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Unipotent group actions on projective varieties
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Abstract.

The correspondence between Ga-actions on affine varieties and
locally nilpotent derivations of the coordinate algebras is generalized in
the projective case to the correspondence between stratified Ga-actions
on smooth projective varieties V and regular vector fields on V which
are effectively locally nilpotent with stratification. These notions with
stratifications are inspired by explicit computations of Ga-actions on
the projective space Pn as well as the Hirzebruch surface Fn and the
associated regular vector fields. Using partly these observations, we
investigate the existence of A1-cylinders in Fano threefolds with rank
one.

§ Introduction

In studying algebraic varieties of higher dimension, one effective
approach is to decompose a given variety into algebraic varieties of lower
dimension via a fibration. To find a fibration via an algebraic group
action on the variety, it is expected that there exists the (algebraic)
quotient variety and the quotient morphism is a fibration whose general
fibers are the orbits of the algebraic group. The quotient variety exists
for a nice group like a reductive algebraic group, although the fiber tends
to have a complicated structure as a homogeneous space.

An algebraic group action on an algebraic variety X can be detected
if one knows the automorphism group Aut(X) and its subgroups. If X is
a projective variety, Aut(X) is given a group scheme structure, and the
connected component Aut0(X) of the identity element is an algebraic
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group. If the variety X is not projective, say affine, the automorphism
group does not necessarily have any algebraic group structure possibly
except an ind-affine group structure. But the structure of Aut(X) is
helpful to find elementary algebraic subgroups like the additive group
Ga or the multiplicative group Gm.

Let X be a smooth projective variety and let TX/k be the tangent
bundle. Then it is known that the Lie algebra of the algebraic group
Aut0(X) is Γ(X, TX/k). For a smooth algebraic variety X, an element
v of Γ(X, TX/k) is a regular vector field on X. If X = Spec A is an
affine variety, this field corresponds to an element Δ of Derk(A), which
is a k-derivation of A. If Δ is locally nilpotent, exp(tΔ) with t ∈ k
defines a Ga-action on X. If an affine variety X = Spec A has a Ga-
action defined in this way, one can think about the “algebraic quotient”
X//Ga and the “quotient morphism” q : X → X//Ga if AΔ := Ker Δ
is finitely generated over k. Then X//Ga is defined as SpecAΔ and q is
the morphism associated to the inclusion AΔ ↪→ A. If dimX ≤ 3, by a
theorem of Zariski, AΔ is finitely generated over k. Hence X//Ga and
q exist, and the morphism q is an A1-fibration. Here an A1-fibration
is a dominant morphism f : X → Y of algebraic varieties such that
general closed fibers as well as the generic fiber are isomorphic to A1. We
discussed A1-fibrations on affine threefolds in [16]. The correspondence
between Ga-actions on affine varieties and locally nilpotent derivations
on the coordinate algebras has been successfully used in affine algebraic
geometry. Meanwhile, the results on Ga-actions on projective varieties
are not abundant except for some basic ones in [2, 7, 20].

In the present article, we look into unipotent group actions on pro-
jective varieties. In the later sections, we restrict ourselves toGa-actions.
In order to develop some meaningful theory about this subject, we need
leading models (or examples) and we take the projective space Pn, the
Hirzebruch surface Fn, etc. Throughout the article, keywords are regu-
lar vector fields and stratifications on a given projective variety V , which
is a sequence of closed subsets

V0 = V ⊃ V1 ⊃ · · · ⊃ Vn−1 ⊃ Vn, dimVi = n− i (∗)

In the sequence (∗), strata consist of V0 \ V1, V1 \ V2, . . . , Vn−1 \ Vn and
each stratum satisfies some property varying from one situation to the
other.

In Section one, we determine explicitly the Lie algebra Γ(X, TX/k)

for X = Pn,X = Fn and a Danielewski surface X = {xy = z2 − 1}. In
the last case which treats an affine surface, Γ(X, TX/k) is seen to have
more complicated structure than in the first two cases. Furthermore,
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we observe the behavior of Γ(X, TX/k) under the blowing-up. Thus this
section is for preliminary results for the later developments.

