
Syntax and Semantics of Type Assignment Systems

Hirofumi Yokouchi
Department of Computer Science, Gunma University

1-5-1, Tenjin, Kiryu, Gunma, 376, Japan
yokouchi@cs.gunma-u.ac.jp

Abstract

This paper gives a survey on syntax and semantics for type assignment
systems, with a special attention to semantic completeness of the systems.
Starting with the most basic system with function types only, it introduces
polymorphic types, intersection types, union types, and existential type quan-
tifier in a step-by-step manner. It also provides several sequent-style formu-
lations of type assignment systems. With the sequent calculi, it shows the
properties of type assignment systems concerning the completeness and the
conservativity of various systems.

1 Introduction
There are two ways to introduce types into lambda calculus. The one is due to
Curry [10], and the system is called type assignment system. The original system
was defined with combinatory logic instead of lambda calculus, but it was modified
in a natural way to the lambda calculus $[11, 12]$. The other is due to Church [8],
and the system is called explicitly-typed lambda calculus. In this survey, we focus on
type assignment systems, and we present how naturally we can define semantics and
syntax for them with a special attention to the semantic completeness. A criterion
of the naturality is whether or not a syntactical system is complete for a semantics.
There are a lot of variations and extensions for type assignment systeIns. In this
survey, we mainly treat intersection and union types, and universal and existential
quantifiers in addition to the basic systems with function types.

A type assignment system is designed on the operation of assigning a type to a
type-free λ-term. In this survey, we write M : σ for assigning a type σ to a type-
free λ-term M . The expression M : σ is called a statement, and we say that Λf has
type σ or that σ is a type of M . The most basic type constructor $is\rightarrow for$ defining
a function type, since the lambda calculus is an abstract theory of functions. In
the type assignment system, we can deduce, for example,

$\lambda x.x$: $\sigma\rightarrow\sigma$

for any type σ .

99

100 H. YOKOUCHI

The basic system with function types has been extended by introducing various
type constructors. The first extension is polymorphic type introduced indepen-
dently by Girard [19] and Reynolds [35]. The original system is based on the
explicitly typed lambda calculus. The system due to Girard is called system F,
and the one due to Reynolds is called polymorphic typed lambda calculus or second-
order typed lambda calculus. As shown in the above example, the λ-term $\lambda x.x$ has
type $\sigma\rightarrow\sigma$ for every type σ . To formalize this, we introduce type constructor \forall

and we write
$\lambda x.x$: $\forall t.(t\rightarrow t)$.

A type with universal quantifier is called a polymorphic type. A function with a
polymorphic type is called a polymorphic function. The concept of polymorphic
functions is widely used in modern programming languages.

In type assignment systems, a type is interpreted as a set of values in a model of
type-free lambda calculus. It is a natural attempt to extend types by introducing
various set operations. One of such extensions is an intersection type introduced
in [14]. We write $\sigma\wedge\tau$ for the type that denotes the intersection of the two sets
corresponding to σ and τ . A theoretical motivation of intersection types is to
extend the class of λ-terms that can have a type. For example, $\lambda x.xx$ cannot have
any type in the system with function types only. With intersection type, it can
have a type as:

$\lambda x.xx$: $(\sigma\wedge(\sigma\rightarrow\tau))\rightarrow\tau$.

If variable x has type $\sigma\wedge(\sigma\rightarrow\tau)$, then it has both σ and $\sigma\rightarrow\tau$, and xx has type
τ . Therefore, function $\lambda x.xx$ has type $(\sigma\wedge(\sigma\rightarrow\tau))\rightarrow\tau$. More generally, it has
been proved that every strongly normalizable λ-term has a type in the system with
intersection types.

Intersection types can be used in designing a stronger type system in program-
ming languages. A type denotes a set of values, so that a type can be regarded as
a data-specification. It is natural to define various types that denote, for example,
the set of all positive integer, the set of all even integers, and the set of all prime
numbers. We may design a stronger type checking mechanism by using these types
and the basic operations on types. For example, with types Int and Boolean, we
can derive

iszero(if L then 1 else -1) : Boolean

if L is a term of type Boolean. This typing is carried out in any ordinary type
system. Now we introduce type constants NegInt, ZeroInt, and PosInt, which
denote the set of all negative integers, the singleton set $\{0\}$, and the set of all
positive integers, respectively. Similarly we introduce True and False which denote
the singleton sets of the truth value true and false, respectively. Then, we can
assign a more refined type to the function iszero as:

iszero: $(NegInt\rightarrow False)\wedge(ZeroInt\rightarrow True)\wedge(PosInt\rightarrow False)$.

From this typing, we can derive

iszero(if L then 1 else -1) : False

SYNTAX AND SEMANTICS OF TYPE ASSIGNMENT SYSTEMS 101

for any λ-term L of type Boolean. This sample suggests the possibility that we
may carry out a sort of program verification by means of type checking. More
investigation on applications of intersection types to programming languages is
presented in [34, 31, 32].

Existential quantifier and union are the companions to universal quantifier and
intersection, respectively. Therefore it is natural to introduce existential quantifier
types and union types. These types were discussed in [29, 24, 7]. It has been
pointed that an existentially quantified type is related to the concept of abstract
types [29]. A union type brings the flexibility of typing to programming languages.
We write $\sigma\vee\tau$ for the type denoting the union of the two sets corresponding to σ

and τ . Let us consider the following function $E(p)$ on the set N of natural numbers
(including 0), which is taken from [30]:

$E(p)=(\lambda f.succ((ff)O))$ (if iszero(p) then $\lambda x.x$ else $\lambda yz.z$).

Here succ is the successor function, which adds one, and iszero is the function
checking whether the given value is 0 or not. If E is applied to value 0 , then $\lambda x.x$

is passed to the function $\lambda f.succ((ff)O)$ and the result of ff will be the identity
function $\lambda x.x$. Therefore, the result of evaluating $E(O)$ will become 1. If E is
applied to a positive integer, then $\lambda yz.z$ is passed to the function $\lambda f.succ((ff)O)$

and the result will also be 1. There is no run-time error. However, the function E

has no type in the type assignment systems $with\rightarrow\forall,$ $and\wedge$. The point is that
(if iszero(p) then $\lambda x.x$ else $\lambda yz.z$) may yield two possible values $\lambda x.x$ and $\lambda yz.z$

according to the value of p , and these two λ-terms cannot have any common type.
This is overcome by introducing union types. Define two types σ_{1} and σ_{2} as follows:

σ_{1}
\equiv $(N\rightarrow N)\wedge((N\rightarrow N)\rightarrow(N\rightarrow N))$,

σ_{2}
\equiv $(N\rightarrow N\rightarrow N)\wedge((N\rightarrow N\rightarrow N)\rightarrow(N\rightarrow N))$.

Then, $\lambda x.x$ and $\lambda yz.z$ have the types σ_{1} and σ_{2} , respectively, and therefore,
(if iszero(p) then $\lambda x.x$ else $\lambda yz.z$) has the type $\sigma_{1}\vee\sigma_{2}$. Moreover, if f has the
type $\sigma_{1}\vee\sigma_{2}$, then ff has type $N\rightarrow N$ and $(ff)O$ has type N. Consequently, the
function E can have type $N\rightarrow N$ if a union type is allowed.

Another aspect of type systems is the relationship with intuitionistic logic. It is
known that there is a close correspondence between types and logical formulas in
intuitionistic logic [11, 22, 13]. This correspondence is often called Curry-Howard
isomorphism or formulae-as-types isomorphism. When we define various type sys-
tems, the known logical systems provide us with useful information. Indeed, most
typ systems are designed on the analogy of natural deduction system for intuition-
istic logic. However, it is remarkable that the exact Curry-Howard isomorphism
does not hold for the systems with intersection or union types, although it holds
for the systems with function types and universal quantifier types. Is is also possi-
ble to define type assignment systems based on Gentzen’s sequent calculi. In this
survey, after introducing type assignment systems in the ordinary style, we define
them in the sequent-style and present analysis of type assignment systems by the
sequent-style formulations.

102 H. YOKOUCHI

In Section 2, we present the most basic system with function types only. In
Section 3 through 5, we introduce polymorphic types, intersection types, union
types and existential types, in a step-by-step manner. In Section 6, we introduce
type assignment systems based on sequent calculi for logic, and in Section 7 we
show several properties of type assignment with the sequent-style formulations.

The author would like to thank Masako Takahashi, Mariangiola Dezani-Ciancaglini,
and anonymous referees.

2 Function Types
In this section we present the basic definitions and ideas of type assignment systems,
introducing the systems which deal with only function types.

2.1 Preliminary Definitions
To begin with, we define preliminary notations on λ-terms and types. Let $L,$ ΛI ,
$N,$ $L_{0},$ $L_{1},$

\ldots stand for (type-free) λ-terms, and $x,$ $y,$ $z,$ $x_{0},$ $x_{1},$ \ldots stand for (term)
variables. As a convention [5], two λ-terms are syntactically identified, whenever
they are the same except for bound variables. When two λ-terms M and N are
β-equivalent, we write $M\cong\beta N$. When there is a β-reduction from M to N , we
write $M\rightarrow_{\beta}N$. For a λ-term M , the set of all the free variables in Λf is denoted by
$FV(M)$. The term obtained from M by simultaneously substituting $N_{1},$

$\ldots,$
N_{n} for

free variables $x_{1},$
$\ldots,$

x_{n} in M is denoted by $M[x_{1}, \ldots, x_{n} :=N_{1}, \ldots, N_{n}]$. When a
λ-term M has a normal form, the normal form of M is denoted by norm (M) .

Given an infinite set of type variables, we define types by induction as follows:

\bullet a type variable is a type,

\bullet if σ and τ are types, then $(\sigma\rightarrow\tau)$ is a type.

Parentheses may be omitted when no confusion occurs. In particular,
$\sigma_{1}\rightarrow\cdots\rightarrow\sigma_{n}\rightarrow\tau$ stands for $(\sigma_{1}\rightarrow(\cdots(\sigma_{n}\rightarrow\tau)\cdots))$. In this paper, $\sigma,$ $\tau,$ $\rho,$ $\sigma_{0},$ \ldots

stand for types, and $s,$ $t,$ $u,$ $s_{0},$ \ldots stand for type variables. For each pair of a λ-term
M and a type σ , the expression M : σ is called a (typing) statement. The λ-term Λf

is called a subject of M : σ . A basis is a finite set of statements x_{1} : $\sigma_{1},$
$\ldots,$

x_{n} : σ_{n} ,
where each subject x_{i} is a variable and no two statements have the same variable
as subject. Let $\Gamma,$ $\Delta,$ $\Gamma_{0},$

\ldots stand for bases. A sequent is an expression of the
form $\Gamma\triangleright M$: σ .

2.2 Simple Semantics
The informal meaning of a type is a set of values, and a statement Λ/f : τ means
that the value of Λf is contained in the set denoted by τ . In case $\mathbb{J}f$ has free
variables $x_{1},$

$\ldots,$
x_{n} , the value of M depends on the value of these variables, and a

sequent x_{1} : $\sigma_{1},$
$\ldots,$

x_{n} : $\sigma_{n}\triangleright\lambda f$: τ is intended to express that, if the value of each
x_{i} is contained in the set denoted by σ_{i} , then the value of Λf is contained in the set

SYNTAX AND SEMANTICS OF TYPE ASSIGNMENT SYSTEMS 103

denoted by τ . To formalize this intuitive meaning of type assignment, we define
the interpretations of λ-terms and types. For λ-terms, we use a λ-model, a model
of type-free λ-calculus. The following is a standard definition of λ-model [5].

Definition (λ-models). A λ -model is a triple $\mathfrak{M}=(D, \cdot, [-])$, where D is a
nonempty set, \cdot is a binary operation on D , and [-] is a mapping that assigns an
element $[M]_{\xi}\in D$ to each pair of a λ-term M and a function ξ , called a term
environment in \mathfrak{M} , from the set of all variables to D . Moreover, a λ-model is
required to satisfy the following conditions:

(1) $[x]_{\xi}=\xi(x)$,

(2) $[MN]_{\xi}=[M]_{\xi}\cdot[N]_{\xi}$,

(3) $[\lambda x.M]_{\xi}\cdot a=[M]_{\xi(x:=a)}$, where $\xi(x :=a)$ is the term environment defined
by $\xi(x :=a)(x)=a$ and $\xi(x :=a)(y)=\xi(y)$ if $x\not\equiv y$,

(4) if $\xi(x)=\xi^{\prime}(x)$ for every $x\in FV(M)$, then $[M]_{\xi}=[N]_{\xi}$,

(5) if $[M]_{\xi(x:=a)}=[N]_{\xi(x:=a)}$ for every $a\in D$, then $[\lambda x.M]_{\xi}=[\lambda x.N]_{\xi}$.

Given a λ-model $\mathfrak{M}=$ $(D, \cdot, [-])$, a type is interpreted as a subset of D . It is
reasonable to interpret type $constructor\rightarrow by$

$[A\rightarrow sB]=$ { $d\in D|d\cdot a\in B$ for every $a\in A$ }.

The semantics with this interpretation of function types is called simple semantics.
The interpretation of types and the validity of sequents are defined as follows.

Definition (Interpretation of types in simple semantics). Let $\mathfrak{M}=(D, \cdot, [-])$ be
a λ-model. Let ν be a mapping, called a type environment over \mathfrak{M} , that assigns
to each variable x , a subset $\nu(x)\subseteq D$. For each type σ , we define $[\sigma]_{\nu}\subseteq D$ by
induction as follows:

(1) $[t]_{\nu}=\nu(t)$,

(2) $[\rho\rightarrow\tau]_{\nu}=[[\rho]_{\nu}\rightarrow s[\tau]_{\nu}]$,

Definition (Validity of sequents). Let $\mathfrak{M}=(D, \cdot, [-])$ be an λ-model, ξ a term
environment in \mathfrak{M} , and ν a type environment over \mathfrak{M} . A statement M : σ is said
to be valid in (\mathfrak{M}, ξ, ν) if and only if $[_{\lrcorner}\mathfrak{h}f]_{\xi}\in[\sigma]_{\nu}$. A sequent $\Gamma\triangleright M$: σ is said
to be valid in (\mathfrak{M}, ξ, ν) if and only if either $\xi(x)\not\in[\rho]_{\nu}$ for some x : ρ in Γ or
$[M]_{\xi}\in[\sigma]_{\nu}$. Moreover, $\Gamma\triangleright M$: σ is said to be valid in \mathfrak{M} if and only if it is valid
in (\mathfrak{M}, ξ, ν) for every pair of term environment ξ and type environment ν .

104 H. YOKOUCHI

2.3 Type Inference Rules

The inference system T_{\rightarrow} on sequents is defined by the following axioms and
rules:

(Var) $\Gamma\triangleright x$: σ $(x : \sigma\in\Gamma)$

$(\rightarrow I)$ $\frac{\Gamma,x:\sigma\triangleright M:\tau}{\Gamma\triangleright\lambda x.M:\sigma\rightarrow\tau}$

$\Gamma\triangleright M$: $\sigma\rightarrow\tau$ $\Gamma\triangleright N$: σ

$(\rightarrow E)$

$\Gamma\triangleright MN:\tau$

In rule $(\rightarrow I),$ $\Gamma,$ x : σ denotes the basis $\Gamma\cup\{x : \sigma\}$ provided no statements in Γ

have the variable x as subject.
In this paper, we define a number of type assignment systems. In general, when

a sequent $\Gamma\triangleright M$: σ can be derived in a system T , we say that $\Gamma\triangleright M$: σ is
derivable in T , and write $T\vdash\Gamma\triangleright M$: σ . Similarly, when a sequent $F\triangleright M$: σ

cannot be derived in a system T , we say that $\Gamma\triangleright M$: σ is underivable in T , and
write T }$/\Gamma\triangleright M$: σ . When no confusion occurs, we sometimes $write\vdash\Gamma\triangleright M$: σ

and $V\Gamma\triangleright M$: σ by omitting the system name.
The following definitions are standard ones for inference systems.

Definition. Let T be a type assignment system, and (R) a rule of the form:

$\frac{S_{1}\ldots S_{n}}{S}$

where $S_{1},$
$\ldots,$

$S_{n},$ S are sequents.
(i) The rule (R) is said to be admissible in T when, if $T\vdash S_{i}$ for every i

$(1\leq i\leq n)$, then $T\vdash S$.
(ii) The rule (R) is said to be derived in T when there exists a derivation from

$S_{i}(1\leq i\leq n)$ to S with the axioms and rules in T .
(iii) The rule (R) is said to be sound in a λ-model \mathfrak{M} when, if every S_{i} is valid

in \mathfrak{M} , then S is valid in \mathfrak{M} .

For example, the rules $(\rightarrow I)$ and $(\rightarrow E)$ are sound in all λ-models. Moreover
(Var) is valid in all λ-models, and therefore, we have the soundness theorem of
$T_{\rightarrow}:$ if $T\rightarrow\vdash\Gamma\triangleright M$: σ , then $\Gamma\triangleright\Lambda f$: σ is valid in all λ-models. The following
rule (Eq_{β}) is also sound in all λ-models:

$\Gamma\triangleright M$: σ

(Eq_{β}) $(M\cong\beta N)$
$\Gamma\triangleright N$: σ

However, (Eq_{β}) is not admissible nor derivable in T_{\rightarrow} . The following rules are
admissible in $T\rightarrow$

’ but they are not derived in $T_{\rightarrow}:$

(Weakening) $\frac{\Gamma\triangleright M:\tau}{\Gamma,x:\sigma\triangleright M:\tau}$

SYNTAX AND SEMANTICS OF TYPE ASSIGNMENT SYSTEMS 105

(Strengthening) $\frac{\Gamma,x:\sigma\triangleright M:\tau}{\Gamma\triangleright M:\tau}$ $(x\not\in FV(M))$

(Simple) $\frac{\Gamma,x:\sigma\triangleright Mx:\tau}{\Gamma\triangleright M:\sigma\rightarrow\tau}$ $(x\not\in FV(M))$

These three rules are essentially used in the proof of the completeness theorem
later.

