
Appendix A

Linear Algebra from a

 Geometric Point of View 

Whoever thinks algebra is a trick in obtaining unknowns has thought it in vain. No attention should
be paid to the fact that algebra and geometry are different in appearance. Algebras (al-jabbre and maqabeleh)
are geometric facts which are proved by Propositions Five and Six of Book Two of [Euclid’s] Elements.

— Omar Khayyam, a paper [A: Khayyam (1963)]

A.0. Where Do We Start?

Usual treatments of linear and affine algebra start with a vector space as a set of “vectors” and the
operations of vector addition and scalar multiplication that satisfy the axioms for a vector space. In a
vector space all vectors emanate from the origin. This works well algebraically; but it ignores our
geometric images and experiences of vectors. 

Geometrically, we start with our experiences of Euclidean geometry where there is no point that has
been singled out as the origin and where there are no numerical distances (until after a unit distance is
chosen).

The linear structure of Euclidean space is carried by the translations of the space. We picture vectors
as directed line segments from one point to another, and the translations serve to define when one vector
is parallel to another. Any space whose translations satisfy the same properties as translations in Euclid-
ean space is called a geometric affine space, which is the subject of Section A.1.

The collection of all the vectors emanating from the same point is called the tangent space at that
point. Using translations we may define addition and scalar multiplication of vectors. The properties of
these two operations on vectors are the defining properties of a vector space, which is the subject of
Section A.2.

A.1. Geometric Affine Spaces

A geometric affine space over the field K is a space, S, together with bijections, Tba: S → S,
Tba(a) = b, which, for every pair of points a, b in S, satisfy the Properties (0)-(8), below. In this text K will
always be the field of real numbers R. We call Tba the translation from a to b. We call the ordered pair
(a,b) the (bound) vector from a to b. The most basic property of translations is: 

(0) Tba is unique in the sense that, if Tdc(a) = b, then Tba = Tdc; and translations are closed under
composition in the sense that

, where (AB)(x) = A(B(x)).TbaTdc = Tec, where e = Tba(d)

Further, we assume that Taa = identity [that is, Taa(x) = x, for all x in S.]

[Note the implication that, if a is distinct from b, then Tba has no fixed points.] 
This property allows us to define when two bound vectors are equivalent. We say that (a,b) is paral-

lel to (c,d) if there is a translation that takes (a,b) to (c,d), in symbols (a,b)≈(c,d). Property (0) assures us



that this translation is unique, and, in this case, Tca(b) = d, and thus, by (0), Tca = Tdb. Then we can also
conclude, using (0) again, that

Tba  =  TbdTdcTca  =  (TbdTdc)Tdb  =  (TdcTbd)Tdb   =  Tdc(TbdTdb)  =  Tdc .

 We can easily check that relation of being parallel is an equivalence relation: that is, 

{ (a,b)≈(a,b),

{ (a,b)≈(c,d) if and only if (c,d)≈(a,b), and

{ (a,b)≈(c,d) and (a,b)≈(e,f) implies that (e,f)≈(c,d).

In addition, parallel bound vectors are unique in the sense that:

{ (a,b)≈(c,d) and (a,b)≈(c,e) implies that d = e.

This is the main property that distinguishes an affine space form other spaces. This equivalence is
the same as parallel transport in Euclidean space. Parallel transport of vectors is definable in very general
settings but is unique only when the space is locally isometric to Euclidean space. 

We define the free vectors in S to be the equivalence classes of bound vectors. We write the equiva-
lence class of the bound vector (a,b) to be the free vector v = [a,b]. Note that Property (0) implies that: 

{ [a,b] ↔ Tba is a one-to-one correspondence between translations and free vectors. Thus, it
follows from Property (0) that, for any point c in S,

(a,b) ≈ (c,Tba(c)).

Thus, every free vector v has a representative bound to every point c. We denote this bound vector
by vc. We can define the addition of free vectors by

[c,d] + [a,b] = [c,d] + [d,Tba(d)] ≡ [c,Tba(d)]. 

Since d = Tdc(c), we see that

 [c,d] + [a,b] = [c,TbaTdc(c)].

                                                                      TbaTdc(c) = Tba(d)

                                           (u + v)c                                                       va

                                                                                        vd

                                                uc

Figure A.1.1. Adding free vectors.

We can now write the further properties of a geometric affine space in terms of either free vectors or
translations. For all free vectors u, v, w in S, and r, s in K:

(1) there is a free vector 0 such that 0 + v = v;

(2) u + v = v + w, .[TbaTdc = TdcTba];

(3) u + (v + w) = (u + v) + w,  [Tfe(TdcTba) = (TfeTdc)Tba].
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We now assume further that we have defined, for each r in K, a scalar multiplication of vectors, r(a,b),

[or an exponentiation of translations (Tba)r, where r(a,b) ≡ (a,(Tba)r(a))], with the following additional
properties: 

(4) 0v = 0,  [Tba
0 = Taa];

(5) 1v = v,  [Tba
1 = Tba];

(6) (r+s)v = rv + sv,  [ (Tba)(r+s)  = (Tba)r(Tba)s ]; 

{In particular, for n a positive integer, 

nv = v+v+...+v (n times)
 [Tba

n = TbaTba...Tba (n times) and Tba
−1 = Tab ].}

(7) (rs)v = r(sv),  [ (Tba)(rs)  = ((Tba)r)s ];

(8) r(u + v) = ru + rv,  [ (TdcTba)r =  Tdc
rTba

r ].