In Section two, we introduce the notion of unipotent group orbit
stratification on a smooth projective variety V which is the sequence
(∗) such that each stratum is the finite union of orbits under the given
action of a unipotent group U (see Definition 2.5). In particular, since
V0 \ V1 is a single unipotent group orbit, the variety V itself is very
restrictive. In fact, if we simply assume that each Vi is smooth and
κ(Vi − Vi+1) = −∞, then V is isomorphic to Pn (Theorem 2.8). So,
the unipotent group orbit stratification is thought to be a prototype of
stratifications of other kinds to be introduced in later sections. In fact,
the assumption that each stratum consists of finite unipotent orbits is
too strong, and some algebraic or topological substitutes are desirable.
For example, we may consider the condition that each stratum has as
many independent Ga-actions as the dimension of the stratum or the
condition that each stratum is simply connected. In Theorem 2.9, we
look into the relationship between these conditions.

Section three deals with generalities of Ga-actions on smooth pro-
jective varieties. Let V be a smooth projective variety with a nontrivial
Ga-action. Let H be a very ample divisor. Since H is Ga-linearizable,
Ga acts on the linear system |H| and hence there exists aGa-stable mem-
ber H1 in |H|. The Ga-action induces a locally nilpotent homogeneous
derivation of degree 0 on the graded domain ⊕n≥0H

0(V,O(nH)), which
in turn determines the Ga-action on V (Theorem 3.3). The stratum
V \H1 has the induced Ga-action, and the regular vector field Δ on V
corresponding to the Ga-action restricts to a locally nilpotent derivation
on the coordinate algebra of V \H1. This leads to the notion of stratified
Ga-action (Definition 3.7) and the notion of a regular vector field being
effectively locally nilpotent with stratification (Definition 3.9). Theorem
3.10 shows that these two notions are dual to each other.

Section four is devoted to a study of a smooth projective threefold
such that Pic (V ) = Z[H] for a smooth ample divisor H and V has
a Ga-action making H stable. Then V is a Fano threefold of Picard
rank one, and the structures of such threefolds are known (see [22]),
but we are interested in the structure or properties of the principal
stratum X := V \ H. We will treat basically the case V is P3 or a
quadric hypersurface in P4. Especially noteworthy is Theorem 4.5, the
assertion (2). It gives a characterization of P3 in terms of a Ga-action
and the topological properties of X. Once X becomes isomorphic to A3

which is a conclusion of (2), the quotient surface X//Ga is isomorphic
to A2 and the quotient morphism q : X → X//Ga is surjective. But,
in Theorem 4.9, this conclusion X//Ga

∼= A2 is derived, without the
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topological properties on X, from the existence of the above Ga-ation
and the assumption that the index of V is greater than one and H is
smooth. But in the case where V is a smooth quadric hypersurface in
P4, though the same conclusion is obtained, the quotient morphism q :
X → X//Ga is not surjective (Theorem 4.6). Therefore these properties
reflect subtle differences of Fano threefolds of rank one equipped with
Ga-actions.

The article is partly meant to free Ga-actions from the framework
of affine varieties and to consider them in more general settings. As
explained above, a key is a regular vector field on an algebraic variety.
Though there are many results related to vector fields, most of them are
not written to fit our purpose and scattered in various references. So, we
chose our way to exhibit the idea by giving concrete examples (though
elementary). This might cause an impression that promising or original
ideas are buried in isolated examples. A task to develop the details
is perhaps left to our subsequent works and possibly to the interested
readers.

We assume throughout the article that the ground field k is an
algebraically closed field of characteristic zero. Whenever topological
arguments are employed, we assume tacitly that k is the complex field
C. If V is an algebraic variety and V1 a closed subvariety of V , the
complement V \ V1 is also denoted by V − V1, especially when V1 is a
divisor of V .

Acknowledgments. We thank the referees for the critical reading of the
manuscript and many comments and suggestions which were helpful to
improve the manuscript.

