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Log del Pezzo surfaces of index < 2 and Smooth
Divisor Theorem

1.1. Basic definitions and notation

Let Z be a normal algebraic surface, and Kz be a canonical Weil divisor on
it. The surface Z is called Q-Gorenstein if a certain positive multiple of
K is Cartier, and Q-factorial if this is true for any Weil divisor D. These
properties are local: one has to require all singularities to be Q-Gorenstein,
respectively Q-factorial.

Let us denote by Z'(Z) and Div(Z) the groups of Weil and Cartier
divisors on Z. Assume that Z is Q-factorial. Then the groups Z1(Z) ® Q
and Div(Z) ® Q of Q-Cartier divisors and Q-Weil divisors coincide. The
intersection form defines natural pairings

Div(Z) @ Q x Div(Z2)  Q — Q,

Div(Z) ® R x Div(Z) ® R — R.

Quotient groups modulo kernels of these pairings are denoted Ng(Z) and
Ngr(Z) respectively; if the surface Z is projective, they are finite-dimensio-
nal linear spaces. The Kleiman—-Mori cone is a convex cone NE(Z) in
Ng(Z), the closure of the cone generated by the classes of effective curves.

Let D be a Q-Cartier divisor on Z. We will say that D is ample if
some positive multiple is an ample Cartier divisor in the usual sense. By
Kleiman’s criterion [Kle66], for this to hold it is necessary and sufficient
that D defines a strictly positive linear function on NE(Z) — {0}.

One says that the surface Z has only log terminal singularities if
it is Q-Gorenstein and for one (and then any) resolution of singularities
n : Y — Z, in a natural formula Ky = 7*Kz + > o; F;, where F; are
irreducible divisors and a; € Q, one has a; > —1. The least common
multiple of denominators of o; is called the index of Z.
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1.2. LOG TERMINAL SINGULARITIES OF INDEX 2 13

It is known that two-dimensional log terminal singularities in character-
istic zero are exactly the quotient singularities [Kaw84]. A self-contained
and characteristic-free classification in terms of dual graphs of resolutions
is given in [Ale92]. Log terminal singularities are rational and Q-factorial.
We can now formulate the following:

Definition 1.1. A normal complete surface Z is called a log del Pezzo sur-
face if it has only log terminal singularities and the anticanonical divisor
—Kz is ample. It has index < k if all of its singularities are of index < k.

We will use the following notation. If D is a Q-Weil divisor, D =
> cCi, ¢; € Q, then " D™ will denote the round-up > "¢;"D;, and {D} =
> {ci}C; the fractional part. A divisor D is nef if for any curve C one has
D - C > 0; D is big and nef if in addition D? > 0.

Below we will frequently use the following generalization of Kodaira’s
vanishing theorem. The two-dimensional case is due to Miyaoka [Miy80]
and does not require the normal-crossing condition. The higher-dimensional
case is due to Kawamata [Kaw82] and Viehweg [Vie82].

Theorem 1.2 (Generalized Kodaira’s Vanishing theorem). Let Y be a
smooth surface and let D be a Q-divisor on'Y such that

(1) supp{D} is a divisor with normal crossings;
(2) D is big and nef.

Then H(Ky +"™D™) = 0 fori > 0.

1.2. Log terminal singularities of index 2

Let (Z,p) be a two-dimensional log terminal singularity of index < 2, and
7 : Z — Z be its minimal resolution. We have K 5 =Kz + > oF,
where —1 < a; < 0and F? < —2. Therefore, for each i one has o; = -1/2
or 0. One can rewrite the set of equations K5 - F; = —F? — 2 in a matrix

form:
M-(n,...,an) = (~F2 —2,...,—F2 — 2)t,

where M = (F;- Fj) is the intersection matrix. By a basic theorem of Mum-
ford [Mum61], M is negative definite and, in particular, nondegenerate. All
the entries of the inverse matrix M ~! are strictly negative [Art62].

Let us give some easy consequences of this formula.

(1) If for some %9, a;, = 0 then all a; = 0, and the singularity (Z, p)
is Du Val, of type A,,, D,,, Fs, 7 or Eg.
(2) If all o; = —1/2 then we get the following list of singularities:
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In these graphs every curve F; corresponds to a vertex with weight
F?2, two vertices are connected by an edge if F; - F; = 1 and are
not connected if F; - F; = 0.

1.3. Basic facts about log del Pezzo surfaces

Lemma 1.3. All log del Pezzo surfaces Z are rational.

Proof. Let 7 : Z — Z be the minimal resolution of singularities, Kz =
™Kz + > aF;, -1 <a; <0. Then"—n*K;" = —K3, and so

K (Oz) = KKz +—n"Kz7) =0
by Theorem 1.2.

Also, h°(nK3) = 0 for any positive integer n since —m, K3 = —K3z
is an effective nonzero Q-Weil divisor. Therefore, by Castelnuovo criterion
the surface Z, and hence also Z, are rational. O

Lemma 1.4. In the above notation, if Z +# P2 or F,, then the Kleiman-Mori
cone of the surface Z is generated by the curves F; and exceptional curves
of the Ist kind. The number of these curves is finite. There are no other
irreducible curves with negative self-intersection number (i. e. exceptional
curves) on Z. _

Moreover, in this statement the minimal resolution Z can be replaced
by any resolution of singularities 7 : Z' — Z such that o; < 0, where
Kz = 7Kz + Y o, F; (for example, by the right resolution of Z, see
Section 1.5 below).