We show two syntactical properties of type assignment systems. These two
theorems are the most basic properties concerning the derivability, and they are
satisfied by almost all type assignment systems in addition to T_{\rightarrow} . For the proof,
see, ex., [3].

Theorem 2.3.1 (Strong normalization). If $T_{\rightarrow}\vdash\Gamma\triangleright M$: σ , then M is strongly
normalizable. Namely, there is no infinite l-step β -reduction sequence starting from
M .

Theorem 2.3.2 (Subject reduction). If $T_{\rightarrow}\vdash\Gamma\triangleright M$: σ and $M\rightarrow_{\beta}N$, then
$T\vdash\Gamma\triangleright N$: σ .

2.4 Completeness Theorem

The system $T\rightarrow is$ not semantically complete by a simple reason. For example,
$\triangleright(\lambda xy.y)((\lambda x.xx)(\lambda x.xx))$: $\sigma\rightarrow\sigma$ is valid in all λ-models, but it is underivable in

T_{\rightarrow} . It is known that, if we add (Eq_{β}) to T_{\rightarrow} , then the resulting system becomes
complete for simple semantics.

Theorem 2.4.1 $[20, 4]$ (Completeness for simple semantics). A sequent is derivable
in $T\rightarrow+(Eq_{\beta})$ if and only if it is valid in all λ -models with respect to simple
semantics.

For the discussions later, we provide the proof here, following the one by Hindley
[20]. Let Φ be an infinite set of statements whose subjects are pairwise distinct
variables, such that Φ contains infinitely many statements x_{i} : σ for every type σ .
Let $\mathfrak{M}_{0}=$ $(D_{0}, \cdot, [-])$ be the λ-model defined as follows:

(1) $D_{0}=$ { $[\Lambda I]|\lambda l$ is a λ-term},
where $[M]$ is the equivalence class containing M with respect to β-equality,

(2) $[M]\cdot[N]=[MN]$,

(3) $[AI]_{\xi}=[M[x_{1}, \ldots, x_{n} :=N_{1}, \ldots, N_{n}]]$,
where $FV(M)=\{x_{1}, \ldots, x_{n}\}$ and $\xi(x_{i})=[N_{i}]$ for each i .

This λ-model is often called the open term model. Define term environment ξ_{0} and
type environment ν_{0} by: $\xi_{0}(x)=[x]$, and

$\nu_{0}(t)=\{[M]|T_{\rightarrow}+(Eq_{\beta})\vdash\Phi\triangleright M : t\}$,

106 H. YOKOUCHI

$where\vdash\Phi\triangleright\Lambda I$: t means $that\vdash\Delta\triangleright M$: t for some finite subset $\Delta\subseteq\Phi$. Then, by
induction on σ , we show that

$[M]_{\xi_{0}}\in[\sigma]_{\nu_{0}}$ if and only if $T_{\rightarrow}+(Eq_{\beta})\vdash\Phi\triangleright\Lambda f$: σ .

When σ is a type variable, it is easily proved. Note that (Eq_{β}) is needed for the
proof of the only-if part. Consider the case $\sigma\equiv\rho\rightarrow\tau$. Suppose $[M]_{\xi_{0}}\in[\rho\rightarrow\tau]_{\nu_{0}}$.
By the construction of Φ , there is a variable x : $\rho\in\Phi$ with $x\not\in FV(M)$. By
induction hypothesis, $[x]\in[\rho]_{\nu_{0}}$, and therefore, by definition, $[Mx]\in[\tau]_{\nu_{0}}$. By
induction hypothesis, $\vdash\Phi\triangleright Mx$: τ . Let $\vdash\Delta\triangleright Mx$: τ with $\Delta\subseteq\Phi$. It is easily
proved that (Simple) and (Weakening) are admissible rules in $T_{\rightarrow}+(Eq_{\beta})$. If x : $\rho\in$

$\Delta,$ $then\vdash\Delta-\{x:\rho\}\triangleright M$: $\rho\rightarrow\tau$ by (Simple). Otherwise, $\vdash\Delta\cup\{x:\rho\}\triangleright Mx:\tau$

by (Weakening), and $\vdash\Delta\triangleright M$: $\rho\rightarrow\tau$ by (Simple). Therefore, in both cases, we
$have\vdash\Phi\triangleright M$: $\rho\rightarrow\tau$. Conversely, $suppose\vdash\Phi\triangleright M$: $\rho\rightarrow\tau$ and $[N]\in[\rho]_{\nu_{0}}$. Then,
by induction hypothesis, $\vdash\Phi\triangleright N$: ρ , and therefore, $\vdash\Phi\triangleright MN$: τ . Using the
induction hypothesis again, we have $[MN]\in[\tau]_{\nu_{0}}$. Since N is arbitrary, we have
$[M]\in[\rho\rightarrow\tau]_{\nu_{0}}$.

Now we are ready to prove the completeness theorem. The if-part is straight-
forward by induction on the height of the derivation tree. For the only-if part,
suppose $\Gamma\triangleright M$: σ is valid in all models. Take Φ such that $\Gamma\subseteq\Phi$. Then,
$[M]_{\xi_{0}}\in[\sigma]_{\nu_{0}}$, and therefore, by the claim proved above, $\vdash\Phi\triangleright M$: σ . Let
$\vdash\Delta\triangleright M$: σ with $\Delta\subseteq\Phi$. Let Δ ‘ be the basis obtained from Δ by removing all
statements $ x:\rho$ with $x\in FV(M)$. It is easily proved that (Strengthening) is an ad-
missible rules in $T\rightarrow+(Eq_{\beta})$. Therefore, we $have\vdash\Delta^{\prime}\triangleright M$: σ by (Strengthening),
and $\vdash\Gamma\triangleright M$: σ by (Weakening). This completes the proof of the completeness
theorem for $T_{\rightarrow}+(Eq_{\beta})$.

The proof suggests a stronger form of the completeness theorem.

Theorem 2.4.2 (Strong completeness). There exist a λ -model \mathfrak{M} and a type
environment ν over \mathfrak{M} such that, for every sequent $\Gamma\triangleright M$: σ , the following two
conditions are equivalent: (1) $T\rightarrow+(Eq_{\beta})\vdash\Gamma\triangleright M$: σ , and (2) $\Gamma\triangleright\Lambda I$: σ is valid
in (\mathfrak{M}, ξ, ν) for every term environment ξ in \mathfrak{M} .

The strong completeness is proved by modifying the proof of Theorem 2.4.1.
Let $\Phi,$ $\mathfrak{M}_{0},$ ξ_{0} , and ν_{0} be the same as defined in the proof of Theorem 2.4.1. We
show that Theorem 2.4.2 holds for \mathfrak{M}_{0} and ν_{0} . The implication (1) $\Rightarrow(2)$ follows
from the only-if part of Theorem 2.4.1. For (2) $\Rightarrow(1)$, suppose $\Gamma\triangleright M$: σ is valid
in $(\mathfrak{M}_{0}, \xi, \nu_{0})$ for every term environment ξ in \mathfrak{M}_{0} . For each x : σ in Γ , we pick
a variable \hat{x} such that $\hat{x}\not\in FTV(M)$ and \hat{x} : σ is contained in Φ , and we define
$\hat{\Gamma}$ and \hat{M} as the basis and the λ-term obtained from Γ and ΛI , respectively, by
replacing each x by \hat{x} . Then, $\hat{\Gamma}\triangleright\hat{M}$: σ is valid in $(\mathfrak{M}_{0}, \xi_{0}, \nu_{0})$, and therefore,
$[\hat{M}]_{\xi_{0}}\in[\sigma]_{\nu_{0}}$. By the claim proved in the proof of Theorem 2.4.1, $\vdash\Phi\triangleright\hat{M}$: σ .
In a similar way used in the proof of Theorem 2.4.1 we have $\vdash\hat{\Gamma}\triangleright\hat{M}$: σ , and
therefore, $\vdash\Gamma\triangleright M$: σ . This completes the proof of Theorem 2.4.2.

SYNTAX AND SEMANTICS OF TYPE ASSIGNMENT SYSTEMS 107

2.5 F-Semantics

Another interpretation of function types is possible. A λ-model has the structure
where a set of functions on the underlying set D is embedded into D . More pre-
cisely, given a λ-model $\mathfrak{M}=$ $(D, \cdot, [-])$, we define $[D\rightarrow D]$ of functions on D , and
a pair of mappings ϕ : $D\rightarrow[D\rightarrow D]$ and ψ : $[D\rightarrow D]\rightarrow D$ as follows:

$[D\rightarrow D]=\{f_{a}|a\in D\}$,

$\phi(a)=f_{a}$, $\psi(f_{a})=[\lambda x.zx]_{\xi(z:=a)}$,

where f_{a} is the function on D defined by: $f_{a}(x)=a\cdot x$. Then, it is easily verified
that $\phi\circ\psi=id_{[D\rightarrow D]}$. In other words, $[D\rightarrow D]$ is embedded into D by ψ . Let F

be the range of ψ , namely,

$F=\{[\lambda x.zxI_{\xi(z:=a)}|a\in D\}$.

We call F the function kernel of \mathfrak{M} .
The arguments above show that the “proper” representative of a function in

$[D\rightarrow D]$ is an element of F . Therefore, it is reasonable to impose the restriction
that a value in the interpretation of a function type should be in F . Taking this
discussion into account, we can define another semantics of type assignment, called
F-semantics.

Definition (Interpretation of types in F-semantics). The F-semantics is the same
as semantics except that clause (2) for the interpretation of function types is re-
placed by:

(2) $[\sigma\rightarrow\tau]_{\nu}=[[\sigma]_{\nu}\rightarrow F[\tau]\nu]$,

where $[A\rightarrow FB]=$ { $d\in F|d\cdot a\in B$ for every $a\in A$ }.

It has been proved in [21] that $T_{\rightarrow}+(Eq_{\beta})$ is also complete with respect to
F-semantics. The proof is more difficult than the one for simple semantics. In
case of F-semantics, we cannot use ξ_{0} defined in the proof of Theorem 2.4.1. If
x : $\sigma\rightarrow\tau$ is contained in Φ , then $\xi_{0}(x)$ must be contained in F . Therefore, we
need careful treatment for defining ξ_{0} . For the detail, see [21]. When other type
constructors are introduced, the model construction for the completeness becomes
more complex.

2.6 Constants and Nonlogical Axioms

We can add constants and nonlogical axioms to T_{\rightarrow} as well as ordinary logical
calculi. The definitions of term interpretation and type interpretation are modified
in a trivial way when constants are added. Given $\mathfrak{M}=$ $(D, \cdot, [-])$, we introduce
a valuation V that defines $V(c)$ for each term constant and $V(p)$ for each type

108 H. YOKOUCHI

constant. The term interpretation [-] is extended to $[-]^{V}$ for λ-terms with term
constants by:

$[M[x_{1}, \ldots, x_{n} :=c_{1}, \ldots, c_{n}]]_{\xi}^{V}=[M]_{\xi(x_{1},\ldots,x_{\mathfrak{n}}\cdot=V(c_{1}),\ldots,V(c_{n}))}$,

where M has no term constants. The type interpretation is also extended $[-]^{V}$ for
types with type constants by adding the clause: $[p]_{\nu}^{V}=V(p)$ for type constant p .
Let \mathcal{A} be a set of statements whose subjects have no free variables and whose types
contain no type variables. Then, the system T_{\rightarrow} is extended by adding following
axioms:

(Axiom A) $\Gamma\triangleright M$: σ $(M : \sigma\in \mathcal{A})$

The problem is the completeness of the resulting system. Namely, the following
two are equivalent? (1) $T_{\rightarrow}+(Eq_{\beta})+(Axiom_{A})\vdash\Gamma\triangleright M$: σ , and (2) $\Gamma\triangleright M$: σ

is valid in all (\mathfrak{M}, ξ, ν) with constant valuation V such that every statement in
A is valid in \mathfrak{M} with V . The implication (1) $\Rightarrow(2)$ holds obviously. However,
the converse does not generally hold. Recall the proof, described previously in
Section 2.4, of the completeness theorem for the system without nonlogical axioms.
In the proof, it is the key that the rule (Strengthening) is admissible in $T\rightarrow+$

(Eq_{β}) . However, in case nonlogical axioms are added, this admissibility is no
longer satisfied. For example, take $\mathcal{A}=\{\lambda x.c : p\rightarrow q\}$ with term constant c and
type constants p and q . Then, we have $T_{\rightarrow}+(Axiom_{A})+(Eq_{\beta})\vdash x$: $p\triangleright c$: q ,
while $T_{\rightarrow}+(Axiom_{A})+(Eq_{\beta})\nu\triangleright c:q$.

A simple solution of this problem is to add (Strengthening) into the system.
However, (Strengthening) is not a sound rule. For example, let $ V(p)=\emptyset$ and
$V(c)\not\in V(q)$. Then, $\triangleright\lambda x.c:p\rightarrow q$ and x : $p\triangleright c$: q are valid in the model with
V , but $\triangleright c:q$ is not valid. The point is that we allow a type to denote the empty
set of values. If only nonempty types are considered, we have the completeness
theorem.

Theorem 2.6.1 [27] (Strong completeness without empty types). For every \mathcal{A} ,
there exist a λ -model \mathfrak{M} , valuation V , and type environment ν such that $ V(p)\neq$

\emptyset for any type constant $p,$ $\nu(t)\neq\emptyset$ for any type variable t , and the following
two conditions are equivalent for every sequent $\Gamma\triangleright Jf$: σ : (1) $\Gamma\triangleright AI$: σ is
derivable in $T_{\rightarrow}+(Axiom_{A})$ +(Strengthening) +(Simple) $+(Eq_{\beta})$, and (2) for
every term environment $\xi,$ $\Gamma\triangleright M$: σ is valid in (\mathfrak{M}, ξ, ν) and V with respect to
simple semantics.

Corollary 2.6.2 (Completeness without empty types). A sequent is derivable in
$T_{\rightarrow}+(Axiom_{A})+(Strengthening)+(Simple)+(Eq_{\beta})$ if and only if it is valid in
all (\mathfrak{M}, ξ, ν) and V with respect to simple semantics such that $ V(p)\neq\emptyset$ for any
type constant p and $\nu(t)\neq\emptyset$ for any type variable t .

In the proof of Theorem 2.4.2, strong completeness of $T_{\rightarrow}+(Eq_{\beta})$, we used
the fact that (Simple), (Strengthening), and (Weakening) are admissible. In The-
orem 2.6.1, (Simple) and (Strengthening) are added to the system. The rule

SYNTAX AND SEMANTICS OF TYPE ASSIGNMENT SYSTEMS 109

(Weakening) is still admissible in $T_{\rightarrow}+(Axiom_{A})+(Strengthening)+(Simple)+$

(Eq_{β}) . Therefore, Theorem 2.6.1 follows immediately from the proof of Theo-
rem 2.4.2.

We may expect that (Simple) can be replaced by the following simpler form:
$\Gamma\triangleright\lambda x.Mx:\sigma$

(η) $(x\not\in FV(M))$
$\Gamma\triangleright M$: σ

Certainly (η) is admissible in $T_{\rightarrow}+(Eq_{\beta})$. However, this does not hold for the
system with nonlogical axioms. For example, if we add nonlogical axiom $\lambda x.ax$: p

with term constant a and type constant p , then (η) is not admissible in the system
$T_{\rightarrow}+(Axiom_{A})$ +(Strengthening) +(Simple) $+(Eq_{\beta})$. Indeed, $\triangleright\lambda x.ax$: p is
derivable, while $\triangleright a:p$ is underivable.

Furthermore, (η) is not sound when constants are added. For example, let a be
a term constant, and p a type constant. Given a λ-model \mathfrak{M} , we define a valuation
V such that $V(p)=F$ and $V(a)\not\in F$, where F be the function kernel of \mathfrak{M} . Then,
$\triangleright\lambda x.ax:p$ is valid in the model, since $[\lambda x.ax]_{\xi}^{V}\in F$. On the other hand, $\triangleright a:p$

is not valid, since $V(a)\not\in F$. Therefore, (η) is not sound in the model \mathfrak{M} with V .

2.7 Empty Types
We can extend $T_{\rightarrow}+(Axiom_{A})$ to handle empty types. We first present an example
showing that $T_{\rightarrow}+(Axiom_{A})+(Eq_{\beta})$ is not complete. We take

$\mathcal{A}=\{\lambda x.c:p_{1}\rightarrow p_{2}, d:p_{2}\rightarrow q, d:(p_{1}\rightarrow p_{3})\rightarrow q\}$

with term constants c and d , and type constants $p_{1},$ $p_{2},$ p_{3} and q . Then, $\triangleright dc:q$ is
valid in any models in which the statements in \mathcal{A} are valid, while it is underivable
in $T_{\rightarrow}+(Axiom_{A})+(Eq_{\beta})$. If $ V(p_{1})=\emptyset$, then c : $p_{1}\rightarrow p_{3}$ is valid. Otherwise,
$c:p_{2}$ is valid since $\lambda x.c:p_{1}\rightarrow p_{2}$ is valid. Therefore, in both cases, $dc:q$ is valid.
It is the key to this proof that we distinguish two cases whether $ V(p_{1})=\emptyset$. In the
system $T_{\rightarrow}+(Axiom_{A})+(Eq_{\beta})$, however, we cannot express the hypothesis that
a type is empty, and $dc:p\rightarrow q$ is underivable. A formal proof of the underivability
will be presented in Section 7.3.