The collection of all (bound) vectors bound to a point a in S is called the tangent space at a, written 

Sa = { vectors (a,b) | b is in S }.

Since each free vector v = [a,b] is represented by the translation Tba, we can define, for each point c
in S, another point:

v(c) = [a,b](c) = Tba(c); in drawings this is:

                                                                                    v(c) = Tba(c)

                                                                 vc

                                                                                                         va

Figure A.1.2. Representing free vectors by translations.

A subset R ⊂ S is called an affine subspace if 

r[a,b](R) = ,Tba
r (R) = R

for every pair of points a, b in R and every r in K. If {a0, a1, ..., an} is a finite collection of points from S,
then we call the affine span of {a0, a1, ..., an}, denoted by asp{a0, a1, ..., an}, the smallest affine subspace

containing each of a0, a1, ..., an. For two points, a ≠ b, we call asp{a,b} the line determined by a and b.
We say that {a0, a1, ..., an} are affinely independent if, for each i, 

ai is not in asp{a0, a1, ...ai-1, ai+1, ..., an}. 

If {a0, a1, ..., an} are affinely independent, then we say that

asp{a0, a1, ..., an}

is an n-dimensional (affine) subspace. 

THEOREM A.1.1. The vector b is in asp{a0, a1, ..., an} if and only if 

b = (rn[an,a0] + ... + r2[a2,a0] + r1[a1,a0])(a0)  [or, ],b = (Tana0

rn £Ta2a0

r2 Ta1a0

r1 )(a0)

for some r1 r2 ... rn in K.
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Proof:  Let R denote asp{a0, a1, ..., an}. By the definition of affine subspace, 

,Ta1a0

r1 (a0) c R

and thus,

.(Ta2a0

r2 Ta1a0

r1 )(a0) = Ta2a0

r2 (Ta1a0

r1 (a0)) c R

In this way we see that

.b = (Tana0

rn £Ta2a0

r2 Ta1a0

r1 )(a0) = Tana0

rn (£(Ta2a0

r2 (Ta1a0

r1 (a0)))£) c R

Denote by R* the collection of all points in R of the form:

.(Tana0

rn £Ta2a0

r2 Ta1a0

r1 )(a0)

Then, clearly, R* contains each of a0, a1, ..., an . We now check that R* is an affine subspace (in which
case it easily follows that R* = R):

Let 

a = (Tana0

sn £Ta2a0

s2 Ta1a0

s1 )(a0)
b = (Tana0

rn £Ta2a0

r2 Ta1a0

r1 )(a0)
c = (Tana0

qn £Ta2a0

q2 Ta1a0

q1 )(a0)

be any three points in R*. By the properties of a geometric affine space:

,(Tana0

rn−sn£Ta2a0

r2−s2 Ta1a0

r1−s1 )(a) = b

and thus, by Property (0),

.(Tana0

rn−sn£Ta2a0

r2−s2 Ta1a0

r1−s1 ) = Tba

Then

Tba(c) = Tba((Tana0

qn £Ta2a0

q2 Ta1a0

q1 )(a0))

= (Tana0

rn−sn£Ta2a0

r2−s2 Ta1a0

r1−s1 )((Tana0

qn £Ta2a0

q2 Ta1a0

q1 )(a0))

R*.= (Tana0

rn−sn+qn£Ta2a0

r2−s2+q2 Ta1a0

r1−s1+q1 )(a0) c

Corollary A.1.2. If {a0, a1, ..., an} are affinely independent, then the field elements r1 r2 ... rn in

Theorem A.1.1 are unique.

Proof:  If the r1 r2 ... rn were not unique, then

,b = (Tana0

rn £Ta2a0

r2 Ta1a0

r1 )(a0) = (Tana0

sn £Ta2a0

s2 Ta1a0

s1 )(a0)

and, if i were the first index for which ri ≠ si , then 

Ta ia0

s i−r i (a0) = (Tana0

rn−sn£Ta i−2a0

r i−2 )(a0)

and

.a i = Taia0 (a0) = (Taia0

s i−r i )1/(s i−r i)(a0) = (Tana0

rn−sn£Tai−2a0

r i−2 )1/(s i−r i)(a0)

Thus ai would be in asp{an, ..., a1+1}, which contradicts the hypothesis that {a0, a1, ..., an} are affinely
independent.

THEOREM A.1.3. Let {a0, a1, ..., an} be any collection of affinely independent points, and Tba be

any translation, and denote bi = Tab(ai). Then:
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a. {b0, b1, ..., bn} are affinely independent, and 

b. asp{b0, b1, ..., bn} = Tba(asp{a0, a1, ..., an}).

