of F are called scalars. 
The term “row reduction” refers to the main part of the algorithm used for

solving simultaneous systems of algebraic linear equations with coefficients in 
F. Such a system is of the form 

a11x1 + a12x2 + · · · + a1nxn = b1, 
. . . 

ak1x1 + ak2x2 + · · · + akn xn = bk , 

where the ai j and bi are known scalars and the xj are the unknowns, or variables. 
The algorithm makes repeated use of three operations on the equations, each of
which preserves the set of solutions (x1, . . . , xn) because its inverse is an operation 
of the same kind: 

(i) interchange two equations,
(ii) multiply an equation by a nonzero scalar,
(iii) replace an equation by the sum of it and a multiple of some other equation. 
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The repeated writing of the variables in carrying out these steps is tedious and
unnecessary, since the steps affect only the known coefficients. Instead, we can
simply work with an array of the form 

 a11 a12 · · · a1n b1 
 

 . . . . . .  . 
ak1 ak2 · · · akn bk 

The individual scalars appearing in the array are called entries. The above 
operations on equations correspond exactly to operations on the rows3 of the 
array, and they become 

(i) interchange two rows,
(ii) multiply a row by a nonzero scalar,
(iii) replace a row by the sum of it and a multiple of some other row. 

Any operation of these types is called an elementary row operation. The vertical 
line in the array is handy from one point of view in that it separates the left sides
of the equations from the right sides; if we have more than one set of right sides,
we can include all of them to the right of the vertical line and thereby solve all
the systems at the same time. But from another point of view, the vertical line is
unnecessary since it does not affect which operation we perform at a particular
time. Let us therefore drop it, abbreviating the system as 

√ a11 a12 · · · a1n b1 
! 

. . . 
. . . . 

ak1 ak2 · · · akn bk 
The main step in solving the system is to apply the three operations in succes-

sion to the array to reduce it to a particularly simple form. An array with k rows 
and m columns4 is in reduced row-echelon form if it meets several conditions: 

• Each member of the first l of the rows, for some l with 0 ≤ l ≤ k, has at 
least one nonzero entry, and the other rows have all entries 0. 

• Each of the nonzero rows has 1 as its first nonzero entry; let us say that
the i th nonzero row has this 1 in its j (i)th entry. 

• The integers j (i) are to be strictly increasing as a function of i , and the 
only entry in the j (i)th column that is nonzero is to be the one in the i th 

row. 

Proposition 1.25. Any array with k rows and m columns can be transformed 
into reduced row-echelon form by a succession of steps of types (i), (ii), (iii). 

3 “Rows” are understood to be horizontal, while “columns” are vertical. 
4In the above displayed matrix, the array has m = n + 1 columns. 
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In fact, the transformation in the proposition is carried out by an algorithm
known as the method of row reduction of the array. Let us begin with an
example, indicating the particular operation at each stage by a label over an arrow 
7→. To keep the example from being unwieldy, we consolidate steps of type (iii)
into a single step when the “other row” is the same. 

EXAMPLE. In this example, k = m = 4. Row reduction gives 
 0 0 2 7   1 −1 1 1   1 −1 1 1  

1 −1 1 1 (i) 0 0 2 7 (iii) 0 0 2 7  7→   7→  
 −1 1 −4 5   −1 1 −4 5   0 0 −3 6  

−2 2 −5 4 −2 2 −5 4 0 0 −3 6 

 1 −1 1 1 
 1 −1 0 − 5

7
2 

  1 −1 0 − 2
5  

(ii) 0 0 1 7
2 

(iii)  0 0 1 2 
 (ii) 0 0 1 7 

7→   7→  33 
 7→  2  0 0 −3 6  0 0 0 

 0 0 0 1 
 

2 


0 0 −3 6 0 0 0 33 0 0 0 33 
2 2  1 −1 0 0  

(iii) 0 0 1 0
7→  

 0 0 0 1  . 

0 0 0 0 
The final matrix here is in reduced row-echelon form. In the notation of the 
definition, the number of nonzero rows in the reduced row-echelon form is l = 3,
and the integers j (i) are j (1) = 1, j (2) = 3, and j (3) = 4. 