The discussion presented above suggests how the system should be extended.
We introduce an expression of the form Empty (σ) into a basis. Intuitively, Empty (σ)

means that σ is an empty type. The emptiness of types are handled by the following
rules:

(EmptyI) $\Gamma,$ $x:\sigma,$ $Empty(\sigma)\triangleright M$: τ

(EmptyE) $\frac{\Gamma,x:\sigma\triangleright M:\tau\Gamma,Empty(\sigma)\triangleright M:\tau}{\Gamma\triangleright M:\tau}$

Then, the resulting system satisfies the following completeness theorem.

Theorem 2.7.1 [27] (Completeness with empty types). A sequent is derivable in
$T_{\rightarrow}+(Axiom_{A})+(Simple)+(EmptyI)+(EmptyE)+(Eq_{\beta})$ if and only if it is
valid in all λ -models \mathfrak{M} and valuations V in which every statement in \mathcal{A} is valid.

110 H. YOKOUCHI

Note that the system in Theorem 2.7.1 does not have (Strengthening), which is
not generally sound in a model with empty types.

It is also remarkable that the strong completeness theorem like Theorem 2.6.1
does not hold for the system with (EmptyI) and (EmptyE). For example, let
$\mathcal{A}=\{\lambda x.c:p\rightarrow q\}$ with term constant c and type constants p and q . Suppose that
there exist a λ-model, valuation V , and type environment ν such that a sequent
$\Gamma\triangleright M$: σ is derivable in $T_{\rightarrow}+(Axiom_{A})+(Simple)+(EmptyI)+(EmptyE)+(Eq_{\beta})$

if and only if it is valid in (\mathfrak{M}, ξ, ν) and V for every ξ . Then, we have $ V(p)=\emptyset$, since
$\triangleright\lambda x.c:p\rightarrow q$ is derivable and $\triangleright c:q$ is not derivable. Therefore, $[p\rightarrow q]_{\xi}^{V}$ contains
all values, so that, by the assumption, every sequent of the form $\Gamma\triangleright M$: $p\rightarrow q$ must
be derivable. However, this is impossible. Consequently, the strong completeness
theorem does not hold.

2.8 Curry-Howard Isomorphism

It is known that there is a close correspondence between types and logical formulas.
If we erase any information on λ-terms in (var), $(\rightarrow I)$, and $(\rightarrow E)$ of $T\rightarrow$

’ then we
get the following axioms and rules:

$\Gamma\triangleright\sigma$ $(\sigma\in\Gamma)$

$\frac{\Gamma,\sigma\triangleright\tau}{\Gamma\triangleright\sigma\rightarrow\tau}$

$\Gamma\triangleright\sigma\rightarrow\tau$ $\Gamma\triangleright\sigma$

$\Gamma\triangleright\tau$

If type constructor \rightarrow is regarded as implication, then the resulting system is
exactly a variant of natural deduction system for intuitionistic logic. In this setting,
a type becomes a proposition, and a basis Γ becomes a finite set of propositions.
The expression $\Gamma\triangleright\sigma$ means that σ is deduced from the assumptions in Γ . We
write L for this logical system. Let $\Gamma\triangleright\lambda f$: σ be derived in T_{\rightarrow} . If we remove
any information on λ-terms from the derivation tree for $\Gamma\triangleright M$: σ in T , then the
resulting tree becomes a derivation for $\Gamma^{o}\triangleright\sigma$ in L. Here Γ^{o} is the set obtained
from Γ by replacing each x : ρ by ρ . Therefore, $\Gamma^{O}\triangleright\sigma$ is provable in intuitionistic
logic with implication only. Conversely, suppose $\Delta\triangleright\tau$ is provable in intuitionistic
logic. Then, there exist a λ-term M and a basis Γ such that $\Gamma^{o}=\Delta$ and $\Gamma\triangleright ilf$: τ

is derived in T_{\rightarrow} . This is easily verified by induction on the derivation of $\Delta\triangleright\Lambda f$: τ

in L. A derivation tree for $\Gamma\triangleright M$: σ in T_{\rightarrow} is completely determined by the λ-term
M . In fact, if M is, for instance, an application term, then the last applied rule
should be $(\rightarrow E)$. Therefore, the λ-term M determines a proof of the proposition
τ in L. The correspondence between propositions (proofs) and types (λ-terms)
is called Curry-Howard isomorphism. See [11, 22, 13]. It is summarized by the
following theorem.

Theorem 2.8.1. (i) If $\Gamma\triangleright M$: σ is derivable in T_{\rightarrow} , then $\Gamma^{o}\triangleright\sigma$ is derivable in
L.

SYNTAX AND SEMANTICS OF TYPE ASSIGNMENT SYSTEMS 111

(ii) If $\Delta\triangleright\tau$ is derivable in L , then there exists $\Gamma\triangleright M$: τ derivable in $T_{\rightarrow}such$

that $\Gamma^{o}=\underline{\wedge}$.

3 Polymorphic Types
In this section we introduce universal quantifier to the basic system, and we in-
vestigate how the definition of semantics is extended and how the completeness
theorem is obtained.

3.1 Type Interpretation
We extend the definition of types by adding the following clause:

\bullet if σ is a type and t is type variable, then $(\forall t\sigma)$ is a type.

We write $\forall t_{1}\forall t_{2}\ldots\forall t_{n}.\sigma$ for $(\forall t_{1} (\forall t_{2} (. . . (\forall t_{n}(\sigma))\ldots)))$. Therefore, $\forall t.t\rightarrow t$ does
not mean $((\forall t(t))\rightarrow t)$ but $(\forall t(t\rightarrow t))$. This notation is used in Notation 4.1.6 of
[3].

We prepair several notations for handling type variables in a polymorphic type.
In a standard way, we define a free occurrence of type variables in a type σ and
write $FTV(\sigma)$ for the set of all the free type variables in σ . The type obtained
from a type σ by simultaneously substituting types $\tau_{1},$

$\ldots,$
τ_{n} for type variables

$t_{1},$
$\ldots,$

t_{n} is denoted by $\sigma[t_{1}, \ldots, t_{n} :=\tau_{1}, \ldots, \tau_{n}]$. For a basis Γ we define $FTV(\Gamma)$

and $\Gamma[t_{1}, \ldots, t_{n} :=\tau_{1}, \ldots, \tau_{n}]$ in a similar way.
Intuitively, the statement M : $\forall t.\sigma$ means that we have M : σ for all possible

values of the type variable t . For the interpretation of polymorphic types, it is
needed to specify the range of possible values that type variables may have. There-
fore, a model of the system with polymorphic types is defined as a pair of a λ-model
$(D, \cdot, [-])$ and a set \mathcal{T} of subsets of D , where \mathcal{T} is a range for type variables. We
first define simple semantics.

Definition (Interpretation of types in simple semantics). Let $\mathfrak{M}=(D, \cdot, [-])$ be
a λ-model, \mathcal{T} a set of subsets of $D,$ ν a type environment that assigns to each
variable, an element in \mathcal{T} . In simple semantics, for each type σ , we define the
subset $[\sigma]_{\nu}\subseteq D$ by induction as follows:

(1) $[t]_{\nu}=\nu(t)$,

(2) $[\rho\rightarrow\tau]_{\nu}=[[\rho]_{\nu}\rightarrow s[\tau]_{\nu}]$,

(3) $[\forall t.\tau]_{\nu}=\cap\{[\tau]_{\nu(t:=P)}|P\in \mathcal{T}\}$.

Here $\nu(t :=P)$ is the type environment defined by: $\nu(t :=P)(t)=P$ and $\nu(t$ $:=$

$P)(s)=\nu(s)$ for any type variable s other than t .
The pair $(\mathfrak{M}, \mathcal{T})$ is said to be a model for simple semantics if and only if $[\sigma]_{\nu}\in \mathcal{T}$

for every pair of a type σ and a type environment ν in \mathcal{T} .

112 $]]$. YOKOUCHI

It is possible to define \mathcal{T} as the set of all subsets of D . However, this causes
a significant problem. In this interpretation, the type $\forall t.t$ is always interpreted as
the empty set, and so any sequents of the form $\Gamma,$ x : $\forall t.t\triangleright iII$: σ are valid. It is
reasonable for $\forall t.t$ to be empty in some models, but we also know that there exist
models in which $\forall t.t$ is not empty. One of such models is found in $[25, 24]$, in which
a model is constructed with ideals on cpo’s.

3.2 Type Inference Rules and Completeness

A polymorphic type is handled by the following pair of rules:

$(\forall I)$ $\frac{\Gamma\triangleright M:\sigma}{\Gamma\triangleright M:\forall t.\sigma}$ $(t\not\in FTV(\Gamma))$

$(\forall E)$ $\frac{\Gamma\triangleright M:\forall t.\sigma}{\Gamma\triangleright M:\sigma[t:=\alpha]}$

We define $T_{\rightarrow\forall}$ as the system obtained from T_{\rightarrow} by adding $(\forall E)$ and $(\forall I)$ together
with type constructor \forall .

We expect that $T_{\rightarrow\forall}+(Eq_{\beta})$ is complete for simple semantics as well as $T_{\rightarrow}+$

(Eq_{β}) . However, this is not actually the case. For example,

x : $s\rightarrow(\forall t.t)\triangleright x$: $\forall t.s\rightarrow t$

is valid in all models $(\mathfrak{M}, \mathcal{T})$ for simple semantics, while it is not derivable in
$T_{\rightarrow\forall}+(Eq_{\beta})$. It was essential to the proof of the completeness theorem for T_{\rightarrow}

that (Simple) is admissible in $T_{\rightarrow}+(Eq_{\beta})$. In $T_{\rightarrow\forall}+(Eq_{\beta})$, however, (Simple)
is not admissible. This suggests that we may obtain the completeness theorem if
(Simple) is added. Indeed, we have the following completeness theorem.

Theorem 3.2.1 (Completeness of $T_{\rightarrow\forall}$ for simple semantics). A sequent is deriv-
able in $T_{\rightarrow\forall}+(Simple)+(Eq_{\beta})$ if and only if it is valid in all models $(\mathfrak{M}, \mathcal{T})$ for
simple semantics.

Furthermore, $T_{\rightarrow\forall}$ satisfies the strong completeness theorem as well as $T\rightarrow$.
For the system with nonlogical axioms, we also have completeness results similar
to Theorems 2.6.1, 2.6.2, and 2.7.1 for $T\rightarrow$.

3.3 F-Semantics
We define F-semantics by replacing the clause (2) in the definition of type interpre-
tation by (2) as defined in Section 2.5. However, the system $T_{\rightarrow\forall}+(Eq_{\beta})$ is not
complete for F-semantics. For example, x : $\forall t.t\triangleright\lambda z.xz$: $\forall t.t$ is valid in all models
for F-semantics, but it is underivable in $T_{\rightarrow\forall}+(Eq_{\beta})$. The completeness problem
for F-semantics is solved in [36] by introducing the following pair of rules:

(FI) $\frac{\Gamma\triangleright M:\sigma\Gamma\triangleright 1\ovalbox{\tt\small REJECT} M:\rho_{1}\rightarrow\rho_{2}}{\Gamma\triangleright\lambda x.\Lambda Ix:\sigma}$ $(x\not\in FV(\mathbb{J}_{i}I))$

SYNTAX AND SEMANTICS OF TYPE ASSIGNMENT SYSTEMS 113

(FE) $\frac{\Gamma\triangleright\lambda x.11/Ix:\sigma\Gamma\triangleright M:\rho_{1}\rightarrow\rho_{2}}{\Gamma\triangleright M:\sigma}$ $(x\not\in FV(M))$

The definition of F-semantics requires that any λ-term M with function type should
be interpreted as a value contained in the function kernel F of the given λ-model.
The condition that $a\in F$ is expressed that $a=[\lambda x.zx]_{\xi(z.=a)}$. Therefore, given M

with function type, Λl and $\lambda x.Mx$ are interpreted as the same value in any models,
so that M and $\lambda x.Mx$ have exactly the same types. This property of F-semantics
is expressed by the rules (FI) and (FE). As the following completeness theorem
shows, (FI) and (FE) are sufficient for characterizing F-semantics.

Theorem 3.2 [36] (Completeness of $T_{\rightarrow\forall}$ for F-semantics). A sequent is derivable
in $T_{\rightarrow\forall}+(FI)+(FE)+(Eq_{\beta})$ if and only if it is valid in all models $(\mathfrak{M}, \mathcal{T})$ for
F-semantics.

3.4 Inference Semantics
As shown above, $T_{\rightarrow\forall}+(Eq_{\beta})$ is not complete for simple semantics or F-semantics.
The next problem is whether we can define another semantics that makes $T_{\rightarrow\forall}+$

(Eq_{β}) complete. An answer is inference semantics proposed in [27].

Definition (Inference semantics). Let $\mathfrak{M}=(D, \cdot, [-])$ be a λ-model and [-] a
mapping that assigns $[\sigma]\subseteq D$ to each type σ . The pair $(\mathfrak{M}$, [-] $)$ is said to be a
model for inference semantics if and only if the following conditions are satisfied:

(1) $[[\rho]\rightarrow F[\tau]]\subseteq[\rho\rightarrow\tau]\subseteq[[\rho]\rightarrow s[\tau]]$,

(2) $[\forall t.\tau]=\cap$ { $[\tau[t:=\alpha]]|\alpha$ is a type}.

Let ξ be a term environment. A sequent $\Gamma\triangleright M$: σ is said to be valid in
$(\mathfrak{M}$, [-], $\xi)$ if and only if either $[Al]_{\xi}\in[\sigma]$ or $\xi(x)\not\in[\rho]$ for some x : ρ in Γ .
Furthermore, $\Gamma\triangleright \mathbb{J}I$: σ is said to be valid in $(\mathfrak{M}$, [-] $)$ if and only if it is valid in
$(\mathfrak{M}$, [-], $\xi)$ for all term environments ξ in \mathfrak{M} .

Note that (1) and (2) in inference semantics are not definitions but conditions.
It is verified that $T_{\rightarrow\forall}+(Eq_{\beta})$ is complete for inference semantics. The proof is
similar to the one for the completeness theorem with respect to simple semantics.

Theorem 3.4.1 (Completeness of $T_{\rightarrow\forall}$ for inference semantics). A sequent is
derivable in $T_{\rightarrow\forall}+(Eq_{\beta})$ if and only if it is valid in all models for inference
semantics.

3.5 Coherent Semantics
It is remarkable that, in inference semantics, $[\sigma]=[\sigma]$ does not generally im-
ply $[\tau[t :=\sigma]]=[\tau[t :=\sigma^{\prime}]]$. For example, in any model of inference semantics,

114 H. YOKOUCHI

$[\forall t.t]=[\forall s\forall t.tI$ while $[(\forall t.t)\rightarrow\tau]=[(\forall s\forall t.t)\rightarrow\tau]$ does not generally hold. This
is not natural because the value of a type is not determined the values of subex-
pressions of the type. To repair this unsatisfactory property, we introduce another
semantics called coherent semantics [36].

Definition (Coherent semantics). Let $\mathfrak{M}=(D, \cdot, [-])$ be a λ-model, \mathcal{T} a set of
subsets of $D,$ $\rightarrow a$ binary operation on \mathcal{T} that satisfies the condition that $[A\rightarrow F$

$B]\subseteq[A\rightarrow B]\subseteq[A\rightarrow_{S}B]$ for any $A,$ $B\in \mathcal{T}$. For each pair of a type σ and a type
environment ν in \mathcal{T} we define $[\sigma]_{\nu}\subseteq D$ by induction as follows:

(1) $[t]_{\nu}=\nu(t)$,

(2) $[\rho\rightarrow\tau]_{\nu}=[[\rho]_{\nu}\rightarrow[\tau]_{\nu}]$,

(3) $[\forall t.\tau]_{\nu}=\cap\{[\tau]_{\nu(t:=P)}|P\in \mathcal{T}\}$.

The triple $(\mathfrak{M}, \mathcal{T}, \rightarrow)$ is said to be a model for coherent semantics if and only if
$[\sigma]_{\nu}\in \mathcal{T}$ for every pair of type σ and type environment ν in \mathcal{T} .

It is remarkable that simple semantics and F-semantics can be regarded as
special cases of coherent semantics. Indeed, let $(\mathfrak{M}, \mathcal{T})$ be a model for simple
semantics. If we define binary $operation\rightarrow on\mathcal{T}$ by $[A\rightarrow B]=[s\rightarrow t]_{\nu(s:=A)(t.=B)}$,
then $(\mathfrak{M}, \mathcal{T}, \rightarrow)$ becomes a model for coherent semantics.