Proof. Let us show that on the surface Z (or Z') there exists a Q-divisor A
with A > 0, [A] = 0 and such that the divisor —(K 5 + A) is ample.
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Choose E = )_ 3;F; so that Z - F; > 0. Since the matrix (F; - Fj) is
negative definite and F; - F; > 0 for ¢ # 7, one has §; < 0. Let us show
that for a small 0 < € < 1 the divisor T' = —7*Kz + €F is ample. Since
(=Kz)? > 0, we may assume that T2 > 0. Now, let us check that, if the
positive number ¢ is sufficiently small, then C - T' > 0 for any irreducible
curve C' on Z. _

If C? > 0, this follows from the fact that the intersection form on Ng(Z)
is hyperbolic. If C = F;then F; - T = ¢F;; - E > 0.

If C2 < 0 and C # F; then

C-Kz;=C-(m"Kz+)» a;F}) <0.

2 ~
On the other hand, p,(C) = ¢ +C Ky +1>0. So, C? < 0 and
C - K3 < 0 imply that C? = —1 and p,(C) = 0, i.e. C is an exceptional
curve of the 1st kind.

If n is the index of Z then C' - (—7*Kz) € (1/n)Z. On the other hand,
0< —-C 71Kz =14 > a;F;- C < 1. Hence, there are only finitely
many possibilities for (—7*Kz)-C and ) o, F; - C, and for € small enough,
C-T>0.

By Kleiman’s criterion, this implies that 7" is ample. Since the degree of
the (—1)-curves with respect to T is bounded, there are only finitely many
of them.

One has —m* Kz + ¢E = — (K3 + Y_(—a; — €5;) F;). Therefore, A >
0, and for € < 1, we have [A] = 0, since —a; < 1.

Now, by Cone theorem [Kaw84, Thm.4.5], NE(Z) = S R;, where
R; are “good extremal rays”. The rays generated by the curves F; and
exceptional curves of the 1st kind are obviously extremal. On the other
hand, let R; be a “good extremal ray”, generated by an irreducible curve C.
IfC ¢ {F,...,Fx}thenC - Kz =C - (7*Kz + > o;F;) < 0. Hence, by
[Mor82] the curve C is an exceptional curve of the 1st kind, unless Z ~ P2
orF,. d

1.4. Smooth Divisor Theorem

Theorem 1.5. Let Z be a log del Pezzo surface of index < 2. Then the
linear system | — 2K z| is nonempty, has no fixed components and contains
a nonsingular element D € | — 2K z|.

Proof. Let 7 : Z — Z be the minimal resolution of singularities. It is

sufficient to prove the statement for the linear system | — 7*(2Kz)| on Z.
We have 2K ; = m*(2Kz) — ) a;F;, and alla; = 0 or 1 (a; = —2a;).



16 1. SMOOTH DIVISOR THEOREM

1. Nonemptiness.

~n*(2Kz) = Kz + (-3K; — Y _a;F,) = Kz + D",

where D = g(—2K§ — 5 a;F;) = —7*(3K7) is big and nef. Hence, by

Vanishing Theorem 1.2, H(—7*(2Kz)) = 0fori > 0and h%(—7*(2K32)) =
x(-7*(2Kz)) = 3K3 +1> 0.

2. Nonexistence of fixed components. Let E be the fixed part, so that
| — #*(2K z) — E| is a movable linear system. Then

W (—n*(2K3z)) = h°(-7*(2Kz) — E),
~m*(2Kz) ~E=Kz+(-3Kz - Y a;Fi—E)=K;+"D",

D= g(—QK-Z- ~ Y wF) - E = (-7*(2K3) — E) + (1" K3).

The first of these divisors is movable and the second is big and nef, so the
sum is big and nef. By Vanishing Theorem 1.2, we have
' (-7*(2Kz) —E) =0, i>0,
x(—=7*(2Kz)) = x(—7*(2Kz) — E),

®) 2x(~7"(2Kz)) —2x(~*(2Kz) — E) = E-(-21"(2Kz) - K3~ E).
Let us show that this expression (8) is not equal to zero. Suppose
—-m*Kz - (Kz+ E)=-n"Kz-E - K} <0.
Then the divisor K3 + E cannot be effective. Therefore,
x(—FE) = h%(—E) — h'(-E) + R%(K; + E) < 0.

Hence, £ - (K3 + E) = 2x(—F) — 2 < 0, and the expression (8) is strictly
positive. So, we can assume that —7* Kz - E > K%. Let us write

E =pB(-n*Kz) + F, FG(’)T*Kz)J'
in NQ(Z). One has 3 < 2since —m*Kz - (—7*(2Kz) — E) > 0. Then
E-(-2n"(2Kz)— Kz — E)= (5-8)BK} - F - () _oiF; + F).