The example makes clear what the algorithm is that proves Proposition 1.25.
We find the first nonzero column, apply an interchange (an operation of type (i))
if necessary to make the first entry in the column nonzero, multiply by a nonzero
scalar to make the first entry 1 (an operation of type (ii)), and apply operations of
type (iii) to eliminate the other nonzero entries in the column. Then we look for
the next column with a nonzero entry in entries 2 and later, interchange to get the
nonzero entry into entry 2 of the column, multiply to make the entry 1, and apply
operations of type (iii) to eliminate the other entries in the column. Continuing
in this way, we arrive at reduced row-echelon form.
In the general case, as soon as our array, which contains both sides of our system

of equations, has been transformed into reduced row-echelon form, we can read
off exactly what the solutions are. It will be handy to distinguish two kinds of
variables among x1, . . . , xn without including any added variables xn+1, . . . , xm 

in either of the classes. The corner variables are those xj ’s for which j is ≤ n and 
is some j (i) in the definition of “reduced row-echelon form,” and the other xj ’s 
with j ≤ n will be called independent variables. Let us describe the last steps
of the solution technique in the setting of an example. We restore the vertical line
that separated the data on the two sides of the equations. 
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EXAMPLE. We consider what might happen to a certain system of 4 equations
in 4 unknowns. Putting the data in place for the right side makes the array have 4
rows and 5 columns. We transform the array into reduced row-echelon form and
suppose that it comes out to be 

 1 −1 0 0 1  


 
0 
0 

0 
0 

1 
0 

0 
1 

2 
3 


 . 

0 0 0 0 1 or 0 

If the lower right entry is 1, there are no solutions. In fact, the last row corresponds
to an equation 0 = 1, which announces a contradiction. More generally, if any
row of 0’s to the left of the vertical line is equal to something nonzero, there are
no solutions. In other words, there are no solutions to a system if the reduced
row-echelon form of the entire array has more nonzero rows than the reduced
row-echelon form of the part of the array to the left of the vertical line.
On the other hand, if the lower right entry is 0, then there are solutions. To see

this, we restore the reduced array to a system of equations: 

x1 − x2 = 1, 
x3 = 2, 

x4 = 3; 

we move the independent variables (namely x2 here) to the right side to obtain 

x1 = 1 + x2, 
x3 = 2, 
x4 = 3; 

and we collect everything in a tidy fashion as 
 x1 

  1   1  

x2 0 1    
 + x2 


 =  . x3 

 2  0 
x4 3 0 

The independent variables are allowed to take on arbitrary values, and we have
succeeded in giving a formula for the solution that corresponds to an arbitrary set
of values for the independent variables.
The method in the above example works completely generally. We obtain 

solutions whenever each row of 0’s to the left of the vertical line is matched by
a 0 on the right side, and we obtain no solutions otherwise. In the case that we are 
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solving several systems with the same left sides, solutions exist for each of the
systems if the reduced row-echelon form of the entire array has the same number
of nonzero rows as the reduced row-echelon form of the part of the array to the
left of the vertical line. 
Let us record some observations about the method for solving systems of linear

equations and then some observations about the method of row reduction itself. 

Proposition 1.26. In the solution process for a system of k linear equations in 
n variables with the vertical line in place, 

(a) the sum of the number of corner variables and the number of independent
variables is n,

(b) the number of corner variables equals the number of nonzero rows on the
left side of the vertical line and hence is ≤ k,

(c) when solutions exist, they are of the form 

independent independentcolumn + × column + · · · + × columnvariable variable 

in such a way that each independent variable xj is a free parameter in F,
the column multiplying xj has a 1 in its j th entry, and the other columns 
have a 0 in that entry,

(d) a homogeneous system, i.e., one with all right sides equal to 0, has
a nonzero solution if the number k of equations is < the number n of 
variables,

(e) the solutions of an inhomogeneous system, i.e., one in which the right
sides are not necessarily all 0, are all given by the sum of any one particular
solution and an arbitrary solution of the corresponding homogeneous
system. 