The system $T_{\rightarrow\forall}+(Eq_{\beta})$ is not complete for coherent semantics. For example,
$ x:(\forall t.t)\rightarrow\sigma\triangleright x:(\forall s\forall t.t)\rightarrow\sigma$ is valid in all models for coherent semantics, while
it is not derivable in $T_{\rightarrow\forall}+(Eq_{\beta})$. The point is the fact that, in $T_{\rightarrow\forall}+(Eq_{\beta})$,
the types $\forall t.t$ and $\forall s\forall t.t$ are inhabited by exactly the same set of λ-terms, but the
set of λ-terms with type $(\forall t.t)\rightarrow\sigma$ differs from that with type $(\forall s\forall t.t)\rightarrow\sigma$. We
modify the system $T_{\rightarrow\forall}$ so that the resulting system becomes complete for coherent
semantics.

We define equivalence relation \cong among types by the following axioms and
rules:

(1) $\sigma\cong\sigma$,

(2) if $\sigma\cong\tau$, then $\tau\cong\sigma$,

(3) if $\rho\cong\sigma$ and $\sigma\cong\tau$, then $\rho\cong\tau$,

(4) if $\sigma\cong\sigma^{\prime}$ and $\tau\cong\tau$, then $\sigma\rightarrow\tau\cong\sigma^{\prime}\rightarrow\tau^{\prime}$,

(5) if $\sigma\cong\tau$, then $\forall t.\sigma\cong\forall t.\tau$,

(6) if $t\not\in FTV(\sigma)$, then $\forall t.\sigma\cong\sigma$,

(7) $\forall s\forall t.\sigma\cong\forall t\forall s.\sigma$.

With this equivalence relation we introduce the following rule:

SYNTAX AND SEMANTICS OF TYPE ASSIGNMENT SYSTEMS 115

$\Gamma\triangleright M$: σ

(EqType) $(\sigma\cong\tau)$

$\Gamma\triangleright M$: τ

This equivalence relation and rule are taken from [33]. If (EqType) is added, we
have the completeness theorem for coherent semantics, which is proved in a similar
way to the proof of the completeness for simple semantics.

Theorem 3.5.1 (Completeness of $T_{\rightarrow\forall}$ for coherent semantics). A sequent is
derivable in $T_{\rightarrow\forall}+(EqType)+(Eq_{\beta})$ if and only if it is valid in all models for
coherent semantics.

3.6 Subtype Relation

Another topic on polymorphic types is the notion of subtype relation. We define
preorder $\subseteq among$ types by the following axioms and rules:

(1) $\sigma\subseteq\sigma$,

(2) if $\rho\subseteq\sigma$ and $\sigma\subseteq\tau$, then $\rho\subseteq\tau$,

(3) if $\sigma\subseteq\sigma^{\prime}$ and $\tau\subseteq\tau^{\prime}$, then $\sigma\rightarrow\tau\subseteq\sigma\rightarrow\tau$.

(4) if $\sigma\subseteq\tau$ and $t\not\in FTV(\sigma)$, then $\sigma\subseteq\forall t.\tau$,

(5) $\forall t.\sigma\subseteq\sigma[t:=\alpha]$,

(6) if $t\not\in FTV(\sigma)$, then $\forall t.(\sigma\rightarrow\tau)\subseteq\sigma\rightarrow(\forall t.\tau)$.

Intuitively, $\sigma\subseteq\tau$ means that σ is a subset of τ . This subtype relation is introduced
in [27].

We can show that the subtype relation \subseteq is characterized by $T_{\rightarrow\forall}+(Simple)$.
Namely, it is proved that $T_{\rightarrow\forall}+(Simple)\vdash x$: $\sigma\triangleright x$: τ if and only if $\sigma\subseteq\tau$. With
the subtype relation we introduce the following rule:

$\Gamma\triangleright M$: σ

(\subseteq) $(\sigma\subseteq\tau)$

$\Gamma\triangleright M$: τ

It is easily verified that $T_{\rightarrow\forall}$ +(Simple) $+(Eq_{\beta})\vdash\Gamma\triangleright\Lambda I$: σ if and only if
$T_{\rightarrow\forall}+(\subseteq)+(Eq_{\beta})\vdash\Gamma\triangleright M$: σ . In the next section we define a subtype relation
for the system with intersection types, and we demonstrate that it is used in a
special model construction of type assignment.

4 Intersection Types
An intersection type is another extension to the type assignment systems. Roughly
speaking, an intersection type is a finite fragment of universally-quantified type,
and they have similar properties. The results on the completeness of the system
with universal type quantifier are all extended to the system with intersection types.

116 $]$ {. YOKOUCHI

4.1 Type Interpretation and Inference Rules

An intersection type is defined by adding the following clause to the definition of
types:

\bullet if σ and τ are types, then $(\sigma\wedge\tau)$ is a type.

We can naturally interpret intersection types in all styles of semantics introduced
so far. In simple semantics, F-semantics, and coherent semantics, the type inter-
pretation [-] is extended by adding the clause:

$\bullet[\sigma\wedge\tau]_{\nu}=[\sigma]_{\nu}\cap[\tau]_{\nu}$.

In inference semantics, we postulate the additional condition:

$\bullet[\sigma\wedge\tau]=[\sigma]\cap[\tau]$.

The intersection types are handled by the following rules:

$\Gamma\triangleright M$: σ
$\Gamma\triangleright M$: τ

$(\wedge I)$

$\Gamma\triangleright M$: $\sigma\wedge\tau$

$\Gamma\triangleright M$: $\sigma\wedge\tau$ $\Gamma\triangleright M$: $\sigma\wedge\tau$

$(\wedge E)$

$\Gamma\triangleright M$: σ
$\Gamma\triangleright M$: τ

We define $T_{\rightarrow\wedge}$ as the system obtained from T_{\rightarrow} by adding these rules together
with type $constructor\wedge$. The resulting system satisfies the completeness theorems
as well as $T_{\rightarrow\forall}$.

Theorem 4.1.1 (Completeness of $T_{\rightarrow\wedge}$ for simple semantics). A sequent is deriv-
able in $T\rightarrow\wedge+(Simple)+(Eq_{\beta})$ if and only if it is valid in all λ -models with respect
to simple semantics.

Theorem 4.1.2 (Completeness of $T_{\rightarrow\wedge}$ for F-semantics). A sequent is derivable
in $T_{\rightarrow\wedge}+(FI)+(FE)+(Eq_{\beta})$ if and only if it is valid in all λ -models with respect
to F-semantics.

Theorem 4.1.3 (Completeness of $T_{\rightarrow\wedge}$ for inference semantics). A sequent is
derivable in $T_{\rightarrow\wedge}+(Eq_{\beta})$ if and only if it is valid in all models for inference
semantics.

For coherent semantics, the equivalence $relation\cong among$ intersection types are
defined by the following rules together with (1) $-(4)$ presented in Section 3.5:

\bullet if $\sigma\cong\sigma^{\prime}$ and $\tau\cong\tau^{\prime}$, then $\sigma\wedge\tau\cong\sigma^{\prime}$ A τ^{\prime} ,

$\bullet\sigma\wedge\tau\cong\tau\wedge\sigma$,

$\bullet\sigma\wedge\sigma\cong\sigma$.

SYNTAX AND SEMANTICS OF TYPE ASSIGNMENT SYSTEMS 117

Then, we have the completeness theorem for coherent semantics.

Theorem 4.1.4 (Completeness of $T\rightarrow\wedge for$ coherent semantics). A sequent is
derivable in $T_{\rightarrow\wedge}+(EqType)+(Eq_{\beta})$ if and only if it is valid in all models for
coherent semantics.

These completeness theorems are easily proved by modifying the proofs of the
same completeness theorem for T_{\rightarrow} or $T_{\rightarrow\forall}$, and they also holds for the system
$T_{\rightarrow\wedge\forall}$ with both intersection types and polymorphic types.

We may hope that an intersection type corresponds to conjunction in Curry-
Howard isomorphism. Indeed, if $\triangleright M$: σ is derivable in $T_{\rightarrow\wedge}$, then σ is provable
in intuitionistic logic. For example, $\triangleright\lambda x.xx:\sigma\wedge(\sigma\rightarrow\tau)\rightarrow\tau$ is derivable in $T_{\rightarrow\wedge}$,
and $\sigma\wedge(\sigma\rightarrow\tau)\rightarrow\tau$ is provable in intuitionistic logic. However, the converse is not
satisfied. For example, $\sigma\rightarrow\tau\rightarrow(\sigma\wedge\tau)$ is

provable in intuitionistic logic, but there is no λ-term with this type in $T_{\rightarrow\wedge}$.
The point is the form of rule $(\wedge I)$, in which the two upper sequents $\Gamma\triangleright M$: σ

and $\Gamma\triangleright M$: τ must have a common λ-term M . It is known that conjunction is
corresponding to a product type instead of intersection type. The next problem is
what kind of logic is corresponding to intersection type system. For this problem,
a relationship with relevance logic is presented in [15].

4.2 The ω-type

The original system for intersection types has type constant ω . The ω-type is the
universal type that includes all types. Precisely, the ω-type is interpreted in a
λ-model $\mathfrak{M}=$ $(D, \cdot, [-])$ by:

$\bullet[\omega]_{\nu}=D$.

We define $T_{\rightarrow\wedge\omega}$ as the system obtained from $T_{\rightarrow\wedge}$ by adding the following rule
together with the ω-type:

(ω) $\Gamma\triangleright \mathbb{J}/$[: ω

The system $T_{\rightarrow\wedge\omega}$ has a nice property that (Eq_{β}) is an admissible rule. It is proved
in [4] that (Eq_{β}) is an admissible rule in $T_{\rightarrow\wedge\omega}$ and in $T_{\rightarrow\wedge\omega}$ +(Simple). With
this property, the completeness theorem of $T_{\rightarrow\wedge\omega}$ becomes the following form.

Theorem 4.2.1 (Completeness of $T_{\rightarrow\wedge\omega}$ for simple semantics). A sequent is deriv-
able in $T_{\rightarrow\wedge\omega}+(Simple)$ if and only if it is valid in all models with respect to simple
semantics.

Theorem 4.2.2 (Completeness of $T_{\rightarrow\wedge\omega}$ for inference semantics). A sequent is
derivable in $T_{\rightarrow\wedge\omega}$ if and only if it is valid in all models with respect to inference
semantics.

118 H. YOKOUCHI

For F-semantics, the pair of (FI) and (FE) is not strong enough to state the
structure of F-semantics in case ω is added. For example,

$z:t\wedge(\omega\rightarrow\omega\rightarrow\omega)\triangleright\lambda xy.zxy:t$

is valid in all models for F-semantics, but it is not derivable in $T_{\rightarrow\wedge}+(FI)+(FE)+$

(Eq_{β}) . We need to strengthen (FI) and (FE) into the following forms:

(SFI)
$\frac{\Gamma\triangleright\lambda x_{1}\ldots x_{n}.M.:.\sigma\Gamma\triangleright.M:\rho.\rightarrow.\rho^{\prime}}{(x\not\in FV(M)an^{n}dnoneofx_{1},.,x\Gamma\triangleright\lambda x_{1}.xx.iMx:\sigma}n$

occur in Γ)

(SFE)
$\frac{\Gamma\triangleright\lambda x_{1}\ldots x_{n}x.Mx.:.\sigma\Gamma\triangleright M:.\rho\rightarrow\rho}{(x\not\in FV(M)andnoneofx_{1},..,x_{n}\Gamma\triangleright\lambda x_{1}.x_{n}.M:\sigma}occur$

in Γ)

It is proved in [36] that the resulting system satisfies the completeness theorem. See
also [16] for the further discussion on F-semantics of the system with intersection
types.

Theorem 4.2.3 [36] (Completeness of $T_{\rightarrow\wedge\omega}$ for F-semantics). A sequent is deriv-
able in $T_{\rightarrow\wedge\omega}+(SFI)+(SFE)$ if and only if it is valid in all models with respect
to F-semantics.

4.3 Filter Models

We define subtype relation \subseteq on the set of intersection types by the following
axioms and rules:

(1) $\sigma\subseteq\sigma$,

(2) if $\rho\subseteq\sigma$ and $\sigma\subseteq\tau$, then $\rho\subseteq\tau$,

(3) if $\sigma\subseteq\sigma^{\prime}$ and $\tau\subseteq\tau^{\prime}$, then $\sigma^{\prime}\rightarrow\tau\subseteq\sigma\rightarrow\tau^{\prime}$,

(4) if $\sigma\subseteq\sigma^{\prime}$ and $\tau\subseteq\tau^{\prime}$, then $\sigma\wedge\tau\subseteq\sigma\wedge\tau^{\prime}$,

(5) $\sigma\wedge\tau\subseteq\sigma,$ $\sigma\wedge\tau\subseteq\tau$,

(6) $(\rho\rightarrow\sigma)\wedge(\rho\rightarrow\tau)\subseteq\rho\rightarrow(\sigma\wedge\tau)$,

(7) $\sigma\subseteq\sigma\wedge\sigma$,

(8) $\sigma\subseteq\omega$,

(9) $\omega\subseteq\omega\rightarrow\omega$.

SYNTAX AND SEMANTICS OF TYPE ASSIGNMENT SYSTEMS 119

We find that this subtype relation is similar to the subtype relation on polymorphic
types defined in Section 3.6. It is proved that $\sigma\subseteq\tau$ if and only if $T_{\rightarrow\Lambda\omega}+(Simple)\vdash$

x : $\sigma\triangleright x$: τ . Therefore, $T_{\rightarrow\wedge\omega}+(Simple)$ is equivalent to $T_{\rightarrow\wedge\omega}+(\subseteq)$, where (\subseteq)

is the rule defined in Section 3.6 with the above subtype relation on intersection
types.

Using the subtype relation we can provide another proof of the completeness
theorems for simple semantics and inference semantics [4]. Here is an outline of the
proof. We define a filter as a set F of types that satisfies the following conditions:

$\bullet\omega\in F$,

\bullet if $\sigma,$ $\tau\in F$, then $\sigma\wedge\tau\in F$,

\bullet if $\sigma\in F$ and $\sigma\subseteq\tau$, then $\tau\in F$.

It is easily proved that the setD of all the filters becomesa λ-model, if we define
and [-] as follows:

$F\cdot G=$ { $\tau|\sigma\rightarrow\tau\in F$ for some $\sigma\in G$ },

$[\mathbb{J}f]_{\xi}=\{\tau|T_{\rightarrow\wedge\omega}+(Simple)\vdash x_{1}$: $\sigma_{1},$
$\ldots,$ x_{n} : $\sigma_{n}\triangleright M$: τ

for some $\sigma_{i}\in\xi(x_{i})(1\leq i\leq n)$ },

where $FV(M)=\{x_{1}, \ldots, x.\}$. Let ν_{0} be the type environment over the filter model
define by

$\nu_{0}(t)=$ { $F|F$ is a filter that contains t },

and ξ_{Γ} the term environment defined on a basis Γ by

$\xi_{\Gamma}(x)=\{\sigma|T_{\rightarrow\wedge\omega}\vdash\Gamma\triangleright x : \sigma\}$.

Then, it is easily verified that

$T_{\rightarrow\wedge\omega}+(Simple)\vdash\Gamma\triangleright\Lambda/I$: σ if and only if $[\Lambda I]_{\xi_{\Gamma}}\in[\sigma]_{\nu_{0}}$.

This fact implies the completeness theorem of $T_{\rightarrow\wedge\omega}+(Simple)$ for simple seman-
tics. The point of this proof is the fact that the value of M is characterized by the
set of the types inhabited by M .

We can also define another filter model that yields the completeness theorem
of $T_{\rightarrow\wedge\omega}$ for inference model. We first modify the subtype relation by removing
(3), (6) and (9). The set of all the filters with respect to this modified subtype
relation also becomes a λ-model. Define $[\sigma]=$ {$F|F$ is a filter that contains σ }.
Then, the type interpretation [-] satisfies the conditions for inference semantics,
and $T_{\rightarrow\wedge\omega}\vdash\Gamma\triangleright M$: σ if and only if $[\Lambda/I]_{\xi}\in[\sigma]$ for every ξ such that $\xi(x)\in[\rho]$

for any x : ρ in Γ . This implies the completeness theorem of $T_{\rightarrow\wedge\omega}$ for inference
semantics.

120 H. YOKOUCHI

4.4 Basic Syntactic Properties

We present two syntactic properties of the systems for intersection types. A the-
oretical motivation of intersection types is to characterize classes of λ-terms by
types. In particular, strongly normalizable, normalizable, and solvable λ-terms are
characterized by the shapes of their types, respectively. Here, a λ-term is said to
be normalizable when there is a λ-term in normal form which is β-equivalent to the
original λ-term. Similarly, a λ-term is said to be solvable when there is a λ-term of
the form $\lambda x_{1}\ldots,$ $x_{l}.xN_{1}\ldots N_{m}$ which is β-equivalent to the original λ-term. More
rigorously, the original definition of solvable terms differs from ours, but it is proved
that the original definition coincides with ours.

For each type σ , we define the notion of positive and negative occurrences of a
type τ in σ , by simultaneous induction on the structure of σ :

\bullet τ occurs positively in τ ,

\bullet τ occurs positively (negatively) in $\sigma_{1}\rightarrow\sigma_{2}$ if either τ occurs negatively (pos-
itively) in σ_{1} or τ occur positively (negatively) in σ_{2} ,

\bullet τ occurs positively (negatively) in $\sigma_{1}\wedge\sigma_{2}$ if τ occurs positively (negatively)
in σ_{1} or σ_{2} .

Similarly we define the notion of strongly positive occurrence of τ in σ as follows:

\bullet τ occurs strongly-positively in τ ,

\bullet τ occurs strongly-positively in $\sigma_{1}\rightarrow\sigma_{2}$ if τ occur strongly-positively in σ_{2} ,

\bullet τ occurs strongly-positively in $\sigma_{1}\wedge\sigma_{2}$ if τ occurs strongly-positively in σ_{1} or
σ_{2} .