Proof. The reader can check easily that this theorem is true because

,Ta iaj
(b j) = Taia j

(Tab(a j)) = Tba(Taia j
(a j)) = Tba(a i) = b i

and thus, .Ta iaj
= Tb ibj

A.2. Vector Spaces

We can define vector addition and scalar multiplication on the tangent space Sa at the point a in S

as follows:

(a, b) + (a, c) ≡ (a, Tba(c)) = (a, TbaTca(a)),

and  

.r(a, b) h (a, Tab
r (a))

These operations satisfy the following properties, which follow from the same-numbered properties of an
affine space:

(1) u + v = v + u;

(2) there is a vector 0 such that 0 + u = u;

(3) u + (v + w) = (u + v) + w;

(4) 0u = 0;

(5) 1u = u;

(6) (r + s)u = ru + su;

(7) (rs)u = r(su);  and

(8) r(u + v) = ru + rv.

Any set V with two binary operations satisfying these properties is called a vector space over the

field K.

A subset R ⊂ V is called a (linear) subspace if ru + sv is in R, for every pair of vectors u, v in R and
every r in K. If {u1, u2, ..., un} is a finite collection of vectors from V, then we call the (linear) span of

{u1, u2, ..., un}, denoted by sp{u1, u2, ..., un}, the smallest (linear) subspace containing each of
u1, u2, ..., un. We say that {u1, u2, ..., un} are (linearly) independent if, for each i, ui is not in 

sp{u1, u2, ...ui-1, ui+1, ..., un}. 

If {u1, u2, ..., un} are linearly independent, then we say that

 R = sp{u1, u2, ..., un}

is an n-dimensional (linear) subspace and that {u1, u2, ..., un} is a basis for R. 
The proofs of the two results below follow from the proofs to A.1.1. and A.1.2.

THEOREM A.2.1. v is in sp{u1, u2, ..., un} if and only if 

v = r1u1 + r2u2 + ... + rnun ,

for some r1, r2, ..., rn in K.
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COROLLARY A.2.2. If {u1, u2, ..., un} are linearly independent, then, the field elements r1, r2, ...,
rn in Theorem A.2.1 are unique.

If {u0, u1, ..., un} is a basis for the subspace R, then, with respect to this basis, every vector v in R
has a unique representation in terms of the r0, r1, ..., rn. We write variously,

v =  .� i=1
n r iu i = � r iu i = riu i = (r1, r2,£, rn )

u1

u2

§

un

We will usually write .v= � riui

We can easily check that the properties of a vector space imply that if , then v= � viui and w= �wiui

.v+w= �(vi + w i)u i and rv= �(rvi)u i

A.3. Inner Product — Lengths and Angles

In our usual experience of Euclidean space, the notion of angle is fundamental (See Chapter 3 of
[Tx: Henderson]), and once we have chosen a unit length, then we know how to determine the length |v|
of any vector v. Assuming we know what lengths and angles are, we can define the Euclidean inner

product (variously called the standard inner product or the dot product) of two vectors to be:

, where θ is the angle between v and w.…v, w  = |v||w| cos�

We can check that this inner product satisfies the following properties:

1. Symmetric,             ;…v, w  = …w, v 

2. Bilinear,               , for all r ∈ R,r…v, w  = …rv, w  = …v, rw 
                          ,…v + u, w  = …v, w  + …u, w 

                          ,…v, u + w  = …v, u  + …v, w 

3. Positive definite,     …v, v  m 0.

In an abstract vector space we can start by asserting the existence of an inner product, which satis-
fies these three properties. Then we define:

.|v| = …v, v  and cos� =
…v,w 
|v||w|

Note that v and w are perpendicular (or orthogonal) if and only if . The collection of all…v, w  = 0
vectors orthogonal to v is called the orthogonal complement of v.

We can use the inner product to express projections: 
The (orthogonal) projection onto the vector a, Pa(v), is defined by the following picture in sp{a,v}. 

                                                               Pa⊥(v)

                                             Pa(v'')                       Pa(v)                      Pa(v''')
Figure A.3.1. Projection onto a.

Note that 

Pa(v) = ,v cos � 1
a

a
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where |x| is the length of the vector x and θ is the angle between v and a. Now using inner products we
have:

.Pa(v) = v cos � a
a

= v
…v, a 

v a
a
a

=
…v, a 

…a, a 
a

{ projection onto the orthogonal complement of a vector a:  

Pa⊥(v) = v − Pa(v) = .v −
…v, a 

…a, a 
a

{If the reader has not seen this before, then the reader should check carefully that this is true both
formally (using the properties of the inner product) and geometrically (using Figure A.3.1).} We now
apply this representation of projection to prove a famous result:

THEOREM A.3.1. (Gram-Schmidt Orthonormalization) 
If {v1,v2,...,vn} is any basis for V, then there is another basis {e1,e2,...,en} for V, such that

a.  for each i, sp{v1,v2,...,vi} = sp{e1,e2,...,ei},

b.  , andei, e j = 0, for i ! j (that is, ei and ej are orthogonal)

c.  .…e i, e i   = e i
2 = 1 (that is, the e i are normalized)

Proof:  Let

.e1 =
v1

v1
, e2 =

Pe1z(v2)