PROOF. Conclusions (a), (b), and (c) follow immediately by inspection of
the solution method. For (d), we observe that no contradictory equation can
arise when the right sides are 0 and, in addition, that there must be at least one
independent variable by (a) since (b) shows that the number of corner variables
is ≤ k < n. Conclusion (e) is apparent from (c), since the first column in the
solution written in (c) is a column of 0’s in the homogeneous case. § 

Proposition 1.27. For an array with k rows and n columns in reduced row-
echelon form, 

(a) the sum of the number of corner variables and the number of independent
variables is n,

(b) the number of corner variables equals the number of nonzero rows and
hence is ≤ k, 
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(c) when k = n, either the array is of the form 
 1 0 0 · · · 0 

 

0 1 0 · · · 0 

0 0 1 · · · 0 


 

.
. 


. 

0 0 0 · · · 1 

or else it has a row of 0’s. 
PROOF. Conclusions (a) and (b) are immediate by inspection. In (c), failure of

the reduced row-echelon form to be as indicated forces there to be some noncorner 
variable, so that the number of corner variables is < n. By (b), the number of 
nonzero rows is < n, and hence there is a row of 0’s. § 

One final comment: For the special case of n equations in n variables, some
readers may be familiar with a formula known as “Cramer’s rule” for using
determinants to solve the system when the determinant of the array of coefficients
on the left side of the vertical line is nonzero. Determinants, including their
evaluation, and Cramer’s rule will be discussed in Chapter II. The point to make
for current purposes is that the use of Cramer’s rule for computation is, for n 
large, normally a more lengthy process than the method of row reduction. In fact,
Problem 13 at the end of this chapter shows that the number of steps for solving
the system via row reduction is at most a certain multiple of n3. On the other 
hand, the typical number of steps for solving the system by rote application of
Cramer’s rule is approximately a multiple of n4. 

6. Matrix Operations 

A rectangular array of scalars (i.e., members of F) with k rows and n columns 
is called a k-by-n matrix. More precisely a k-by-n matrix over F is a function 
from {1, . . . , k} × {1, . . . , n} to F. The expression “k-by-n” is called the size of 
the matrix. The value of the function at the ordered pair (i, j) is often indicated 
with subscript notation, such as ai j , rather than with the usual function notation 
a(i, j). It is called the (i, j)th entry. Two matrices are equal if they are the
same function on ordered pairs; this means that they have the same size and their
corresponding entries are equal. A matrix is called square if its number of rows 
equals its number of columns. A square matrix with all entries 0 for i 6 j is= 
called diagonal, and the entries with i = j are the diagonal entries. 
As the reader likely already knows, it is customary to write matrices in rectan-

gular patterns. By convention the first index always tells the number of the row
and the second index tells the number of the column. Thus a typical 2-by-3 matrix 
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∂µ 
a11 a12 a13is . In the indication of the size of the matrix, here 2-by-3, the 2 a21 a22 a23

refers to the number of rows and the 3 refers to the number of columns. 
An n-dimensional row vector is a 1-by-n matrix, while a k-dimensional 

column vector is a k-by-1 matrix. The set of all k-dimensional column vectors 
is denoted by Fk . The set Fk is to be regarded as the space of all ordinary garden-
variety vectors. For economy of space, books often write such vectors horizontally
with entries separated by commas, for example as (c1, c2, c3), and it is extremely 
important to treat such vectors as column vectors, not as row vectors, in order
to get matrix operations and the effect of linear transformations to correspond
nicely.5 Thus in this book, (c1, c2, c3) is to be regarded as a space-saving way of √ c1 

! 

writing the column vector c2 . 
c3 

If a matrix is denoted by some letter like A, its (i, j)th entry will typically be 
denoted by Ai j . In the reverse direction, sometimes a matrix is assembled from
its individual entries, which may be expressions depending on i and j . If some 
such expression ai j is given for each pair (i, j), then we denote the corresponding 
matrix by [ai j ] i=1,...,k , or simply by [ai j ] if there is no possibility of confusion. 