For example, τ occurs positively in $(\tau\rightarrow\alpha)\rightarrow\beta$, negatively in $(\alpha\rightarrow\tau)\rightarrow\beta$, and
strongly-positively in $\alpha\rightarrow\beta\rightarrow\tau$. Using the notations on occurrences in a type,
we have a result on the characterization of three classes of λ-terms. The proof is
presented in $[23, 9]$. See also [6].

Theorem 4.4.1. (i) A λ -term M is strongly normalizable if and only if $T\rightarrow\wedge\vdash$

$\Gamma\triangleright M$: σ for some Γ and σ .
(ii) A λ -term M is normalizable if and only if $T_{\rightarrow\wedge\omega}\vdash\Gamma\triangleright\Lambda I$: σ for some Γ

and σ such that ω does not occur positively in σ and ω does not occur negatively
in any types in Γ .

(iii) A λ -term M is solvable if and only if $T_{\rightarrow\wedge\omega}\vdash\Gamma\triangleright M$: σ for some Γ and
σ such that ω does not occur strongly-positively in σ .

We next show the relationship between $T_{\rightarrow\wedge}$ and $T_{\rightarrow\forall}$. An intersection type
is a finite approximation of a universally quantified type. Informally, a type $\forall t.\sigma$

is regraded as the type $\sigma[t :=\alpha_{1}]\wedge\sigma[t :=\alpha_{2}]\wedge$. . . of infinite length, where
the sequence $\alpha_{1},$ $\alpha_{2},$ \ldots is an enumeration of all types. Therefore, for example,

SYNTAX AND SEMANTICS OF TYPE ASSIGNMENT SYSTEMS 121

$\sigma[t :=\alpha_{1}]\wedge\sigma[t :=\alpha_{2}]$ is a finite approximation of $\forall t.\sigma$. Given an intersection
type σ , we want to determine the universally quantified type of which σ is a finite
approximation.

To do so we define subtype relation \leq among the types of $T_{\rightarrow\forall}$ as follows:
$\bullet\sigma\leq\sigma$,

\bullet if $\rho\leq\sigma$ and $\sigma\leq\tau$, then $\rho\leq\tau$,

\bullet if $\sigma\leq\tau$ and $t\not\in FTV(\sigma)$, then $\sigma\leq\forall t.\tau$,

$\bullet\forall t.\sigma\leq\sigma[t :=\alpha]$.

The subtype relation \leq is similar to $\subseteq defined$ in Section 3.6 except that rules (3)
and (6) $for\subseteq are$ removed. The same relation \leq can also be defined as follows:

$\forall s_{1}\ldots\forall s_{l}.\sigma\leq\forall t_{1}\ldots\forall t_{m}.\sigma[s_{1}, \ldots, s_{l} :=\tau_{1}, \ldots, \tau_{l}]$,

where $t_{i}\not\in FTV(\forall s_{1}\ldots\forall s_{l}.\sigma)$ for every $i(1\leq i\leq m)$. It is proved in [37] that
every pair of types σ and τ in $T_{\rightarrow\forall}$ has a greatest lower bound $\sigma n\tau$ with respect
to \leq . For each type σ of $T_{\rightarrow\wedge}$ we define the type $tr(\sigma)$ of $T_{\rightarrow\forall}$ as follows:

(1) $tr(t)\equiv t$,

(2) $tr(\sigma\rightarrow\tau)\equiv tr(\sigma)\rightarrow tr(\tau)$,

(3) $tr(\sigma\wedge\tau)\equiv tr(\sigma)ntr(\tau)$.
Strictly speaking, this is not a correct definition, since a greatest lower bound of
two types are not generally determined uniquely. Therefore, to define $tr(\sigma\wedge\tau)$,
we should choose a suitable representative of the equivalence class determined by
the preorder \leq . For the exact definition, see [37]. We define a subsystem of $T_{\rightarrow\wedge}$

such that $T_{\rightarrow\forall}$ is essentially equivalent to the subsystem. Let $T_{\rightarrow\wedge}$ be the system
obtained from $T_{\rightarrow\wedge}$ by replacing $(\wedge I)$ by the following rule:

$(\wedge I)^{\prime}$ $\frac{\Gamma\triangleright M:\rho\Gamma\triangleright M:\sigma\Gamma\triangleright M:\tau}{\Gamma\triangleright M:\sigma\wedge\tau}$ $(tr(\rho)\leq tr(\sigma), tr(\rho)\leq tr(\tau))$

In other words, the use of the rule $(\wedge I)$ is restricted in $T_{\rightarrow\wedge}^{\prime}$ by imposing the
condition: $\Gamma\triangleright M$: ρ is derivable for some type ρ such that $tr(\rho)\leq tr(\sigma)$ and
$tr(\rho)\leq tr(\tau)$.

We have the following theorem stating that $T_{\rightarrow\forall}$ is embedded into $T\rightarrow\wedge\cdot$

Theorem 4.4.2 [37] (Embedding $T_{\rightarrow\forall}$ into $T_{\rightarrow\wedge}$) . (i) If $T_{\rightarrow\wedge}\vdash\Gamma\triangleright M$: σ , then
$T_{\rightarrow\forall}\vdash tr(\Gamma)\triangleright M$: $tr(\sigma)$.

(ii) If $T_{\rightarrow\forall}\vdash\Delta\triangleright M$: τ , then $T_{\rightarrow\wedge}\vdash\Gamma\triangleright M$: σ for some Γ and σ such
that $\Delta\cong tr(\Gamma)$ and $\tau\cong tr(\sigma)$, where \cong is the equivalence relation defined in
Section 3.5.

In the theorem, $tr(\Gamma)$ stands for the basis obtained from Γ by replacing each
$ x:\rho$ by $x:tr(\rho)$, and $\Delta\cong tr(\Gamma)$ means that, if $ x:\rho$ in $\Delta(tr(\Gamma))$, then $x:\rho’\in tr(\Gamma)$

(Δ) for some ρ such that $p\cong\rho^{\prime}$.

122 H. YOKOUCHI

5 Union and Existential Quantifier

We introduce union and existential quantifier, which are the dual constructors of
intersection and universal quantifier, respectively. We show that the system with
union types and/or existential types has very different characteristics from the
system with intersection and/or universal quantifier.

5.1 Type Interpretation and Inference Rules

A union type and existential type are defined by the following clauses:

\bullet if σ and τ are types, then $(\sigma\vee\tau)$ is a type,

\bullet if t is a type variable and σ is a type, then $(\exists t\sigma)$ is a type.

For example, ($\forall s(\exists t(\sigma))$ is abbreviated to $\forall s\exists t.\sigma$. The type union and existential
type quantifier are interpreted as union of two sets and union of infinitely many sets,
respectively. Formally, the type interpretation in simple semantics, F-semantics,
and coherent semantics is extended for union and existential quantifier by:

$\bullet[\sigma\vee\tau]_{\nu}=[\sigma]_{\nu}\cup[\tau]_{\nu}$,

$\bullet[\exists t.\sigma]_{\nu}=\cup\{[\sigma]_{\nu(t:=P)}|P\in \mathcal{T}\}$.

For inference semantics, the following conditions are added:

$\bullet[\sigma\vee\tau]=[\sigma]\cup[\tau]$,

\bullet $[\exists t.\sigma]=\cup$ { $[\sigma[t:=\alpha]]|\alpha$ is a type}.

The type union and existential type quantifier are handled by the following
rules:

$\Gamma\triangleright M$: σ
$\Gamma\triangleright M$: τ

$(\vee I)$

$\Gamma\triangleright M$: $\sigma\vee\tau$ $\Gamma\triangleright M$: $\sigma\vee\tau$

$(\vee E)$ $\frac{\Gamma\triangleright N:\sigma\vee\tau\Gamma,x:\sigma\triangleright M:\rho\Gamma,x:\tau\triangleright M:\rho}{\Gamma\triangleright M[x:=N]:\tau}$

$(\exists I)$ $\frac{\Gamma\triangleright M:\sigma[t:=\alpha]}{\Gamma\triangleright M:\exists t.\sigma}$

$(\exists E)$ $\frac{\Gamma\triangleright N:\exists t.\sigma\Gamma,x:\sigma\triangleright M:\rho}{\Gamma\triangleright M[x:=N]:\rho}$ $(t\not\in FTV(\Gamma)\cup FTV(\rho))$

It is easily verified that the inference rules are all sound for simple semantics,
F-semantics, and inference semantics. However, we meet the difficulty in trying to
prove the completeness theorem. We know two proofs of the completeness theorem
without union types or existential type quantifier. The first one was presented
in Section 2.4 for proving Theorem 2.4.1, and the other was presented with filter
models in Section 4.3. It is difficult to extend either proof into the completeness of
the system with union types. The key to the first proof was the equivalence:

SYNTAX AND SEMANTICS OF TYPE ASSIGNMENT SYSTEMS 123

$T\rightarrow+(Eq_{\beta})\vdash\Phi\triangleright M$: σ if and only if $[M]_{\xi_{0}}\in[\sigma]_{\nu_{0}}$

In case a union type is added, this equivalence is no longer satisfied. Indeed, if this
equivalence were satisfied, then we could have the equivalence:

$\vdash\Phi\triangleright M$: $\rho\vee\tau$ if and only if $either\vdash\Phi\triangleright M$: $\rho or\vdash\Phi\triangleright M$: τ .

However, this equivalence does not generally hold. For example, let x : $\sigma\vee\tau\in\Phi$.
Then, $\Phi\triangleright x$: $\sigma\vee\tau$ is derivable, but neither $\Phi\triangleright x$: σ nor $\Phi\triangleright x$: τ is derivable.
Similarly, the key to the proof with filter model was the equivalence:

$T_{\rightarrow\wedge\omega}+(Simple)\vdash\Gamma\triangleright M$: σ if and only if $[\mathbb{J}f]_{\xi_{\Gamma}}\in[\sigma]_{\nu_{0}}$.

In case union and intersection types are introduced, this does not hold. If it were
satisfied, then we could have the equivalence:

$\vdash\Gamma\triangleright M$: $\rho\vee\tau$ if and only if $either\vdash\Gamma\triangleright M$: $\rho or\vdash\Gamma\triangleright M$: τ .

This does not generally hold.
Another difficulty is that the system with intersection and union types does not

satisfy the subject reduction theorem like Theorem 2.3.2. The following example
is taken from [2]. We can deduce the type

$(\sigma\rightarrow\sigma\rightarrow\tau)\wedge(\rho\rightarrow\rho\rightarrow\tau)\rightarrow(\mu\rightarrow(\sigma\vee\rho))\rightarrow\mu\rightarrow\tau$

both for $\lambda xyz.x(yz)(yz)$ and $\lambda xyz.x(Iyz)(Iyz)$, but this type can be deduced nei-
ther for $\lambda xyz.x(Iyz)(yz)$ nor for $\lambda xyz.x(yz)(Iyz)$, where $I\equiv\lambda x.x$. In turn, the
strong normalization theorem like Theorem 2.3.1 is satisfied fortunately. For the
proof, see [38, 17, 23].

5.2 A Completeness Result in a Special Setting
It is shown in [2] that the system with intersection and union types becomes com-
plete under a special setting. We introduce a special axiom and consider models
that satisfying this axiom. In this section, we consider only the system $T_{\rightarrow\wedge\vee}$ with
intersection and union types only.

First we should note that the following sequent is always valid in all models but
it is not derivable in $T_{\rightarrow\wedge\vee}$.

(Dist \vee) $x:\rho\wedge(\sigma\vee\tau)\triangleright x$: $(\rho\vee\sigma)\vee(\rho\wedge\tau)$

This sequent expresses the distributive law $of\wedge over\vee$. We adopt this sequent as
an axiom.

We introduce another axiom. We define the predicate P on types as follows:

\bullet $P(t)$ is true for any type variable t ,

\bullet $P(\sigma\rightarrow\tau)$ is true if and only if $P(\tau)$ is true,

\bullet $P(\sigma\wedge\tau)$ is true if and only if both $P(\sigma)$ and $P(\tau)$ are true,

124 H. YOKOUCHI

\bullet $P(\sigma\vee\tau)$ is false.

We introduce the following axiom with the predicate P :

(DisjProp) $x:\rho\rightarrow(\sigma\vee\tau)\triangleright x:(\rho\rightarrow\sigma)\vee(\rho\rightarrow\tau)$, provided $P(p)$ is true

The predicate P is also defined with the notation of strongly positive occurrences
defined in Section 4.4. Namely, $P(\sigma)$ is true if and only if no types of the form $\rho\vee\tau$

occur strongly-positively in σ . In predicate logic, a formula corresponding to such
a type is said to be Harrop, and the rule (DisjProp) can be viewed as “Extended
Disjunction Property” for a Harrop formula.

There is a natural model that satisfies (DisjProp). Let $\mathfrak{M}=(D, \cdot, [-])$ be a
λ-model constructed from a cpo D , and ν a type environment such that $\nu(t)$ has a
least element. It is easily verified that, for every ρ , if $P(p)$ is true, then $[\rho]_{\nu}$ has a
least element. Therefore, if $P(\rho)$ is true and $a\in[\rho\rightarrow(\sigma\vee\tau)]_{\nu}$, then a is contained
in either $[\rho\rightarrow\sigma]_{\nu}$ or $[\rho\rightarrow\tau]_{\nu}$. Namely, all the instances of (DisjProp) are valid in
\mathfrak{M} and ν .

Let $T_{\rightarrow\wedge\vee}$ be the system that consists of basic rules $for\rightarrow\wedge$, and \vee . We
define $\sigma\simeq\tau$ if and only if x : $\sigma\triangleright x$: τ and x : $\tau\triangleright x$: σ are both derivable
in $T_{\rightarrow\wedge\vee}+(Dist\vee)$ +(DisjProp) +(Simple). Then, every type of $T\rightarrow\wedge\vee has$ a
normal form with respect $to\simeq in$ the following sense that, for every type σ , there
exists a type $m(\sigma)$ of the form $\sigma_{1}V\ldots V\sigma$. such that $\sigma\simeq \mathfrak{m}(\sigma)$ and each σ_{i} is a
type without union. Furthermore, the system with intersection and union types is
characterized by the system with intersection types. Strictly, $T_{\rightarrow\wedge\vee}+(Dist\vee)+$

(DisjProp) +(Simple) $\vdash M$: σ if and only if $T_{\rightarrow\wedge}$ +(Simple) \vdash $\triangleright M$: σ_{i} for
some σ_{i} , where $\mathfrak{m}(\sigma)\equiv\sigma_{1}$ V. . . V σ_{n} . By this fact, we can obtain a completeness
result for the system with (Dist \vee) and (DisjProp). Namely, a sequent is derivable
in $T_{\rightarrow\wedge\vee}+(Dist\vee)+(DisjProp)+(Simple)+(Eq_{\beta})$ if and only if it is valid in
all \mathfrak{M} and ν with respect to simple semantics such that the following condition is
satisfied: if $P(\rho)$ is true, then $[\rho\rightarrow(\sigma\vee\rho)]_{\nu}=[(\rho\rightarrow\sigma)\vee(\rho\rightarrow\tau)]_{\nu}$. For the details,
see [2].

6 Sequent-Style Formulations

In this section we introduce another formulation of type assignment, based on
sequent calculi for predicate logic.

6.1 Sequent Calculus TLK
In the previous sections, a sequent is defined as an expression of the form:

x_{1} : $\sigma_{1},$
$\ldots,$

x_{n} : $\sigma_{n}\triangleright\Lambda I$: τ .

Rigorously speaking, the left-hand side $of\triangleright$ should be a set instead of sequence.
We extend sequents so that any λ-term is allowed as a subject in the left-hand side

SYNTAX AND SEMANTICS OF TYPE ASSIGNMENT SYSTEMS 125

of the sequents. Furthermore, we allow the right-hand side of each sequent to have
more than one statements. Therefore, the extended sequents are of the form:

L_{1} : $\sigma_{1},$ $\ldots L_{l}$: $\sigma_{l}\triangleright \mathbb{J}I_{1}$: $\tau_{1},$
$\ldots,$

M_{m} : τ_{m} .

In the rest of the paper, $\Gamma,$ $\Delta,$ $\Pi,$ $\Lambda,$ $\Gamma_{0},$
\ldots stand for finite sequences of statements,

and a sequent is an expression of the form $\Gamma\triangleright\Delta$. The sequences Γ and Δ of the
sequent $\Gamma\triangleright\Delta$ are called antecedent and succedent, respectively, of the sequent.
The axioms and rules are shown in Figure 1. They are defined on the analogy of
those for LK. We call the resulting system TLK because it corresponds to LK.

The axioms and rules of TLK resemble those of LK for classical logic. However,
this does not imply that TLK corresponds to LK in Curry-Howard isomorphism. If
only implication is considered, then TLK exactly corresponds to intuitionistic logic
instead of classical logic in Curry-Howard isomorphism. The point is the form of
$(\rightarrow R)$. In TLK, $(\rightarrow R)$ has the condition $x\not\in FV(\Gamma)UFV(\Delta)$, while there is no
condition for the corresponding rule in LK.