Pe1z(v2)
=

v2 − …v2, e1   e1

v2 − …v2, e1   e1

The reader should check that 
sp{v1} = sp{e1},  sp{v1,v2} = sp{e1,e2},

,  .…e1, e2   = 0 …e1, e1   = 1, and …e2, e2   = 1

In general, if e1,e2,...,ek have been defined so that A.3.1.a, b, and c hold, then we can define

ek+1 =
Pekz(£(Pe2z(Pe1z(vk+1)))£)

Pekz(£(Pe2z(Pe1z(vk+1)))£)
=

.=
vk+1 − …vk+1, e1   e1 − …vk+1, e2   e2 −£ − …vk+1, ek   ek

vk+1 − …vk+1, e1   e1 − …vk+1, e2   e2 −£ − …vk+1, ek   ek

This last expression holds because the ei are orthogonal and normal, and thus,

Pe2z(Pe1z(v)) = Pe2z(v−
…v,e1  

…e1 ,e1  
e1) = Pe2z(v−…v, e1  e1) =

= (v−…v, e1  e1) − …(v − …v, e1  e1), e2  e2 =
= (v−…v, e1  e1) − (…v, e2   − …v, e1  …e1, e2  )e2 =

.=v−…v, e1  e1 − …v, e2  e2

The reader can easily check that a., b., and c. hold.

LEMMA A.3.2. (The Cauchy-Schwarz Inequality) If V has an inner product, and v, w ∈ V, then
. Furthermore, we have equality if and only if v and w are linearly dependent.|…v, w | [ |v||w|

Proof: If we have defined the inner product geometrically as |v||w|cos θ, then this lemma is trivially
true from the properties of the cosine. However, if we define the inner product abstractly, then the
inequality in the lemma is exactly what we need in order that the definition

cos� =
…v, w 

v w
is well defined. A proof based only on the formal properties of the inner product can be found in most
linear algebra books.
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A.4. Linear Transformations and Operators

A linear transformation is a function T: V→W from a vector space V to a vector space W that
preserves vector addition and scalar multiplication; that is, 

T(v + u) = T(v) + T(u) and T(rv) = rT(v), for all v, u ∈V and r ∈K.

The proof of the following theorem is straightforward and can be found in most linear algebra books.

THEOREM A.4.1. For any linear transformation T: V→W :

a. T(V) is a linear subspace of W called the image of T, im(T), and the dimension of im(T) called

the rank of T, rank(T);

b. the kernel

ker(T) ≡ {v ∈ V  | T(v) = 0 }

is a linear subspace of V and its dimension is called the nullity of T, null(T);

c. rank(T) + null(T) = dim(V);

d. if 

(i)   {a1,a2,...,am} (m = null(T)) is a basis for null(T),

(ii)  {b1,b2,...,br} (r = rank(T)) is a basis for im(T), and

(iii)  for each i = 1,2,...,r, we pick ci ∈V so that T(ci) = bi ,

then 

{c1,c2,...,cr,a1,a2,...,am}

is a basis for V.

If {v1,v2,...,vn} is a basis for V and {w1,w2,...,wm} is a basis for W, then T(vi) = � T i
j
w j, where the T i

j

are numbers, and then

.T(a) = T(� a iv i) = � a iT(v i) = � a i(� T i
j
w j) = ��(a iT i

j
)w j

The numbers  form an n by m matrix, called the matrix of T with respect to the bases {v1,v2,...,vn} andT i
j

{w1,w2,...,wm}. For different bases there would be different matrices. And, conversely, with respect to
these two bases any n by m matrix  will determine a linear transformation, M, by setting (M i

j
)

. M(� a iv i) = ��(a iMi
j
)w j

The reader can easily check that, in Theorem A.4.1, with respect to the basis 

{c1,c2,...,cr,a1,a2,...,an} for V

and any basis 

{b1,b2,...,br,d1,d2,...,ds} for W,

we have the following corollary: 

Corollary A.4.2. For any linear transformation T: V→W, there are bases for V and W such
that with respect to these bases, T is represented by a matrix with r (= rank(T)) 1’s on the

diagonal and all the other entries zero.

128 Appendix A.  Linear Algebra from a Geometric Point of View



If V = W, then a linear transformation T: V→V is called a linear operator.
Examples of linear operators from Rn to Rn are:

{ Dilation by λ:  Mλ(v) = λv.

{ Projection onto a vector a:  (See Section A.3.)

.Pa(v) = v cos � a
a

=
…v, a 

…a, a 
a

The fact that 

Pa(v + w) = Pa(v) + Pa(w)

can be seen geometrically by making a model (in your mind) of the subspace sp{a,v,w}.

{ Reflection through the orthogonal complement of a vector a:  

Fa⊥(v) = v − 2Pa(v) = Pa⊥(v) − Pa(v).

{ Projection onto the orthogonal complement of a vector a:

Pa⊥(v) = v − Pa(v).

{ Dilation by λ in the direction of a: 

Mλa(v) = Pa⊥(v) + λPa(v).

Note that if λ = 0, then this dilation is just a projection onto the orthogonal complement of a;
and if λ = −1, then it is a reflection through the orthogonal complement of a.