j=1,...,n 

Various operations are defined on matrices. Specifically let Mkn(F) be the 
set of k-by-n matrices with entries in F, so that Mk1(F) is the same thing as Fk . 
Addition of matrices is defined whenever two matrices have the same size, and it
is defined entry by entry; thus if A and B are in Mkn(F), then A + B is the member 
of Mkn(F) with (A + B)i j = Ai j + Bi j . Scalar multiplication on matrices is 
defined entry by entry as well; thus if A is in Mkn(F) and c is in F, then cA is 
the member of Mkn(F) with (cA)i j = cAi j . The matrix (−1)A is denoted by 
−A. The k-by-n matrix with 0 in each entry is called a zero matrix. Ordinarily
it is denoted simply by 0; if some confusion is possible in a particular situation,
more precise notation will be introduced at the time. With these operations the
set Mkn(F) has the following properties: 

(i) the operation of addition satisfies 
(a) A + (B + C) = (A + B) + C for all A, B, C in Mkn(F) (associative 

law), 
(b) A + 0 = 0 + A = A for all A in Mkn(F),
(c) A + (−A) = (−A) + A = 0 for all A in Mkn(F),
(d) A + B = B + A for all A and B in Mkn(F) (commutative law); 

5The alternatives are unpleasant. Either one is forced to write certain functions in the unnatural
notation x 7→ (x)f , or the correspondence is forced to involve transpose operations on frequent
occasions. Unhappily, books following either of these alternative conventions may be found. 
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(ii) the operation of scalar multiplication satisfies 
(a) (cd)A = c(d A) for all A in Mkn(F) and all scalars c and d,
(b) 1A = A for all A in Mkn(F) and for the scalar 1; 

(iii) the two operations are related by the distributive laws 
(a) c(A + B) = cA + cB for all A and B in Mkn(F) and for all scalars c,
(b) (c + d)A = cA + d A for all A in Mkn(F) and all scalars c and d. 

Since addition and scalar multiplication are defined entry by entry, all of these
identities follow from the corresponding identities for members of F. 
Multiplication of matrices is defined in such a way that the kind of system

of linear equations discussed in the previous section can be written as a matrix
equation in the form AX = B, where 

 a11 · · · a1n 
  x1 

  b1 
 

. ..A = . X = . and B = . .  ,  .  ,  .  . 

ak1 · · · akn xn bk 

More precisely if A is a k-by-m matrix and B is an m-by-n matrix, then the 
product C = AB is the k-by-n matrix defined by 

mX
Ci j = Ail Bl j . 

l=1 

The (i, j)th entry of C is therefore the product of the i th row of A and the j th 

column of B. 
Let us emphasize that the condition for a product AB to be defined is that 

the number of columns of A should equal the number of rows of B. With this 
definition the system of equations mentioned above is indeed of the form AX = B. 

Proposition 1.28. Matrix multiplication has the properties that 
(a) it is associative in the sense that (AB)C = A(BC), provided that the 

sizes match correctly, i.e., A is in Mkm (F), B is in Mmn(F), and C is in 
Mnp(F),

(b) it is distributive over addition in the sense that A(B + C) = AB + AC 
and (B + C)D = BD + CD if the sizes match correctly. 

REMARK. Matrix multiplication is not necessarily commutative, even for ¥ ≥ 
0 1 

¥ ≥ 
0 1 

¥ ≥ 
1 0 

¥
square matrices. For example, 

≥ 
1 0 = 

¥
, while 

≥ 
0 1 = 0 0 0 0 0 0 0 0 0 0 ≥ 

0 0 
¥ 

0 0 
. 
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PROOF. For (a), we have 
Pn Pn Pm((AB)C)i j = t=1 (AB)i t Ct j = t=1 s=1 Ais Bst Ct j 

and (A(BC))i j = 
Pm

s=1 Ais(BC)s j = 
Pm Pn 

=1 Ais Bst Ct j ,s=1 t

and these are equal. For the first identity in (b), we have 

(A(B + C))i j = 
P

l Ail (B + C)l j = 
P

l Ail (Bl j + Cl j ) 

= 
P

l Ail Bl j + 
P

l Ail Cl j = (AB)i j + (AC)i j , 

and the second identity is proved similarly. § 

We have already defined the zero matrix 0 of a given size to be the matrix
having 0 in each entry. This matrix has the property that 0A = 0 and B0 = 0 if the 
sizes match properly. The n-by-n identity matrix, denoted by I or sometimes 1, 
is defined to be the matrix with Ii j = δi j , where δi j is the Kronecker delta 
defined by Ω 1 if i = j, 

δi j = 
0 if i 6= j. 