The validity of a sequent is naturally defined in a model for simple semantics
and F-semantics, respectively. Let $(\mathfrak{M}, \mathcal{T})$ be a model for simple semantics or F-
semantics, ξ a term environment in \mathfrak{M} , and ν a type environment in \mathcal{T} . A sequent
$\Gamma\triangleright\Delta$ is said to be valid in $(\mathfrak{M}, \mathcal{T}, \xi, \nu)$ if and only if either $[L]_{\xi}\not\in[\sigma]_{\nu}$ for some
$ L:\sigma$ in Γ , or $[M]_{\xi}\in[\tau]_{\nu}$ for some M : τ in Δ . Moreover, a sequent is said to be
valid in $(\mathfrak{M}, \mathcal{T})$ if and only if it is valid in $(\mathfrak{M}, \mathcal{T}, \xi, \nu)$ for all pairs of ξ and ν .

Similarly the validity of a sequent is defined in a model for inference semantics.
Let $(\mathfrak{M}, \mathcal{T}, [-])$ be a model in inference semantics, and ξ a term environment in \mathfrak{M} .
A sequent $\Gamma\triangleright\Delta$ is said to be valid in $(\mathfrak{M}, \mathcal{T}, [-], \xi)$ if and only if either $[L]_{\xi}\not\in[\sigma]$

for some L : σ in Γ , or $[M]_{\xi}\in[\tau]$ for some M : τ in Δ . Moreover, a sequent is
said to be valid in $(\mathfrak{M}, \mathcal{T}, [-])$ if and only if it is valid in $(\mathfrak{M}, \mathcal{T}, [-], \xi)$ for all term
environments ξ .

6.2 Completeness of TLK

We show the completeness theorems of TLK. According to the modification of
the definition of sequents, the rules (Eq_{β}) and (Simple) for TLK are defined as
follows:

$\Gamma\triangleright\Delta,$ M : τ

(Eq_{β}) $(M\cong\beta N)$
$\Gamma\triangleright\Delta,$ N : τ

(Simple) $\frac{x:\sigma,\Gamma\triangleright\Delta,Mx:\tau}{\Gamma\triangleright\Delta,M:\sigma\rightarrow\tau}$ $(x\not\in FV(\Gamma)\cup FV(\Delta))$

Theorem 6.2.1 (Completeness of TLK for simple semantics). A sequent is deriv-
able in $TLK+(Simple)+(Eq_{\beta})$ if and only if it is valid in all models for simple
semantics.

We present the outline of the proof in order to compare it with the proof
of completeness described in Section 2.4. A complete proof is presented in [40].

126 H. YOKOUCHI

(Initial) M : $\sigma\triangleright M$: σ

(Weakening) $\frac{\Gamma\triangleright\Delta}{M:\sigma,\Gamma\triangleright\Delta}$ $\frac{\Gamma\triangleright\Delta}{\Gamma\triangleright\Delta,M:\sigma}$

(Contraction) $\frac{M:\sigma,M:\sigma,\Gamma\triangleright\Delta}{M:\sigma,\Gamma\triangleright\Delta}$ $\frac{\Gamma\triangleright\Delta,M:\sigma,M:\sigma}{\Gamma\triangleright\Delta,M:\sigma}$

$\Gamma_{1},$ M : $\sigma,$
N : $\tau,$

$\Gamma_{2}\triangleright\Delta$ $\Gamma\triangleright\Delta_{1},$ M : $\sigma,$
N : $\tau,$

Δ_{2}

(Exchange)
$\Gamma_{1},$ N : $\tau,$ M : $\sigma,$

$\Gamma_{2}\triangleright\Delta$ $\Gamma\triangleright\Delta_{1},$ N : $\tau,$ M : $\sigma,$
Δ_{2}

(Cut) $\frac{\Gamma_{1}\triangleright\Delta_{1},M:\sigma M:\sigma,\Gamma_{2}\triangleright\Delta_{2}}{\Gamma_{1},\Gamma_{2}\triangleright\Delta_{1},\Delta_{2}}$

$(\wedge L)$ $\frac{M:\sigma,\Gamma\triangleright\Delta}{M:\sigma\wedge\tau,\Gamma\triangleright\Delta}$ $\frac{M:\tau,\Gamma\triangleright\Delta}{M:\sigma\wedge\tau,\Gamma\triangleright\Delta}$

$(\wedge R)$ $\frac{\Gamma\triangleright\Delta,M:\sigma\Gamma\triangleright\Delta,M:\tau}{\Gamma\triangleright\Delta,M:\sigma\wedge\tau}$

$(\vee L)$ $\frac{M:\sigma,\Gamma\triangleright\Delta M:\tau,\Gamma\triangleright\Delta}{M:\sigma\vee\tau,\Gamma\triangleright\Delta}$

$(\vee R)$ $\frac{\Gamma\triangleright\Delta,M:\sigma}{\Gamma\triangleright\Delta,M:\sigma\vee\tau}$ $\frac{\Gamma\triangleright\Delta,M:\tau}{\Gamma\triangleright\Delta,M:\sigma\vee\tau}$

$(\rightarrow L)$ $\frac{\Gamma_{1}\triangleright\Delta_{1},N:\sigma MN:\tau,\Gamma_{2}\triangleright\Delta_{2}}{M:\sigma\rightarrow\tau,\Gamma_{1},\Gamma_{2}\triangleright\Delta_{1},\Delta_{2}}$

$(\rightarrow R)$ $\frac{x:\sigma,\Gamma\triangleright\Delta,M:\tau}{\Gamma\triangleright\Delta,\lambda x.M:\sigma\rightarrow\tau}$ $(x\not\in FV(\Gamma)\cup FV(\Delta))$

$(\forall L)$ $\frac{M:\sigma[t:=\alpha],\Gamma\triangleright\Delta}{M:\forall t.\sigma,\Gamma\triangleright\Delta}$

$(\forall R)$ $\frac{\Gamma\triangleright\Delta,M:\sigma}{\Gamma\triangleright\Delta,M:\forall t.\sigma}$

$(\exists L)$ $\frac{M:\sigma,\Gamma\triangleright\Delta}{M:\exists t.\sigma,\Gamma\triangleright\Delta}$

$\Gamma\triangleright\Delta,$ $M[t :=\alpha]$
$(\exists R)$

$\Gamma\triangleright\Delta,$ M : $\exists t.\sigma$

$(t\not\in FTV(\Gamma)UFTV(\Delta))$

$(t\not\in FTV(\Gamma)UFTV(\Delta))$

Figure 1: The axioms and rules of TLK

SYNTAX AND SEMANTICS OF TYPE ASSIGNMENT SYSTEMS 127

We use a technique similar to a standard proof of the completeness theorem for
predicate logic. In case of logic, given a formula unprovable, we construct a maximal
consistent set of formulas and define a model in which the formula is not valid. For
type assignment, we also define a notion similar to a maximal consistent set of
formulas. Let Φ and Ψ be (possibly infinite) sets of statements. The pair (Φ, Ψ)

is said to be maximal consistent if and only if the following two conditions are
satisfied:

(1) for any pair of finite sequences $\Gamma\subseteq\Phi$ and $\Delta\subseteq\Psi$, the sequent $\Gamma\triangleright\Delta$ is
underivable in $TLK+(Simple)+(Eq_{\beta})$,

(2) every statement is contained in either Φ or Ut.

Suppose that $\Gamma_{0}\triangleright\Delta_{0}$ is underivable in $TLK+(Simple)+(Eq_{\beta})$. Then, we can
construct a maximal consistent pair (Φ, Ψ) such that $\Gamma_{0}\subseteq\Phi$ and $\Delta_{0}\subseteq\Psi$. Moreover
we can choose (Φ, Ψ) so that the following conditions are satisfied:

(a) if M : $\sigma\rightarrow\tau\in\Psi$, then N : $\sigma\in\Phi$ and MN : $\tau\in\Psi$ for some λ-term N ,

(b) if M : $\forall t.\sigma\in\Psi$, then M : $\sigma[t:=\alpha]\in\Psi$ for some type α ,

(c) if If : $\exists t.\sigma\in\Phi$, then M : $\sigma[t:=\alpha]\in\Phi$ for some type α .

With (Φ, Ψ) we define a model $(\mathfrak{M}_{0}, \mathcal{T}_{0}, \xi_{0}, \nu_{0})$ as follows:

\bullet \mathfrak{M}_{0} is the open term model,

$\bullet\Vert\sigma\Vert=\{[M]|M : \sigma\in\Phi\}$,
where $[M]$ is the equivalence class of M in \mathfrak{M}_{0} ,

\bullet $\mathcal{T}_{0}=$ { $\Vert\sigma|||\sigma$ is a type},

$\bullet\xi_{0}(x)=[x],$ $\nu_{0}(t)=\Vert t\Vert$.

It is easily verified that, in $(\mathfrak{M}_{0}, \mathcal{T}_{0}, \xi_{0}, \nu_{0})$, all statements in Φ are valid and no
statements in Ψ are valid. More precisely, we have the following equivalence:

M : $\sigma\in\Phi$ if and only if $[\mathbb{J}f]\in[\sigma]_{\nu_{0}}$,
M : $\sigma\in\Psi$ if and only if $[\mathbb{J}I]\not\in[\sigma]_{\nu_{0}}$

Form this it follows that $\Gamma_{0}\triangleright\Delta_{0}$ is not valid in $(\mathfrak{M}_{0}, \mathcal{T}_{0}, \xi_{0}, \nu_{0})$.
The point of the above proof is the fact that we can express negation of a

statement in TLK. The antecedent of each sequent in TLK may have a statement
of any form, and therefore, the negation of statement M : σ can be expressed by
M : $\sigma\triangleright$. The systems T_{x} such as T_{\rightarrow} , on other hand, do not have this property,
since statements in the antecedent of each sequent is restricted to the form z : σ in
T_{x} .

For F-semantics, it is not clear how TLK becomes complete. For inference
semantics, it can be proved that TLK $+(Eq_{\beta})$ is complete. Indeed, we define

128 H. YOKOUCHI

$[\sigma]=\Vert\sigma\Vert$ in the construction of $(\mathfrak{M}_{0}, \mathcal{T}_{0}, \xi_{0}, \nu_{0})$ in the proof of the completeness
theorem for simple semantics. Then, it is proved that [-] satisfies the conditions
of inference semantics. By definition, $\Gamma_{0}\triangleright\Delta_{0}$ is not valid in the model $(\mathfrak{M}_{0}$, [-] $)$

for inference semantics.
The completeness theorem is extended into the case where nonlogical axioms are

added. The system TLK satisfies the following property similar to the deduction
theorem for LK: For every set \mathcal{A} of statements without free term variable or free
type variable, if $TLK+(Simple)+(Eq_{\beta})+(Axiom_{A})\vdash\Gamma\triangleright\Delta$, then TLK+(Simple)+
$(Eq_{\beta})\vdash\Pi,$

$\Gamma\triangleright\Delta$ for some finite sequence $\Pi\subseteq \mathcal{A}$. Therefore, with Theorem 6.2.1,
we obtain the completeness theorem for TLK with nonlogical axioms.

Theorem 6.2.2 (Completeness of TLK with nonlogical axioms). A sequent is
derivable in $TLK+(Simple)+(Eq_{\beta})+(Axiom_{A})$ if and only if it is valid in all
models $(\mathfrak{M}, \mathcal{T})$ with valuations V for simple semantics in which every statement in

\mathcal{A} is valid.

It is worth comparing Theorem 6.2.2 and Theorem 2.7.1. Both theorems state
the completeness for models that may have empty types. In Theorem 2.7.1, we
adopt the rules (EmptyI) and (EmptyE) with new kinds of statements Empty (σ) .
There rules make it possible to draw a derivation by distinguish cases whether a
type is empty or not. On the other hand, TLK has no special statements like
Empty (σ) , but it allows the right-hand of a sequent to have more than one state-
ments. By this extension, we can draw a derivation without explicitly distinguishing
cases whether a type is empty or not. Consider the example which was taken in
Subsection 2.7. Namely, let $\mathcal{A}=\{\lambda x.c : p_{1}\rightarrow p_{2}, d : p_{2}\rightarrow q, d : (p_{1}\rightarrow p_{3})\rightarrow q\}$.
Then, we can $derive\triangleright dc:q$ in $T_{\rightarrow}+(Axiom_{A})+(Simple)+(EmptyI)+(EmptyE)$.
Similarly we can derive

$\lambda x.c:p_{1}\rightarrow p_{2},$ $d:p_{2}\rightarrow q,$ $d:(p_{1}\rightarrow p_{3})\rightarrow q\triangleright dc:q$

in $TLK+(Simple)+(Eq_{\beta})$ as shown in Figure 2. This derivation is a good example
for understanding the rules of TLK.

6.3 Variations of Sequent Calculi
The definition of TLK suggests that we can define another calculus TLJ based on
LJ for institutionistic logic. The system TLJ is obtained from TLK by imposing
the restriction that the succedent of a sequent is a sequence that consists of exactly
one statement. With this restriction, (Exchange), (Weakening), or (Contraction)
for succedent is no longer needed, and $(\rightarrow L)$, for example, becomes the following
form:

$\frac{\Gamma_{1}\triangleright N:\sigma LN:\tau,\Gamma_{2}\triangleright Jf:p}{L:\sigma\rightarrow\tau,\Gamma_{1},\Gamma_{2}\triangleright M:\rho}$

The other rules are modified in a similar way.
Furthermore, for each of TLK and TLJ, we define two variants in which the

antecedent of a sequent is restricted.

SYNTAX AND SEMANTICS OF TYPE ASSIGNMENT SYSTEMS 129

$(\lambda x.c)x:p_{2}\triangleright(\lambda x.c)x:p_{2}$

-x: $p_{1}\triangleright x:p_{1}$ $(\lambda x.c)x:p_{2}\triangleright c:p_{2}$

$\lambda x.c:p_{1}\rightarrow p_{2},$ $x:p_{1}\triangleright c:p_{2}$

$x:p_{1},$ $\lambda x.c:p_{1}\rightarrow p_{2}\triangleright c:p_{2}$

$x:p_{1},$ $\lambda x.c:p_{1}\rightarrow p_{2}\triangleright c:p_{2},$ $cx:p_{3}$

$\lambda x.c:p_{1}\rightarrow p_{2}\triangleright c:p_{2},$ $c:p_{1}\rightarrow p_{3}$ $dc:q\triangleright dc:q$

$d:(p_{1}\rightarrow p_{3})\rightarrow q,$ $\lambda x.c:p_{1}\rightarrow p_{2}\triangleright c:p_{2},$ $dc:q$

$d:(p_{1}\rightarrow p_{3})\rightarrow q,$ $\lambda x.c:p_{1}\rightarrow p_{2}\triangleright dc:q,$ $c:p_{2}$ $dc:q\triangleright dc:q$

$d:p_{2}\rightarrow q,$ $d:(p_{1}\rightarrow p_{3})\rightarrow q,$ $\lambda x.c:p_{1}\rightarrow p_{2}\triangleright dc:q,$ $dc:q$

.
$\lambda x.c:p_{1}\rightarrow p_{2},$ $d:p_{2}\rightarrow q,$ $d:(p_{1}\rightarrow p_{3})\rightarrow q\triangleright dc:q$

Figure 2: A Derivation in TLK with (Simple) and (Eq_{β})

(1) We impose the restriction that the antecedent of a sequent is a sequence
of statements whose subjects are variables only. With this restriction, $(\rightarrow L)$ and
(Cut) are replaced by the following rules $(\rightarrow L)^{*}$ and (Cut)*, respectively:

$(\rightarrow L)^{*}$ $\frac{\Gamma_{1}\triangleright\Delta_{1},N:\sigma z:\tau,\Gamma_{2}\triangleright\Delta_{2}}{x:\sigma\rightarrow\tau,\Gamma_{1},\Gamma_{2}\triangleright\Delta_{1},\Delta_{2}[z:=xN]}$ $(z\not\in FV(\Gamma_{2}))$

(Cut)* $\frac{\Gamma_{1}\triangleright\Delta_{1},M:\sigma x:\sigma,\Gamma_{2}\triangleright\Delta_{2}}{\Gamma_{1},\Gamma_{2}\triangleright\Delta_{1},\Delta_{2}[x:=M]}$ $(x\not\in FV(\Gamma_{2}))$

The other rules are the same as the original ones except that we impose the re-
striction on the antecedent of each sequent appearing in the rules. The resulting
systems for TLK and TLJ are named TLKI and TLJI, respectively.

(2) We impose the restriction that the antecedent of a sequent is a sequence
of statements whose subjects are pairwise distinct variables. With this restriction,
(Cut) and $(\rightarrow L)$ are replaced by (Cut)*and $(\rightarrow L)^{*}$. Furthermore, (Contraction)
for antecedent is replaced by the following rule:

(Contraction)* $\frac{x:\sigma,y:\sigma,\Gamma\triangleright\Delta}{z:\sigma,\Gamma\triangleright\Delta[x,y:=z,z]}$

The other rules are the same as the original ones except that we impose the re-
striction on the antecedent of each sequent appearing in the rules. The resulting
systems for TLK and TLJ are named TLK2 and TLJ2, respectively.

After all, we have obtained six systems TLK, TLKI, TLK2, TLJ, TLJI, and
TLJ2. These systems are summarized in Figure 3 with the basic relationship among

130 H. YOKOUCHI

Restriction on Succedent
(None) (Exactly One)

(None) TLK TLJ

\Vert \Vert

Restriction
on (Vars) TLKI TLJI
Antecedent

\Vert \Vert

(Distinct Vars) TLK2 TLJ2

Figure 3: Variations of Sequent Calculi for Type Assignment

them. For instance, $TLK\Leftarrow TLJ$ in Figure 3 shows that TLK is an extension of
TLJ. Namely, every sequent in TLJ is also a sequent in TLK, and for every sequent
S in TLJ, if S is derivable in TLJ, then so is in TLK. It follows immediately from
definition that TLK is an extension of TLJ. The extensionalities for the other pairs
are easily proved as well.