{ For two orthogonal vectors, , a (w,a)-shear is the linear operator…w, a  = 0

Sw,a(v) = .v+…v, w a

The reader should check that a (w,a)-shear takes a to a and preserves planes that are orthogonal
to w. [Hint: Check that .]…Sw,a(v), w  = …v, w 

{ Rotation in the plane of a and b through an angle θ:

Rθ,ab (v) = v − [Pa(v) + Pb(v)] + Rθ[Pa(v) + Pb(v)],

where Rθ is the ordinary rotation through angle θ about 0 in plane as{a,b}.

{ The sum or product of linear operators is a linear operator: that is, if T and S are linear
operators, then T + S and TS are also linear operators, where 

(T + S)(v) = T(v) + S(v) and (TS)(v) = T(S(v)).

THEOREM A.4.3. Every linear operator from Rn to Rn over the field of reals R is the composi-

tion of a finite number of shears, reflections, and dilations.

Outline of a geometric proof—an algebraic proof will be given at the end of this section:  Let T be
any linear operator and use Theorem A.4.1 followed by the Gramm-Schmidt Orthonormalization (A.3.1)
to find an orthonormal basis {e1,e2,...,en} for Rn, such that 
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B = {T(e1),T(e2),...,T(er)}

is a basis for T(Rn) and {er+1,er+2,...,en} is a basis for null(T), where r = n-m is the rank of T (that is, the
dimension of T(Rn)). Since T is determined by the n vectors B, we will have proved the theorem if we
show that there is a composition of a finite number of projections, shears, reflections, dilations, and

rotations that takes {e1,e2,...,en} to B. Since B is a basis for T(Rn), we can use the proof of A.3.1 to find
an orthonormal basis {b1,b2,...,br} for T(Rn) satisfying the conclusions (a), (b), and (c) of the theorem.
We will use this basis {b1,b2,...,br} in our proof. 

First, if e1≠b1 then we can reflect (through the orthogonal complement of e1−b1) to take 

e1 to b1 = T(e1)/|T(e1)|

and then dilate by |T(e1)| in the direction of T(e1). The result will be an operator A1 that is the composi-
tion of a reflection and a dilation, such that A1(e1) = T(e1) and such that 

{A1(e1),A1(e2),...,A1(en)}

is an orthogonal basis with |A1(ei)| = 1, for i > 1. 
Second, if A1(e2)≠b2, then reflect through the orthogonal complement of A1(e2)−b2 to take

A(e2) to ,b2 =
Pb1z(T(e2))

Pb1z(T(e2))

then dilate by  in the direction of , and finally perform a (λb2,b1)-shear to take Pb1z(T(e2)) Pb1z(T(e2))
 to T(e1). (See Figure A.4.2.)Pb1z(T(e2))

                                                                b2

                                                                         T(e2)

                                                                                   b1

Figure A.4.2. Second step in the proof of A.4.3.

The reader can check that 

	 =
Pb1 (T(e2))
Pb1z(T(e2))

and thus is positive. Note that this rotation is a rigid motion, and that the dilation and shear do not change
any of the images of {e1,e3,...,en}.

Thus, after the second stage, we have a composition, A2, of rotations, shears, and dilations such that 

A2(e1) = T(e1), A2(e2) = T(e2), {A2(e1),A2(e2),...,A2(en)}

is an orthogonal basis, and A2(ei) = 1, for i > 2. The interested reader can now see how to continue.
The reader can check that with respect to the orthonormal basis {e1,e2,...,en}, we have the following

matrices:

{ Scaling (magnifying) by λ: 
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.matrix(M	 ) =

	 0 £ 0 0
0 	 £ 0 0
§ § • § §

0 0 £ 	 0
0 0 £ 0 	

= 	I

{ Projection onto the vector ek: 

 .matrix(Pek
) = 0-matrix except k d

• § § § •

£ 0 0 0 £
£ 0 1 0 £
£ 0 0 0 £
• § § § •

{ Reflection through the orthogonal complement of  ek:  

.matrix(Fekz
) = I-matrix except k d

• § £ § •

£ 1 0 0 £
£ 0 −1 0 £
£ 0 0 1 £
• § § § •

{ Reflection through the orthogonal complement of  ek-el: 

.matrix(F(ek−el)z
) = I-matrix except

k d

l d

• § £ § •

£ 0 £ 1 £
§ § • § §

£ 1 £ 0 £
• § £ § •

Note that multiplying by this matrix (on the left) is the same as the elementary row operation of
interchanging the k-th and l-th rows.

{ Projection onto the orthogonal complement of  ek:

.matrix(Pekz
) = I-matrix except k d

• § § § •

£ 1 0 0 £
£ 0 0 0 £
£ 0 0 1 £
• § § § •

{ Dilation by λ in the direction of ek: 

.matrix(M	ek
) = I-matrix except k d

• § § § •

£ 1 0 0 £
£ 0 	 0 £
£ 0 0 1 £
• § § § •
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Note that multiplying by this matrix (on the left) is the same as multiplying the k-th row by λ.

{ (ek,λel)-shear: 

.matrix(Sek,	el
) = I-matrix except

k d

l d

• § £ § •

£ 1 £ 0 £
§ § • § §

£ 	 £ 1 £
• § £ § •

Note that multiplying by this matrix (on the left) is the same as the elementary row operation of
adding to the k-th row λ times the l-th row.