In other words, the identity matrix is the square matrix of the form 

 1 0 0 · · · 0 
 

0 1 0 · · · 0
0 0 1 · · · 0 


I =  

.  . .. 
0 0 0 · · · 1 

It has the property that I A = A and BI = I whenever the sizes match properly. 
Let A be an n-by-n matrix. We say that A is invertible and has the n-by-n 

matrix B as inverse if AB = BA = I . If B and C are n-by-n matrices with 
AB = I and CA = I , then associativity of multiplication (Proposition 1.28a) 
implies that B = I B = (CA)B = C(AB) = C I = C . Hence an inverse for A 
is unique if it exists. We write A−1 for this inverse if it exists. Inverses of n-by-n 
matrices have the property that if A and D are invertible, then AD is invertible 
and (AD)−1 = D−1 A−1; moreover, if A is invertible, then A−1 is invertible and 
its inverse is A. 
The method of row reduction in the previous section suggests a way of com-

puting the inverse of a matrix. Suppose that A is a square matrix to be inverted 
and we are seeking its inverse B. Then AB = I . Examining the definition of
matrix multiplication, we see that this matrix equation means that the product of
A and the first column of B equals the first column of I , the product of A and the 
second column of B equals the second column of I , and so on. We can thus think 
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of a column of B as the unknowns in a system of linear equations, the known
right sides being the entries of the column of the identity matrix. As the column
index varies, the left sides of these equations do not change, since they are always
given by A. So we can attempt to solve all of the systems (one for each column) µ 1 2 3 

∂
simultaneously. For example, to attempt to invert A = 4 5 6 , we set up 

7 8 10 

 
1 2 3 1 0 0 

 

4 5 6 0 1 0  . 
7 8 10 0 0 1 

Imagine doing the row reduction. We can hope that the result will be of the form 

 
1 0 0 
0 1 0  , 
0 0 1 

with the identity matrix on the left side of the vertical line. If this is indeed the
result, then the computation shows that the matrix on the right side of the vertical
line is the only possibility for A−1. But does A−1 in fact exist? 
Actually, another question arises as well. According to Proposition 1.27c, the

other possibility in applying row reduction is that the left side has a row of 0’s.
In this case, can we deduce that A−1 does not exist? Or, to put it another way,
can we be sure that some row of the reduced row-echelon form has all 0’s on the 
left side of the vertical line and something nonzero on the right side?
All of the answers to these questions are yes, and we prove them in a mo-

ment. First we need to see that elementary row operations are given by matrix
multiplications. 

Proposition 1.29. Each elementary row operation is given by left multiplica-
tion by an invertible matrix. The inverse matrix is the matrix of another elementary
row operation. 

REMARK. The square matrices giving these left multiplications are called
elementary matrices. 

PROOF. For the interchange of rows i and j , the part of the elementary matrix 
in the rows and columns with i or j as index is 

i j 
µ 
0 

∂
i 1 

,j 1 0 

and otherwise the matrix is the identity. This matrix is its own inverse. 
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For the multiplication of the i th row by a nonzero scalar c, the matrix is diagonal 
with c in the i th diagonal entry and with 1 in all other diagonal entries. The inverse
matrix is of this form with c−1 in place of c. 
For the replacement of the i th row by the sum of the i th row and the product 

of a times the j th row, the part of the elementary matrix in the rows and columns 
with i or j as index is 

i j 
∂

i 
µ 
1 a 

,j 0 1 

and otherwise the matrix is the identity. The inverse of this matrix is the same 
except that a is replaced by −a. § 

Theorem 1.30. The following conditions on an n-by-n square matrix A are 
equivalent: 

(a) the reduced row-echelon form of A is the identity, 
(b) A is the product of elementary matrices, 
(c) A has an inverse, √ x1 

! 
. .(d) the system of equations AX = 0 with X = has only the solution . 