The first term in this sum is > 3 since K% = —m*Kz - E > KZ% and

K% = x(7*(2Kz)) — 1is a positive integer. The second term achieves the
1 )

minimum for F' = —3 > a; F; and equals —-%, where m is the number of

non-Du Val singularities. Therefore, all that remains to be shown is that the
surface Z has fewer than 12 non-Du Val singularities.
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By Lemma 1.3, the surface Z is rational. By Noether’s formula, (K 5)2+
rkPic Z = 10. By Lemma 1.6 below, (K3)? > 0. Hence Z has no more
than rk Pic Z — 1 < 9 singular points.

Lemma 1.6. Let Z be a log del Pezzo sufface ofindex < 2 and 7 : Z—2Z
be its minimal resolution of singularities. Then K % > 0.

Proof. Onehas K5 = m*Kz+>_ o;F;. Denote K = m* Kz — Y o; F;. Let
us show that — K is nef. By Lemma 1.4, one has to show that -K-F,>0
and —K - C > 0 if C is an exceptional curve of the 1st kind. We have
—K -F; = K3 F, = —F? —2 > 0 since the resolution  is minimal. Next,

~-m"Kz-C=-Kz - C+) aF;-C=1+) o;Fi-C>0.
Since this number is a half-integer,
~K-C=142) aF;-C>0.

So, —K isnefand K % =K > 0. Finally, if Z =P? orF, then K % =9or
8 respectively. O

3. Existence of a smooth element. Assume that all divisors in the linear
system | — 7*(2K z)| are singular. Then there exists a base point P, and for
a general element D € | — 7*(2Kz)| the multiplicity of D at P is k > 2.
This point does not lie on F; since —7*(2Kz) - F; = 0. Lete : Y — Z be
the blowup at P, f = e : Y — Z, and let L be the exceptional divisor
of . We have: h(—f*(2Kz)) = h°(—f*(2Kz) — L), the linear system
| — f*(2Kz) — kL| is movable, and

2Ky = f*(2Kz) = Y _ a;F; + 2L,

—f*(2Kz) = Ky + (-3Ky = ) _aF,+2L) = Ky + D",

D= g(—2Ky -Y aFi+L)= g(—f*(QKZ) -1)=

S(=F"(2Kz) ~ KD) + (k= 1)I]

The divisor D is nef since for any irreducible curve C' # L, C - D‘Z 0, and
also D - L = 3/2. It is big since (— f*(2Kz) — L)? = 4K% — 1 > 0. Now,

—f*(2Kz) - L =Ky +(-3Ky - Y a;F;+L)=Ky+"D",

D= >(=2Ky = Y aFi+ 51) = 5 ((=f*(2Kz) = kL) + (k = 3)L).
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The latter divisor D is nef since for any irreducible curve C' # L, C-D > 0,
and also D - L = 2; D is big since

(-f*(2K3z) - %L)2 = 4K — 1—96 > 0.

Now, again by Vanishing Theorem 1.2, ,
hi(—f*(2Kz)) = hi(—=f*(2Kz) = L) =0 fori >0,
and one must have x(—f*(2Kz)) = x(—f*(2Kz) — L). But |
X(—f*(2Kz)) — x(—f*(2Kz) — L) =
- %L (=2f*(2Kz) — Ky —L) =1+ L - (—f*(2Kz)) > 0.
The contradiction thus obtained completes the proof of the theorem. O

Remark 1.7. In the same way, parts 1 and 3 can be proved for a log del
Pezzo surface of arbitrary index n and the linear system —7*(nKz). Part 2
is easy to prove under the assumption that ( E') passes only through (some
of) the Du Val singularities.

1.5. Reduction to DPN surfaces of elliptic type

Let Z be a log del Pezzo surface of index < 2. Consider the resolution of
singularities f : Y — Z for which every Du Val singularity is resolved
by inserting the usual tree of (—2)-curves, and the singularity K, by the
following chain:

©)
4 1 -4 - 1 4
0—0—0—0 --- -0—0O
N\ J
Y

2n-1 vertices

The latter resolution is obtained by blowing up all intersection points of ex-
ceptional curves on the minimal resolution of K, points, see their diagrams
in Section 1.2. In contrast to the minimal resolution, we will call this the
right resolution of singularities. Consider a smooth element Cy € |—2K73]|.
It does not pass through singularities of the surface Z. If we identify the
curve C, with its image under the morphism f, then it is easy to see from
the formulae of Section 1.2 that — f*2K; is linearly equivalent to C,, and
—2Ky with the disjoint union of C; and curves in the above diagrams which
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have self-intersection —4. Moreover, it is easy to compute the genus of the
curve Cy, and it equals g = K % + 1 > 2. This shows that the surface Y
is a right DPN surface of elliptic type in the sense of the next Chapter (see
Sections 2.1 and 2.8).

Vice versa, the results of Chapters 2 and 3 will imply (see Chapter 4)
that a right DPN surface Y of elliptic type admits a unique contraction of
exceptional curves f : Y — Z to a log del Pezzo surface of index < 2.

In this way, the classification of log del Pezzo surfaces of index < 2 is
reduced to classification of right DPN surfaces of elliptic type.
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