Another sequent-style formulation of type assignment is found in [1, 2, 7]. The
system proposed in [1] is similar to TLJ except that subjects in the antecedent of
a sequent are restricted to the form $xN_{1}\ldots N_{n}$. The system proposed in $[2, 7]$ is
essentially equivalent to TLJ2, except that the rule (Contraction) is no explicitly
treated in their system.

The systems defined in the previous sections are coincident with those defined
in the formulations of TLJ2. In particular, let $T_{\rightarrow\wedge\vee\forall\exists}$ be the system with all the
type $constructors\rightarrow\wedge,$ $\vee,$

\forall , and \exists introduced in the previous sections. Then, it
is easily proved that $T_{\rightarrow\wedge\vee\forall\exists}$ is coincident with TLJ2. Note that the left-hand side
of a sequent in $T_{\rightarrow\wedge\vee\forall\exists}$ is a basis, a set of statements whose subjects are pairwise
distinct variables. On the other hand, the antecedent of a sequent in TLJ2 is a
sequence instead of a set. When a sequent in $T_{\rightarrow\wedge\vee\forall\exists}$ is treated in TLJ2, we regard
it as a sequent in TLJ2 by enumerating the elements in the basis of the sequent.

Theorem 6.3.1. A sequent is derivable in $T_{\rightarrow\wedge\vee\forall\exists}$ if and only if so is in TLJ2.
This equivalence still holds even if (Simple) $and/or(Eq_{\beta})$ are added.

SYNTAX AND SEMANTICS OF TYPE ASSIGNMENT SYSTEMS 131

By Theorem 6.2.1, $TLK+(Simple)+(Eq_{\beta})$ is complete for simple semantics.
Therefore, if we clarify the relationship between TLK and TLJ2, then we may
obtain the completeness theorem for $T_{\rightarrow\wedge\vee\forall\exists}$. Actually, in Section 7.1, we show
a completeness result by investigating the relationship among the six variants of
TLK.

7 Analysis of Type Assignment by the Sequent-
Style Formulations

In this section, using the sequent calculi introduced in Section 6, we show properties
of type assignment systems including a completeness result.

7.1 Completeness of the System with Union and Existential
Quantifier

We investigate the relationship among the six sequent calculi summarized in Fig-
ure 3, and we show a completeness result for the system with all type constructors
including union and existential quantifier. In this section we treat only the systems
with (Simple) and (Eq_{β}) . So we write TLK* for the system obtained from TLK
by adding (Simple) and (Eq_{β}) . For the other calculi, we use similar notations. As
shown in Section 6, TLK* is complete for models with respect to simple seman-
tics, and $TLJ2^{*}$ is equivalent to $T_{\rightarrow\wedge\vee\forall\exists}^{*}$. Therefore, the completeness problem
for $T_{\rightarrow\wedge\vee\forall\exists}^{*}$ is reduced to whether TLK* is equivalent to TLJ2*. This statement
becomes more precise if we introduce a terminology on relationship between two
systems.

Let T and T^{\prime} be two type assignment systems. The system T is said to be a
conservative extension of T if and only if the following conditions are satisfied:

\bullet every sequent in T is also a sequent in T^{\prime} ,

\bullet a sequent in T is derivable in T if and only if it is derivable in T^{\prime} .

When T^{\prime} is a conservative extension of T , we also say that T ‘ is conservative
over T . Using the terminology of conservative extension, our question is stated as
follows: Whether TLK* is conservative over TLJ2*. However, the answer is no.
For example, consider the following two sequents, which express the distributive
laws $of\wedge over\vee$ and over \exists , respectively:

(Dist \vee) x : $(\sigma\vee\tau)\wedge\rho\triangleright x:(\sigma\wedge\rho)\vee(\tau\wedge\rho)$

(Dist \exists) $ x:(\exists t.\sigma)\wedge p\triangleright x:\exists t.\sigma\wedge\rho$ $(t\not\in FTV(\rho))$

Of them, the former sequent has been introduced in Subsection 5.2. These two are
derivable in TLJI* , but neither is derivable in TLJ2*. A derivation for the former
sequent in TLJI* is shown in Figure 4. It is easily verified that, if we add these

132 H. YOKOUCHI

x : $\sigma\triangleright x$: σ

$\underline{x:\rho,x:\sigma\triangleright x:\sigma}$ $\underline{x:\rho\triangleright x:\rho}$

x : $\sigma,$ x : $\rho\triangleright x$: σ x : $\sigma,$ x : $\rho\triangleright x$: ρ

$\frac{x:\sigma,x:\rho\triangleright x:\sigma\wedge\rho}{x:\sigma,x:\rho\triangleright x:(\sigma\wedge\rho)\vee(\tau\wedge\rho)}$ $\frac{(simi1ar)}{x:\tau,x:p\triangleright x:(\sigma\wedge\rho)\vee(\tau\wedge\rho)}$

x : $\sigma\vee\tau,$ x : $\rho\triangleright x$: $(\sigma\wedge\rho)\vee(\tau\wedge\rho)$

.

x : $(\sigma\vee\tau)\wedge\rho\triangleright x$: $(\sigma\wedge\rho)\vee(\tau\wedge\rho)$

Figure 4: A derivation in TLJI*

two sequents as axioms to $TLJ2^{*}$, then TLJI* is conservative over the resulting
system.

The next problem is whether TLJ* is conservative over TLJI* The answer is
still no. For example, consider

x : $\forall t.((\alpha\rightarrow\alpha\rightarrow\gamma)\wedge(\beta\rightarrow\beta\rightarrow\gamma))\vee(\tau\rightarrow\sigma\rightarrow\gamma)$,
y : $\sigma\rightarrow(\exists t.\tau),$ y : $\forall t.t\rightarrow t$,
z : $\sigma,$ z : $\forall t.\alpha\vee\beta$

$\triangleright x(yz)z:\gamma$,

where t occurs free in $\alpha,$
β , and τ , and it does not occur free in σ or γ . This sequent

is derivable in $TLJ*$, but it is not generally derivable in TLJ2*. See Figure 5 for
the derivation in TLJ*. Furthermore, TLK* is not conservative over TLJ* For
example,

x : $\forall t.(t\rightarrow t)\vee s\triangleright x$: $(\forall t.t\rightarrow t)\vee s$

is derivable in TLK^{*} , but it is underivable in TLJ’ See Figure 6for the derivation
in TLK*.

In these two counter examples against the conservativity, it is significant where
type quantifiers occur in a type. In order to avoid these counter example, we define
a class of sequents.

Definition (Stable sequents). Let Ty^{+} and $T\overline{y}$ be the least sets of types such
that the following conditions are satisfied:

(1) every type without type quantifier is contained in Ty^{+} and $T\overline{y}$,

(2) if $\sigma,$
$\tau\in Ty^{+}$, then $\sigma\wedge\tau,$ $\sigma\vee\tau\in Ty^{+}$,

(3) if $\sigma,$ $\tau\in T\overline{y}$, then $\sigma\wedge\tau,$ $\sigma\vee\tau\in Ty^{-}$,

SYNTAX AND SEMANTICS OF TYPE ASSIGNMENT SYSTEMS 133

D_{1} D_{2}

$x:\rho,$ $yz:\tau,$ $y:\forall t.t\rightarrow t,$ $z:\sigma,$ $ z:\alpha\vee\beta\triangleright x(yz)z:\gamma$

.
$yz:\tau,$ $x:\forall t.\rho,$ $y:\forall t.t\rightarrow t,$ $z:\sigma,$ $ z:\forall t.\alpha\vee\beta\triangleright x(yz)z:\gamma$

$ z:\sigma\triangleright z:\sigma$ $yz:\exists t.\tau,$ $x:\forall t.\rho,$ $y:\forall t.t\rightarrow t,$ $z:\sigma,$ $ z:\forall t.\alpha\vee\beta\triangleright x(yz)z:\gamma$

$y:\sigma\rightarrow(\exists t.\tau),$ $z:\sigma,$ $x:\forall t.\rho,$ $y:\forall t.t\rightarrow t,$ $z:\sigma,$ $ z:\forall t.\alpha\vee\beta\triangleright x(yz)z:\gamma$

.
$x:\forall t.\rho,$ $y:\sigma\rightarrow(\exists t.\tau),$ $y:\forall t.t\rightarrow t,$ $z:\sigma,$ $ z:\forall t.\alpha\vee\beta\triangleright x(yz)z:\gamma$

where $t\not\in FTV(\sigma),$ $\rho\equiv((\alpha\rightarrow\alpha\rightarrow\gamma)\wedge(\beta\rightarrow\beta\rightarrow\gamma))\vee(\tau\rightarrow\sigma\rightarrow\gamma)$, and D_{1} and
D_{2} are derivations for

$x:(\alpha\rightarrow\alpha\rightarrow\gamma)\wedge(\beta\rightarrow\beta\rightarrow\gamma),$ $yz:\tau,$ $y:\forall t.t\rightarrow t,$ $z:\sigma,$ $ z:\alpha\vee\beta\triangleright x(yz)z:\gamma$

and
$x:\tau\rightarrow\sigma\rightarrow\gamma,$ $yz:\tau,$ $y:\forall t.t\rightarrow t,$ $z:\sigma,$ $ z:\alpha\vee\beta\triangleright x(yz)z:\gamma$,

respectively.

Figure 5: A Derivation in TLJ*

x : $t\rightarrow t\triangleright x$: $t\rightarrow t$

x : $t\rightarrow t\triangleright x$: $t\rightarrow t,$ x : s

x : $t\rightarrow t\triangleright x$: $s,$ x : $t\rightarrow t$

x : $s\triangleright x$: s

x : $s\triangleright x$: $s,$ x : $t\rightarrow t$

x : $(t\rightarrow t)\vee s\triangleright x$: $s,$ x : $t\rightarrow t$

x : $\forall t.(t\rightarrow t)\vee s\triangleright x$: $s,$ x : $t\rightarrow t$

x : $\forall t.(t\rightarrow t)\vee s\triangleright x$: $s,$ x : $\forall t.t\rightarrow t$

.
x : $\forall t.(t\rightarrow t)\vee s\triangleright x$: $(\forall t.t\rightarrow t)\vee s$

Figure 6: A Derivation in TLK*

134 H. YOKOUCHI

(4) if $\sigma\in Ty^{+}$ and t is a type variable, then $\forall t.\sigma\in Ty^{+}$,

(5) if $\sigma\in Ty^{-}$ and t is a type variable, then $\exists t.\sigma\in Ty^{-}$,

(6) if $\sigma\in Ty^{-}$ and $\tau\in Ty^{+}$, then $\sigma\rightarrow\tau\in Ty^{+}$,

(7) if $\sigma\in Ty^{+}$ and $\tau\in Ty^{-}$, then $\sigma\rightarrow\tau\in T\overline{y}$

A statement Λf : σ is said to be stable if and only if $\sigma\in Ty^{+}$. A sequent $\Gamma\triangleright\Delta$ is
said to be stable if and only if $\sigma\in T\overline{y}$ for every type σ of statements in Γ , and
$\tau\in Ty^{+}$ for every type τ of statements in Δ .

We can also redefine Ty^{+} and Ty^{+} with the notion of positive and negative
occurrences defined in Section 4.4. Namely, $Ty^{+}(T\overline{y})$ is the set of all types in
which no type of the form $\forall t.\rho$ occurs negatively (positively) and no type of the
form $\exists t.\rho$ occurs positively (negatively). Here are a few examples. If $\sigma,$ τ_{1} , and τ_{2}

are types without type quantifier, then L : $\exists s.\sigma\triangleright M$: $\forall t.((\exists u_{1}.\tau_{1})\rightarrow(\forall u_{2}.\tau_{2}))$ is
a stable sequent. On the other hand, neither L : $\forall s.\alpha\triangleright M$: β nor L : $\alpha\triangleright M$:
$\beta\rightarrow(\exists t.\gamma)$ is stable.

It can be proved that, if sequents are restricted to stable ones, then TLK* is
conservative over TLJ* and TLJ* is conservative over TLJI* Furthermore we
obtain the following theorem concerning the equivalence among the systems. For
the proof, see $[39, 38]$.

Theorem 7.1.1 (Equivalence among systems). Let S be a stable sequent allowed
in TLJ2* Namely, the antecedent of S consists of statements whose subjects are
distinct variables. Then, the derivabilities of S in the following six systems are
all equivalent to each another: $TLK*,$ TLKI* , $TLK2^{*}+(Dist\exists),$ $TLJ*,$ TLJI* ,
$TLK2^{*}+(Dist\vee)+(Dist\exists)$, and $T_{\rightarrow\wedge v\forall\exists}^{*}+(Dist\vee)+(Dist\exists)$.

Form this theorem and the completeness of $TLK*$, we have the completeness of
$T_{\rightarrow\wedge\vee\forall\exists}^{*}$ for stable sequents.

Theorem 7.1.2 (Completeness of $T_{\rightarrow\wedge\vee\forall\exists}^{*}$). A stable sequent is derivable in
$T_{\rightarrow\wedge\vee\forall\exists}^{*}+(Dist\vee)+(Dist\exists)$ if and only if it is valid in all models with respect to
simple semantics.

7.2 Cut-Elimination
In the logical calculi LK and LJ, the cut-elimination theorem, due to Gentzen [18]
plays an essential role for showing various properties of the calculi. Of the family of
sequent calculi for type assignment, the systems $TLK*,$ $TLJ*$, and $TLJ2^{*}$ enjoy the
cut-elimination. Namely, if a sequent is derivable, then it can be derived without
using (Cut) or (Cut)*. The proof is not very easy. It is difficult to use the original
proof technique by Gentzen. This difficulty comes from the impredicativity of type
quantifiers. For the detail, see $[40, 38]$.

SYNTAX AND SEMANTICS OF TYPE ASSIGNMENT SYSTEMS 135

In this section we show two applications of the cut-elimination theorem. The
first application is to prove the conservativity of the systems. Let T be either
$TLK*,$ $TLJ*$, or TLJ2*. For each nonempty set C of type $constructors\rightarrow,$ $\wedge,$ $\vee,$

\forall ,
and \exists , we define T_{C} as the system obtained from T by imposing the restriction that
types are constructed from type variables by applying only the type constructor in
C . Then we have the following theorem concerning the conservativity.

Theorem 7.2.1. Let T be either $TLK*,$ $TLJ*$, or TLJ2* Let A and B be
nonempty sets of type $ constructors\rightarrow$ $\wedge,$ $\vee,$

\forall , and \exists such that $A\subseteq B.$ If A

does not contain \forall or \exists , then T_{B} is a conservative extension of T_{A} .

This theorem is an immediate conclusion from the cut-elimination theorem.
Indeed, suppose that a sequent S of T_{A} is derivable in T_{B} . Then, there exists a
cut-free derivation tree for S in T_{B} . All types occurring in the cut-free derivation
tree are subexpressions of types in S. (In LK or LJ, the corresponding property
is called subformula property.) Therefore, the derivation tree is allowed in T_{A} , so
that S is derivable in T_{A} .

It is remarkable that Theorem 7.2.1 does not hold if we remove the restriction
on A . Indeed, if A contains \forall or \exists , then a cut-free derivation tree in T_{A} may
have inferences by $(\forall L)$ or $(\exists R)$, and so the subformula property does not hold.
However, if we restrict statements to stable ones defined in the theorem holds
without the restriction on A . This follows from the fact that any cut-free derivation
tree for a stable sequent has no inference of $(\forall L)$ or $(\exists R)$.

Theorem 7.2.2. Let T be either $TLK*,$ $TLJ*$, or TLJ2*. Let A and B be
nonempty sets of type $ constructors\rightarrow$ $\wedge,$ $\vee,$

\forall , and \exists such that $ A\subseteq$ B. For
every stable sequent S of T_{A} , the sequent S is derivable in T_{A} if and only if so is
in T_{B} .

The conservativity on $TLJ2^{*}$ is translated in $T_{\rightarrow\wedge\vee\forall\exists}$. As -shown in Theo-
rem 6.3.1, TLJ2 and $T_{\rightarrow\wedge\vee\forall\exists}$ are equivalent, and it can be extended for the systems
with (Simple) and (Eq_{β}) . The equivalence also holds for the subsystems of them.
Therefore, the conservativity theorems presented above hold for the subsystems of
$T_{\rightarrow\wedge\vee\forall\exists}+(Simple)+(Eq_{\beta})$.

Another application of the cut-elimination is to prove the underivability. In
Section 7.1, we mention that the axioms (Dist \vee) or (Dist \exists) are not generally
derivable in TLJ2* By the cut-elimination of $TLJ2^{*}$, we can prove this fact.
Suppose that

x : $(s\vee t)\wedge u\triangleright x$: $(s\wedge u)\vee(s\wedge u)$

is derivable. Then, it can be derived without (Cut)*. It is easily proved that there
exists a cut-free derivation tree for that sequent in TLJ2. Let \mathcal{P} be the shortest
one of such cut-free derivation trees. Then, the rule applied at the last step of
the derivation must be either (A L) or $(\vee R)$. Therefore, the upper sequent of the

136 H. YOKOUCHI

inference at the last step is one of the following four sequents:

x : $s\vee t$ \triangleright x : $(s\wedge u)\vee(t\wedge u)$,

$x:u$ \triangleright $x:(s\wedge u)\vee(t\wedge u)$,
x : $(s\vee t)\wedge u$ \triangleright x : $s\wedge u$,
x : $(s\vee t)\wedge u$ \triangleright x : $t\wedge u$.