X = 0. 
xn 

PROOF. If (a) holds, choose a sequence of elementary row operations that 
reduce A to the identity, and let E1, . . . , Er be the corresponding elementary
matrices given by Proposition 1.29. Then we have Er · · · E1 A = I , and hence 
A = E−1 · · · E−1. The proposition says that each Ej 

−1 is an elementary matrix, 1 r
and thus (b) holds.
If (b) holds, then (c) holds because the elementary matrices are invertible and

the product of invertible matrices is invertible.
If (c) holds and if AX = 0, then X = I X = (A−1 A)X = A−1(AX) = 

A−10 = 0. Hence (d) holds.
If (d) holds, then the number of independent variables in the row reduction of 

A is 0. Proposition 1.26a shows that the number of corner variables is n, and
parts (b) and (c) of Proposition 1.27 show that the reduced row-echelon form of
A is I . Thus (a) holds. § 

Corollary 1.31. If the solution procedure for finding the inverse of a square 
matrix A leads from (A | I ) to (I | X), then A is invertible and its inverse is X . 
Conversely if the solution procedure leads to (R | Y ) and R has a row of 0’s, then 
A is not invertible. 

REMARK. Proposition 1.27c shows that this corollary addresses the only
possible outcomes of the solution procedure. 
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PROOF. We apply the equivalence of (a) and (c) in Theorem 1.30 to settle the
existence or nonexistence of A−1. In the case that A−1 exists, we know that the 
solution procedure has to yield the inverse. § 

Corollary 1.32. Let A be a square matrix. If B is a square matrix such that 
BA = I , then A is invertible and B is its inverse. If C is a square matrix such 
that AC = I , then A is invertible with inverse C . 

PROOF. Suppose BA = I . Let X be a column vector with AX = 0. Then 
X = I X = (BA)X = B(AX) = B0 = 0. Since (d) implies (c) in Theorem 
1.30, A is invertible. 
Suppose AC = I . Applying the result of the previous paragraph to C , we 

conclude that C is invertible with inverse A. Therefore A is invertible with 
inverse C . § 

7. Problems 

1. What is the greatest common divisor of 9894 and 11058? 

2. (a) Find integers x and y such that 11x + 7y = 1. 
(b) How are all pairs (x, y) of integers satisfying 11x + 7y = 1 related to the 

pair you found in (a)? 

3. Let {an}n∏1 be a sequence of positive integers, and let d be the largest integer 
dividing all an . Prove that d is the greatest common divisor of finitely many of 
the an . 

4. Determine the integers n for which there exist integers x and y such that n divides 
x + y − 2 and 2x − 3y − 3. 

5. Let P(X) and Q(X) be the polynomials P(X) = X4 + X3 + 2X2 + X + 1 and 
Q(X) = X5 + 2X3 + X in R[X].
(a) Find a greatest common divisor D(X) of P(X) and Q(X). 
(b) Find polynomials A and B such that AP + BQ = D. 

6. Let P(X) and Q(X) be polynomials in R[X]. Prove that if D(X) is a greatest 
common divisor of P(X) and Q(X) in C[X], then there exists a nonzero complex 
number c such that cD(X) is in R[X]. 

7. (a) Let P(X) be in R[X], and regard it as in C[X]. Applying the Fundamental 
Theorem of Algebra and its corollary to P , prove that if z j is a root of P ,
then so is z̄ j , and zj and z̄ j have the same multiplicity.

(b) Deduce that any prime polynomial in R[X] has degree at most 2. 



31 7. Problems 

8. (a) Suppose that a polynomial A(X) of degree > 0 in Q[X] has integer coef-
ficients and leading coefficient 1. Show that if p/q is a root of A(X) with 
p and q integers such that GCD(p, q) = 1, then p/q is an integer n and n 
divides the constant term of A(X). 

(b) Deduce that X2 − 2 and X3 + X2 + 1 are prime in Q[X]. 

9. Reduce the fraction 8645/10465 to lowest terms. 

10. How many different patterns are there of disjoint cycle structures for permutations
of {1, 2, 3, 4}? Give examples of each, telling how many permutations there are
of each kind and what the signs are of each. 