{ Rotation in the plane of ek and el through an angle θ: 

.matrix(R�,ekel
) = I-matrix except

k d

l d

• § £ § •

£ cos � £ sin� £
§ § • § §

£ − sin� £ cos� £
• § £ § •

{ The sum or product of linear transformations is linear: that is, if T and S are linear transfor-
mations with matrices and  thenT i

j Si
j,

.(T + S) i
j
= (T i

j
+S i

j
) and (T(S)) i

j
= �Tk

j S i
k

Alternate proof of Theorem A.4.3: If (T) is the matrix of the linear operator with respect to some
orthonormal basis, the matrix (T) can be reduced to a diagonal matrix by a finite number of the types of
row (or column) operations:

{ interchanging the k-th and l-th rows (columns), which is the same as multiplying on the left
(right) by ,matrix(F(ek−el)z

)

{ adding to the k-th row (column) λ times the l-th row (column), which is the same as multiplying
on the left (right) by .matrix(Sek,	el

)

Thus, we have E(T) = D (or, (T)E = D ), where E is a finite product of reflection or shear matrices and D
is a diagonal matrix. But each of the reflection and shear matrices has an inverse, which is of the same
type, and any diagonal matrix is the product of matrices that

{ multiply one row by a scalar λ, which is the same as multiplying by .matrix(M	ek
)

Thus, we can write

(T) = E -1M (or, M E -1),

where now the right hand side is a finite product of reflections, shears, and dilations.

A.5. Areas, Cross Products, and Triple Products

DEFINITION: The cross product v × w of two vectors v and w in R3 is the vector 

1. whose magnitude is the area of the parallelogram formed by v and w,

2. which is perpendicular to both v and w, and
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3. whose direction is such that v, w, and v × w (in this order) form a right-hand system. (If you
curl the fingers of your right hand from v to w, then your thumb points in the direction of
v × w.)

Note that if the magnitude of v × w is 0, then the direction of v × w is not defined, which is correct
in this case, because then v × w = 0.

THEOREM A.5.1. For any two vectors v and w in R3, we have:

a.  v || w if and only if v × w = 0,

b.  |v × w| = |v| |w| sin θv,w = ,v
2

w
2

− …v, w 
2

c.  v × w is bilinear     [λ(v × w) = (λv) × v = v × (λw)
                                (u + v) × w = (u × w) + (v × w)
                                v × (w + u) = (v × w) + (v × u)],   and

d.  v × w is anticommutative [v × w = −(w × v)].

Proof: Parts a, b, and d follow immediately from the definition and (for b) the geometric definition
of 〈v, w〉. To see part c, check that the function 

x → v × x is equal to ,R)Pvz

where  is the projection onto the plane orthogonal to v, and R is the π/2-rotation in the plane orthogo-Pvz

nal to v in the direction counterclockwise from the point-of-view of v. The linearity of the cross product
now follows because both R and  are linear.Pvz

DEFINITION: The triple product (or box product) [uvw] of three vectors in R3 is defined as a
number whose

{ absolute value is the volume of the parallelepiped determined by the three vectors, and

{ sign is positive (negative) if u, v, w forms a right (left) hand system.

THEOREM A.5.2. For any three vectors u, v, and w in R3, we have:

a. [uvw] = [vwu] = [wuv] = −[uvw] = −[vwu] = −[wuv].

b. [uvw] = 〈u × v, w〉 = 〈u, v × w〉 = 〈w × u, v〉.

c. [uvw] = 0 if and only if the three vectors are linearly dependent.

d. If {e1,e2,e3} is a right-handed orthonormal basis for R3, then with respect to this basis,

[u, v, w] = …u % v, w  = det

u1 v1 w1

u2 v2 w2

u3 v3 w3

,

where 

u = Σuiei , v = Σviei , and w = Σwiei .

Proof: The reader should be able to check parts a, b, c directly from the definition of [uvw] and the
geometric definition of the inner product. Part d follows directly from the definition of determinant in
A.6 or can at this point be taken as a definition of the determinant in R3. Or more directly, it is easy to
check that elementary column operations will not change the volume.

THEOREM A.5.3. (Double Cross Formula) For any three vectors u, v, and w in R3 we have:

(u × v) × w = 〈u, w〉v − 〈v, w〉u
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and thus

w × (u × v) = 〈v,w〉u − 〈u, w〉v.

Proof: In the special case that u equals w, (u × v) × u is in the same direction as Pu⊥(v)–to see this,
use your right hand–and its magnitude is |u|2|Pu⊥(v)|. Thus,

.(u%v) %u= u
2Puz(v) = u

2
v −

…u,v 

u 2 u = …u, u v−…u, v u

If u and v are parallel, then both sides are zero. If u and v are not parallel, then {u, v, u × v} is a basis for
R3, and thus, w is a linear combination:

w = ru + sv + t(u × v).