However, none of these sequents is derivable in TLJ2. For instance, suppose the
first sequent is derivable in TLJ2. There is a model in which S is not valid. In
fact, we define ξ_{0} and ν_{0} so that $\xi_{0}(x)\in\nu_{0}(s),$ $\xi_{0}(x)\not\in\nu_{0}(t)$, and $\xi_{0}(x)\not\in\nu_{0}(u)$.
Then, x : $s\vee t\triangleright x$: $(s\wedge u)\vee(t\wedge u)$ is not valid in any model with ξ and ν . This
contradicts the fact that all rules of TLJ2 are sound in all models.

7.3 Kripke-Semantics

The system TLJ is defined on the analogy with intuitionistic logic LJ. This suggests
that we can define a Kripke model for type assignment. A typing statement is
expressed by a logical formula with membership predicates for ground types. For
example, the statement M : $u\rightarrow(s\vee t)$ is expressed by:

$\forall x.((x\in u)\supset((Mx\in s)\vee(Mx\in t)))$,

$where\in$, say $(-)\in s$, is the predicate for checking the membership for ground type
s . If such alogical formula is interpreted in a model of classical logic, then we obtain
the standard interpretation of types for simple semantics defined in Section 2. We
can also interpret the above logical formula in a Kripke model for intuitionistic
logic. If we define the interpretation of types directly, then we have a definition of
Kripke models for type assignment. For the explicitly typed λ-calculus, Mitchell
and Moggi [28] proposed a Kripke model, which follows from the investigation of
empty types [26]. Our definition of Kripke-models is similar to their definition
except that we treat type assignment version with type quantifiers.

In this section, we define Kripke models for simple semantics, and we show that
TLJ satisfies the completeness theorem.

Definition (Kripke premodels). A Kripke premodel (for type assignment) is a
triple $\mathcal{K}=(\mathcal{W}, \mathfrak{M}, \mathcal{T})$ such that:

(1) \mathcal{W} is a nonempty set with preorder \subseteq , whose elements are called possible
worlds.

(2) \mathfrak{M} is a family of λ-models $\mathfrak{M}_{w}=(D_{w’ w}$, [-]” $)$ indexed by possible worlds
w such that, if $w\subseteq w^{\prime}$, then \mathfrak{M}_{w} is a submodel of $\mathfrak{M}_{w^{\prime}}$.

(3) \mathcal{T} is a set of partial mappings, called partial domains, such that:

(a) the domain of P is a subset $Dom(P)\subseteq \mathcal{W}$,

SYNTAX AND SEMANTICS OF TYPE ASSIGNMENT SYSTEMS 137

(b) P assigns to each $w\in Dom(P)$, a subset $P[w]\subseteq D_{w}$,

(c) if $w\in Dom(P)$ and $w\subseteq w^{\prime}$, then $w‘\in Dom(P)$ and $P[w]\subseteq P[w’]$.

Definition (Type interpretation in Kripke premodels). Let $\mathcal{K}=(\mathcal{W}, \mathfrak{M}, \mathcal{T})$ be a
Kripke premodel. A type environment in \mathcal{T} is a mapping ν that assigns to each
type variable t , a partial domain $\nu(t)\in \mathcal{T}$. For each pair of type σ and type
environment ν we define the partial domain $[\sigma]_{\nu}$ as follows:

\bullet $Dom([\sigma]_{\nu})=\cap\{Dom(\nu(t))|t\in FTV(\sigma)\}$,

\bullet for each $w\in Dom([\sigma]_{\nu})$, the subset $[\sigma]_{\nu}[w]\subseteq D_{w}$ is defined as follows:

(1) $[t]_{\nu}[w]=\nu(t)[w]$,

(2) $[\rho\wedge\tau]_{\nu}[w]=([\rho]_{\nu}[w])\cap([\tau]_{\nu}[w])$,

(3) $[\rho\vee\tau]_{\nu}[w]=([\rho]_{\nu}[w])\cup([\tau]_{\nu}[w])$,

(4) $[\rho\rightarrow\tau]_{\nu}[w]$

$=\{c\in D_{w}|\forall w^{\prime}\underline{\text{コ}}w\forall a\in[p]_{\nu}[w].(c\cdot w^{\prime}a\in[\tau]_{\nu}[w^{\prime}])\}$,

(5) $[\forall t.\tau]_{\nu}[w]$

$=\{a\in D_{w}|\forall w\underline{\text{コ}}w\forall P\in \mathcal{T}(w\in Dom(P)).(a\in[\tau]_{\nu(t:=P)}[w])\}$,

(6) $[\exists t.\tau]_{\nu}[w]$

$=\{a\in D_{w}|\exists P\in \mathcal{T}(w\in Dom(P)).(a\in[\tau]_{\nu(t:=P)}[w])\}$.

Note that $[\sigma]_{\nu}$ satisfies the condition of partial domains: if $w\in Dom([\sigma]_{\nu})$ and
$w\subseteq w$, then $w^{\prime}\in Dom([\sigma]_{\nu})$ and $[\sigma].[w]\subseteq[\sigma].[w^{\prime}]$.

Definition (Kripke models). A Kripke premodel $\mathcal{K}=(\mathcal{W}, \mathfrak{M}, \mathcal{T})$ is called a Kripke
model if and only if $[\sigma]_{\nu}\in \mathcal{T}$ for every pair of type σ and type environment ν .

Definition (Validity in a Kripke Model). Let $\mathcal{K}=(\mathcal{W}, \mathfrak{M}, \mathcal{T})$ be a Kripke model.
Let Γ and Δ be two finite sequence of statements. Let w be a possible world
in $\mathcal{W},$ ξ a term environment in \mathfrak{M}_{w} , and ν a type environment in \mathcal{T} such that
$w\in Dom(\nu(t))$ for every type variable $t\in FTV(\Gamma)UFTV(\Delta)$. Then, the sequent
$\Gamma\triangleright\Delta$ is said to be valid in $(\mathcal{K}, w, \xi, \nu)$ if and only if either $[\Lambda_{i}f]_{\xi}^{w}\not\in[\sigma]_{\nu}[w]$ for
some M : σ in Γ , or $[N]_{\xi}^{w}\in[\tau]_{\nu}[w]$ for some N : τ in Δ . The sequent $\Gamma\triangleright\Delta$

is said to be valid in \mathcal{K} if and only if it is valid in $(\mathcal{K}, w, \xi, \nu)$ for every triple of
possible world w in \mathcal{W} , term environment ξ in \mathfrak{M}_{w} , and type environment ν in \mathcal{T}

such that $w\in Dom(\nu(t))$ for every type variable $t\in FTV(\Gamma)\cup FTV(\Delta)$. Similarly,
a statement M : σ is said to be valid in $(\mathcal{K}, w, \xi, \nu)$ when so is $\triangleright M$: σ , and it is
said to be valid in \mathcal{K} when so is $\triangleright M$: σ .

It is proved in in [40] that $TLJ+(Simple)+(Eq_{\beta})$ is complete for Kripke-models.

138 H. YOKOUCHI

Theorem 7.3.1 (Completeness of TLJ for Kripke models). A sequent $\Gamma\triangleright\lambda I$: σ is
derivable in $TLJ+(Simple)+(Eq_{\beta})$ if and only if it is valid in all Kripke models.

We show an application of Kripke models. In Section 2.7 we presented an
example showing that $T_{\rightarrow}+(Axiom_{A})+(Eq_{\beta})$ is not complete. Here we repeat
the example. We define

$\mathcal{A}=\{\lambda x.c:p_{1}\rightarrow p_{2}, d:p_{2}\rightarrow q, d:(p_{1}\rightarrow p_{3})\rightarrow q\}$

with term constants c and d , and type constants $p_{1},$ $p_{2},$ p_{3} and q . Then, $\triangleright dc:q$ is
valid in any models in which all statements in \mathcal{A} are valid, while it is underivable in
$T_{\rightarrow}+(Axiom_{A})+(Eq_{\beta})$. This underivability can be proved with a Kripke model.
As presented in Section 2.6, the type interpretation is extended for types with type
constants, in a trivial manner. Namely, for each triple of type σ , type environment
ν , and constant valuation V , we define the partial domain $[\sigma]_{\nu}^{V}$ by adding the
clause: $[a]_{\nu}^{V}[w]=V(a)[w]$. It is easily verified that all rules of $T_{\rightarrow}+(Eq_{\beta})$ are
sound in any Kripke model. Therefore, it is enough to construct a Kripke model
$\mathcal{K}=(\mathcal{W}, \mathfrak{M}, \mathcal{T})$ and a valuation V in which all axioms are valid and $cd:r$ is not
valid. For \mathcal{W} we take the set of two possible worlds w_{1} and w_{2} with $w_{1}\subseteq w_{2}$. We
choose a λ-model $(D, \cdot, [-])$ arbitrarily, and we assign it to the possible worlds w_{1}

and w_{2} . For \mathcal{T} we take the set of all the subsets of D . For the values of c and d ,
we define $V(c)$ and $V(d)$ arbitrarily. For the values of type constants we define as
follows:

\bullet $Dom(V(p_{1}))=Dom(V(p_{2}))=Dom(V(p_{3}))=Dom(V(q))=\{w_{1}, w_{2}\}$,

$\bullet V(p_{1})[w_{1}]=V(p_{2})[w_{1}]=V(p_{3})[w_{1}]=V(q)[w_{1}]=\emptyset$,

\bullet $V(p_{1})[w_{2}]=V(p_{2})[w_{2}]=V(q)[w_{2}]=D$ and $ V(p_{3})[w_{2}]=\emptyset$.

Then, it is easily checked that $[p_{1}\rightarrow p_{2}]_{\nu}^{V}[w]=[p_{1}\rightarrow q]_{\nu}^{V}[w]=D$ for $w=w_{1},$ w_{2} .
Moreover, $[p_{1}\rightarrow p_{3}]_{\nu}^{V}[w]=\emptyset$, so that $[(p_{1}\rightarrow p_{3})\rightarrow q]_{\nu}^{V}[w]=D$. Therefore, all
statements in \mathcal{A} are valid in \mathcal{K} at both possible worlds $w=w_{1},$ w_{2} . However, $dc:q$

is not valid at w_{1} since $ V(q)[w_{1}]=\emptyset$. As a consequent, dc : q is underivable in
$T_{\rightarrow}+(Axiom_{A})+(Eq_{\beta})$.

References
[1] F. Alessi and F. Barbanera. Strong conjunction and intersection types. In

A. Tarlecki, editor, Mathematical Foundations of Computer Science 1991, vol-
ume 520 of Lecture Notes in Computer Science, pages 64-73, Kazimierz Dolny,
Poland, 9-13 Sept. 1991. Springer.

[2] F. Barbanera, M. Dezani-Ciancaglini, and U. de’Liguoro. Intersection and
union types: Syntax and semantics. Inform. Comp., 119(2):202-230, June
1995.

SYNTAX AND SEMANTICS OF TYPE ASSIGNMENT SYSTEMS 139

[3] H. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbai, and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume II,
pages 117-309. Oxford University Press, 1992.

[4] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model
and the completeness of type assignment. J. Symbolic Logic, 48:931-940, 1983.

[5] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-
Holland, Amsterdam, 1984.

[6] F. Cardone and M. Coppo. Two extensions of Curry’s type inference system.
In P. Odifreddi, editor, Logic and Computer Science, pages 19-75. Academic
Press, London, 1990.

[7] F. Cardone, M. Dezani-Ciancaglini, and U. de’Liguoro. Combining type dis-
ciplines. Ann. Pure Appl. Logic, 66(3):197-230,5 Apr. 1994.

[8] A. Church. A formulation of the simple theory of types. J. Symbolic Logic, 5,
1940.

[9] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters of
solvable terms. Z. Math. Log. Grund Math., 27:45-58, 1981.

[10] H. B. Curry. Functionality in combinatory logic. In Proc. Nat. Acad. Science
USA 20, pages 584-590, 1934.

[11] H. B. Curry and R. Feys. Combinatory Logic, Vol. I. North-Holland, Amster-
dam, 1958.

[12] H. B. Curry, J. R. Hindley, and J. P. Seldin. Combinatory Logic, Vol. II.
North-Holland, Amsterdam, 1972.

[13] N. G. de Bruijn. A survey of the project automath. In J. P. Seldin and J. R.
Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism, pages 579-606. Academic Press, London, 1980.

[14] M. Dezani-Ciancaglini and M. Coppo. An extension of basic functionality
theory for lambda-calculus. Notre Dame J. Formal Log., 21:685-693, 1980.

[15] M. Dezani-Ciancaglini, S. Ghilezan, and B. Venneri. The “relevance” of inter-
section and union types. Notre Dame J. Formal Logic, 38(2):246-269, Spring
1997.

[16] M. Dezani-Ciancaglini and I. Margaria. A characterization of F-complete
assignments. Theoret. Comput. Sci., 45(2):121-157, 1986. Fundamental study.

[17] J. H. Gallier. On Girard’s “candidats de reductibilit\’e’’. In P. Odifreddi, editor,
Logic and Computer Science, pages 123-203. Academic Press, London, 1990.

[18] G. Gentzen. Untersuchungen \"uber das logische Schilie\ssen, I, II. Math.
Zeitschr., 39:176-210, 405-431, 1934.

140 H. YOKOUCHI

[19] J. Y. Girard. Interpr\’etation fonctionnelle et \’elimination des coupures de
l’arithm\’etique d’ordre superieur. PhD thesis, University of Paris VII, 1972.

[20] R. Hindley. The completeness theorem for typing λ-terms. Theoret. Comput.
Sci., 22(1-2):1-17, Jan. 1983.

[21] R. Hindley. Curry’s type-rules are complete with respect to the F-semantics
too. Theoret. Comput. Sci., 22(1-2):127-133, Jan. 1983.

[22] W. Howard. The formulae-as-types notation of construction. In J. P. Seldin
and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, pages 479-501. Academic Press, London,
1980.

[23] D. Leivant. Typing and computational properties of lambda expressions. The-
oret. Comput. Sci., 44(1):51-68, 1986.

[24] D. MacQueen, G. Plotkin, and R. Sethi. An ideal model for recursive poly-
morphic types. Inform. Comp., 71 (1/2):95-130, Oct. /Nov. 1986.

[25] D. MacQueen and R. Sethi. A semantic model of types for applicative lan-
guages. In ACM Symposium on Lisp and Functional Programming, pages
243-252, 1982.

[26] A. R. Meyer, J. C. Mitchell, E. Moggi, and R. Statman. Empty types in
polymorphic lambda calculus. In Conference Record of the Fourteenth Annual
ACM Symposium on Principles of Programming Languages, pages 253-262,
Munich, Germany, Jan. 1987.

[27] J. C. Mitchell. Polymorphic type inference and containment. Inform. Comp.,
76 (2/3):211-249, Feb. /Mar. 1988.

[28] J. C. Mitchell and E. Moggi. Kripke-style models for typed lambda calculus.
Ann. Pure Appl. Logic, 51 (1-2):99-124, 1991.

[29] J. C. Mitchell and G. D. Plotkin. Abstract types have existential type. ACM
Trans. Prog. Lang. Sys., 10(3):470-502, July 1988.

[30] J. Palsberg and C. Pavlopoulou. From polyvariant flow information to in-
tersection and union types. In Conference Record of POPL 98: The 25th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 197-208, San Diego, California, 19-21 Jan. 1998.

[31] B. C. Pierce. Programming with intersection types, union types, and poly-
morphism. Technical report, CMU-CS-91-106, Carnegie Mellon University,
February 1991.

[32] B. C. Pierce. Intersection types and bounded polymorphism. Mathematical
Structures in Computer Science, 7(2):129-193, Apr. 1997.

SYNTAX AND SEMANTICS OF TYPE ASSIGNMENT SYSTEMS 141

[33] G. Plotkin. A semantics for static type inference. Inform. Comp.,
109(1/2):256-299,15 Feb. /Mar. 1994.

[34] J. Reynolds. Preliminary design of the programming language Forsythe. Tech-
nical report, CMU-CS-88-159, Carnegie Mellon University, June 1988.

[35] J. C. Reynolds. Towards a theory of type structure. In Mathematical Foun-
dations of Software Development, volume 146 of Lecture Notes in Computer
Science, pages 408-426, Berlin, 1972. Springer-Verlag.

[36] H. Yokouchi. F-semantics for type assignment systems. Theoret. Comput. Sci.,
129(1):39-77, 20 June 1994. Fundamental Study.

[37] H. Yokouchi. Embedding a second order type system into an intersection type
system. Inform. Comp., 117(2):206-220, Mar. 1995.

[38] H. Yokouchi. Completeness of type assignment systems with in-
tersection, union, and type quantifiers (full paper). Available at
http: //www. keim.cs.gunma-u.ac.jp/\tilde yokouchi, 1998.

[39] H. Yokouchi. Completeness of type assignment systems with intersection,
union, and type quantifiers. In Proceedings, Thirteenth Annual IEEE Sym-
posium on Logic in Computer Science, pages 368-379, Indianapolis, Indiana,
1998. IEEE Computer Society Press.

[40] H. Yokouchi and R. Kashima. Sequent calculi for type assignment and their
completeness. Available at
http: //www.keim.cs.gunma-u.ac.jp/\tilde yokouchi, 1997.