11. Prove for n ∏ 2 that the number of permutations of {1, . . . , n} with sign −1 
equals the number with sign +1. 

µ 1 2 3 
∂

12. Find all solutions X of the system AX = B when A = 4 5 6 and B is given 
7 8 9 

by µ 0 
∂ µ 5 

∂ µ 3 
∂

(a) B = 0 , (b) B = 3 , (c) B = 2 . 
0 2 1 

13. Suppose that a single step in the row reduction process means a single arithmetic
operation or a single interchange of two entries. Prove that there exists a constant
C such that any square matrix can be transformed into reduced row-echelon form 
in ≤ Cn3 steps, the matrix being of size n-by-n. 

≥ 
2 3 

≥ 
−4 8 

¥
14. Compute A + B and AB if A = 

¥ 
and B = .4 5 −1 3 

15. Prove that if A and B are square matrices with AB = BA, then (A + B)n is ° ngiven by the Binomial Theorem: (A + B)n = 
Pn ¢

An−k Bk , where 
° n¢ 

isk=0 k k
the binomial coefficient n!/((n − k)!k!). 

µ 1 1 0 
∂

16. Find a formula for the nth power of 0 1 1 , n being a positive integer. 
0 0 1 

17. Let D be an n-by-n diagonal matrix with diagonal entries d1, . . . , dn , and let A 
be an n-by-n matrix. Compute AD and DA, and give a condition for the equality 
AD = DA to hold. 

18. Fix n, and let Ei j denote the n-by-n matrix that is 1 in the (i, j)th entry and 
is 0 elsewhere. Compute the product Ekl Epq , expressing the result in terms of 
matrices Ei j and instances of the Kronecker delta. 

d −b19. Verify that if ad−bc 6
¥−1 

= (ad−bc)−1 
≥ 

= 0, then 
≥ 
a b 

¥ 
and that the sys-c d −c a 

tem 
≥ 
a b 

¥ ≥ x ¥ ≥ p 
¥ 

= (ad − bc)−1 
≥ 
dp−bq 

¥ 
= 

¥ 
has the unique solution 

≥ x .c d y q y aq−cp 
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20. Which of the following matrices A is invertible? For the invertible ones, find 
A−1. µ 1 2 3 

∂ µ 1 2 3 
∂ µ 7 4 1 

∂
(a) A = 4 5 6 , (b) A = 4 5 6 , (c) A = 6 4 1 . 

7 8 9 7 8 10 4 3 1 

21. Can a square matrix with a row of 0’s be invertible? Why or why not? 
22. Prove that if the product AB of two n-by-n matrices is invertible, then A and B 

are invertible. 
23. Let A be a square matrix such that Ak = 0 for some positive integer n. Prove 

that I + A is invertible. 
24. Give an example of a set S and functions f : S → S and g : S → S such that 

the composition g ◦ f is the identity function but neither f nor g has an inverse 
function. 

25. Give an example of two matrices, A of size 1-by-2 and B of size 2-by-1, such 
that AB = I , I being the 1-by-1 identity matrix. Verify that BA is not the 2-by-2 
identity matrix. Give a proof for these sizes that BA can never be the identity 
matrix. 

Problems 26–29 concern least common multiples. Let a and b be positive integers. 
A common multiple of a and b is an integer N such that a and b both divide N . The 
least common multiple of a and b is the smallest positive common multiple of a and 
b. It is denoted by LCM(a, b). 
26. Prove that a and b have a least common multiple. 

27. If a has a prime factorization given by a = p1 
k1 · · · prkr , prove that any positive 

multiple M of a has a prime factorization given by a = p1 
m1 · · · prmr q1 

n1 · · · qsns ,
where q1, . . . , qs are primes not in the list p1, . . . , pr , where mj ∏ kj for all j ,
and where nj ∏ 0 for all j . 

k1 kr l1 lr28. (a) Prove that if a = p1 · · · pr and b = p1 · · · pr are expansions of a and b 
as products of powers of r distinct primes p1, . . . , pr , then LCM(a, b) = 
pmax(k1,l1) · pmax(kr ,lr )· · .1 r 

(b) Prove that if N is any common multiple of a and b, then LCM(a, b) divides 
N . 

(c) Deduce that ab = GCD(a, b) LCM(a, b). 
29. If a1, . . . , at are positive integers, define their least common multiple to be the 

smallest positive integer M such that each aj divides M . Give a formula for this 
M in terms of expansions of a1, . . . , at as products of powers of distinct primes. 