Therefore,

(u × v) × w = (u × v) × (ru + sv + t(u × v)) =
= r((u × v) × u) + s((u × v) × v) + t((u × v) × (u × v)) =

= r((u × v) × u) − s((v × u) × v) + 0 =
= r〈u, u〉v − r〈v, u〉u − s〈v, v〉u + 〈v, u〉v =

= 〈ru+sv, u〉v − 〈ru+sv, v〉v =

= 〈ru+sv+t(u × v), u〉v − 〈ru+sv+t(u × v), v〉v =
= 〈u, w〉v − 〈v, w〉u.

A.6. Volumes, Orientation, and Determinants

We now examine the effect of a linear operator on volumes in higher dimensions. The usual
approach in linear algebra books is to start with the algebra and then go to the geometry. They define the
determinant of a square matrix, and then show that all the matrices that represent the same linear operator
have the same determinant, which can then be called the determinant of the linear operator. It is then
shown that if T is a linear operator from Rn to Rn, then this determinant is equal to

n-volume of T(C)
n-volume of C

for any n-cube C in Rn. We will proceed in the reverse direction. We will start with the geometry and
proceed to the algebra.

THEOREM A.6.1. For every linear operator T from Rn to Rn and every n-cube C in Rn, the ratio 

n-volume of T(C)
n-volume of C

is a constant independent of C.

Proof: Since T is the product of reflections, shears, and dilations (Theorem A.4.3), we need only
prove the theorem for these 3 types of operators. The reader can check that reflections and shears do not
change volumes and that a dilation of λ in the direction of a vector V changes volumes by the ratio of λ.
This completes the proof.

DEFINITION: We denote the constant from A.6.1 by |det(T)|. If you are in a setting (such as R2 or
R3) where there is a clear understanding of orientation then you can give det(T) a sign by
declaring that 

det(T) = |det(T)|, if C and T(C) have the same orientation,

and

det(T) = −|det(T)|, if C and T(C) have different orientations.
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We will return to the issue of orientation later (A.6.4 and A.6.5).

THEOREM A.6.2. If T and S are two linear operators from Rn to Rn, then 

|det(TS)| = |det(T)| |det(S)|.

Proof. We see that

 det( TS) =
n-volume of TS(C)

n-volume of C
=

n-volume of T(S(C))
n-volume of S(C)

n-volume of S(C)
n-volume of C

=

.=
n-volume of T(S(C))

n-volume of S(C) det(S)

So the proof will be completed if we show that 

.det(T) =
n-volume of T(S(C))

n-volume of S(C)

But n-volume can be calculated by filling the region with smaller and smaller cubes and then taking a
limit. Thus, the ratio of the areas of the little cubes and their images will be |det(T)| and so also the limit.

COROLLARY A.6.3. The following are equivalent:

a. |det(T)| ≠ 0. 

b. T takes any basis to another basis.

c. T has an inverse T−1 such that TT−1 = T−1T = identity, and 

|det(T−1)| = .1
det(T)

DEFINITION: If M is a matrix that represents the linear operator T with respect to a basis B, then
we define |det(M)| = |det(T)|. This definition is well defined because the Alternate proof of

Theorem A.4.3 shows that |det(S)| and |det(T)| are both determined in the same way by their
common matrix M, using either row or column operations.

THEOREM A.6.4. If T is a linear operator T with |det(T)| ≠ 0, then there is a one-parameter
family of linear operators Tt (0≤t≤1) such that 

a. T0 = T,

b. for all t, |det(Tt)| ≠ 0,

 c. the function t → Mt is continuous where Mt is the matrix for Tt with respect to a fixed basis.

d. T1 is either the identity operator or a reflection through the orthogonal complement of a fixed

vector V.

Any one-parameter family satisfying a-c is called an isotopy of T.
Proof: First note that the theorem is true if T is either a shear, dilation, or reflection, and in the case

of shears and dilations (with λ = 1), T1 is the identity. If the theorem is true for operators T and S, then
TtSt is easily seen to be an isotopy of TS with (TS)1 = T1S1 equal either to the identity or to a reflection or
to the product of two reflections. The product of two reflections is a rotation, which is clearly isotopic to
the identity. The theorem now follows because every linear operator is the product of dilations, shears,
and reflections.

DEFINITION: If T1 is the identity we say that T is orientation preserving. If T1 is a reflection we
say that T is orientation reversing.
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THEOREM A.6.5. If T is a linear operator with |det(T)| ≠ 0, then T cannot be both orientation
preserving and orientation reversing. Thus, we can define

det(T) = |det(T)|, if T is orientation preserving

det(T) = −|det(T)|, if T is orientation reversing.

Proof: In dimensions 2 and 3 this is geometrically obvious because there is a clear meaning of orien-
tation, and we know that a right-hand system cannot be isotoped to a left-hand system. Dimensions 2 and
3 are the only dimensions that we need in this book. In higher dimensions, the geometry is not so
obvious, and thus, one may wish to resort to the algebraic proof that there is a unique function defined on
n-tuples of n-vectors, which is

1. multilinear—linear in each (vector) variable,

2. alternating—if you interchange two vectors, you change the sign (note that this corresponds to
a reflection), and

3. normed—equal to 1 on the identity matrix.

See [LA: Damiano] for a proof of this.

A.7. Eigenvalues and Eigenvectors

A nonzero vector v is called an eigenvector for the linear operator T if 

T(v) = λv, for some scalar λ.

The scalar is called the eigenvalue associated with the eigenvector v. Note that if v is an eigenvector,
then so is av, for and a ≠ 0.

THEOREM A.7.1. The following statements about the linear operator T are equivalent:

a. T has an inverse,

b. ker(T) = 0,

c. det(T) ≠ 0,

d. 0 is not an eigenvalue for T.

Proof: T has an inverse if and only if T is one-to-one and onto, which is true (by A.4.1) if and only if
ker(T) = 0. T has an inverse if and only if (by A.6.3) det(T) ≠ 0. But, if T has 0 as an eigenvalue, then the
associated eigenvector is in the kernel ker(T), and if v is a nonzero vector in ker(T), then T(v) = 0 = 0v,  
and thus, 0 is an eigenvalue.

Thus, if λ is an eigenvalue for T, and v is its associated eigenvector, then T(v)−λv = 0 and v is in the
kernel of T−λI, and thus, we have:

THEOREM A.7.2. For a linear operator T, λ is an eigenvalue if and only if

det(T−λI) = 0.

Once we have found the eigenvalues, then the eigenvectors can be found by solving the linear equation
T(v)−λv = 0 for v.

THEOREM A.7.3. (The Principal Axis Theorem). If T is a symmetric linear operator on Rn,

that is, for every v, w,

〈T(v),w〉 = 〈v,T(w)〉,
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then there is an orthonormal basis, {e1,...,en}, for Rn, consisting entirely of eigenvectors of T
with real eigenvalues.

Proofs can be found in many linear algebra texts.

A.8. Introduction to Tensors

We do not use the language of tensors significantly in this book, but many of the notions in this
book can be described in the tensor language. In this section we will introduce the terminology of tensors
that is used in many treatments of differential geometry, and then we will use this terminology to
describe many of the notions used in this book.

If V is a vector space over the field K, then a  linear function from V to K  is called a linear

functional. 

Examples of linear functionals:

1. The i-th coordinate functional: v → vi, which assigns to each vector v its i-th coordinate with
respect some fixed basis.

2. The directional derivative of f with respect to a tangent vector: Xp → Xp f, which assigns to
each vector Xp in the tangent space TpM the number that is the rate of change at p of f along a
curve with velocity vector Xp. This was shown to be linear in Problem 4.8.

We can define addition and scalar multiplication for linear functionals on V as follows: If α and β
are linear functionals on V, and k is an element in K, then

(α + β)(v) ≡ α(v) + β(v) and (kα)(v) ≡ k(α(v)).

With these operations the space of all linear functionals on V forms a vector space called the conjugate

space (or dual space) to V and is often denoted by V '. If {e1,e2,...,en} is a basis for V, then define ei to be
the linear functional that assigns to each vector v its i-th coordinate with respect to the basis. Then for
any linear functional α, we have 

α(v) = α(v1e1 + v2e2 + ... + vnen) =      

         = α(v1e1) + α(v2e2) + ... + α(vnen) =      

              = v1α(e1) + v2α(e2) + ... + vnα(en).     

Thus, if we define α(ei) ≡ αi , then

α(v) = Σviαi = Σαie
i(v) = Σ(αie

i)(v),

and we can write

α = α1e
1 + α2e

2 + ... + αne
n.

Thus {e1,e2,...,en} is a basis for V ', and hence, the conjugate space has the same dimension as V.
Linear functionals are often called covectors because they are dual in the sense that if you apply a

covector (linear functional) to a vector, you get a number (element of the field K) and, conversely, if you
apply a vector to a covector, you also get a number. In fact, vectors in V can be expressed as linear
functionals on the conjugate space V ' by the identification:

v(α) ≡α(v).

We express this by saying that V = V ''.
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A tensor of type (p,q) on the vector space V is a real-valued function F of p vectors variables and q
covector (linear functional) variables:

F(v1,v2,...,vp;α1,α2,...,αq) ∈ R,

which is linear in each variable separately. 

Examples of tensors:

1. Any linear functional is a tensor of type (1,0). Thus, if f is any differentiable real-valued
function defined on a smooth surface M, then Xp → Xp f is a tensor of type (1,0) that is deter-
mined by the two numbers x1 f, x2 f.

2. Any vector v in V determines a unique tensor  of type (0,1) by the identification: ≡α(v).v̂ v̂(�)
Thus, it is possible to think of a vector as a tensor of type (0,1).

3. The Riemannian metric is a tensor of type (2,0) on the tangent space at a point.

4. A linear operator T determines a unique tensor T^ of type (1,1) by the identification:
T^(v,α) = α(T(v)).

5. By Problem 8.5, the Riemann curvature tensors are tensors of types (1,3) and (0,4).

But not everything is a tensor. For example, if we have a C2 coordinate patch on a manifold M, then 

X,Y → ∇XY

is a vector-valued function, and thus its i-th coordinate ei(∇XY) is a number and thus,

X,Y,α → α(∇XY) = Σαie
i(∇XY)

looks like it might be a tensor of type (2,1) but fails to be a tensor, because it depends on the values of the
vector field Y near p and not just on Yp .
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