§1. Preliminary results on vector fields on projective varieties

In this section, we consider global vector fields on Pn or on the
Hirzebruch surface Fn (n ≥ 0) in terms of vector fields on the affine
space An naturally embedded into Pn or A2 into Fn. Perhaps these
computations are well-known but buried in the various references. We
will give them for our conveniences.

First of all, in the case where An ↪→ Pn, we consider a system of
homogeneous coordinates (X0,X1, . . . ,Xn) on Pn and set xi = Xi/X0

for 1 ≤ i ≤ n.

Lemma 1.1. Let Δ be a regular vector field on An and write

Δ = f1
∂

∂x1
+ · · ·+ fn

∂

∂xn
with f1, . . . , fn ∈ k[x1, . . . , xn] .
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Then Δ extends to a regular vector field on Pn if and only if

f1 = a1x
2
1 + a2x1x2 + · · ·+ anx1xn +

n∑
i=1

b1ixi + c1

f2 = a1x1x2 + a2x
2
2 + · · ·+ anx2xn +

n∑
i=1

b2ixi + c2

· · · · · · · · ·

fn = a1x1xn + a2x2xn + · · ·+ anx
2
n +

n∑
i=1

bnixi + cn .

where ai(1 ≤ i ≤ n), bij(1 ≤ i, j ≤ n), ci(1 ≤ i ≤ n) are elements of k.
Hence dimΓ(Pn, TPn) = n(n+ 2).

Proof. To avoid complicated computations, we exhibit the idea in
the case n = 2. We set x = X1/X0 and y = X2/X0. Let Ui = {Xi �=
0} (i = 0, 1, 2) be the open sets of P2 isomorphic to A2. Hence U0 =
Spec k[x, y]. Let U1 = Spec k[u, v] with u = X0/X1 = x−1 and v =
X2/X1 = yx−1. Assume that Δ is a regular vector field on P2. Write

Δ = f
∂

∂x
+ g

∂

∂y
= ξ

∂

∂u
+ η

∂

∂v
, x, y ∈ k[x, y], ξ, η ∈ k[u, v].

Since ξ = Δ(u) = −u2−dudf
(
1
u ,

v
u

)
with d = degx,y f , we have

d ≤ 2. Similarly, on U2 = Spec k[z, w] with z = X0/X2 = y−1

and w = X1/X2 = xy−1. Writing Δ = ϕ ∂
∂z + ψ ∂

∂w , we have

ϕ = Δ(z) = −z2−ezeg
(
w
z ,

1
z

)
with e = degx,y g. Hence e ≤ 2. Hence we

can write

f = a0x
2 + a1xy + a2y

2 + c0x+ c1y + c2

g = b0x
2 + b1xy + b2y

2 + d0x+ d1y + d2.
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Then we have

ξ = −u2

(
a0
u2

+ a1
v

u2
+ a2

v2

u2
+

c0
u

+ c1
v

u
+ c2

)
= −

(
a0 + a1v + a2v

2 + c0u+ c1uv + c2u
2
)

η = −v

u
· u2

(
a0
u2

+ a1
v

u2
+ a2

v2

u2
+

c0
u

+ c1
v

u
+ c2

)

+
1

u
· u2

(
b0
u2

+ b1
v

u2
+ b2

v2

u2
+

d0
u

+ d1
v

u
+ d2

)

= −a0
v

u
− a1

v2

u
− a2

v3

u
− v(c0 + c1v + c2u)

+
b0
u

+ b1
v

u
+ b2

v2

u
+ d0 + d1v + d2u

Hence b0 = 0, b1 = a0, b2 = a1 and a2 = 0. Then it is easy to show that
Δ is regular on U2 as well. So, f and g are as stated above for n = 2
and x = x1, y = x2. Q.E.D.

Remark 1.2. There is an exact sequence of OPn -Modules

0 → OPn → OPn(1)⊕(n+1) → TPn → 0.

Since H1(Pn,OPn) = 0, we have dimH0(Pn, TPn) = n(n+ 2).

Let V = Fn be the Hirzebruch surface of degree n and let M be a
minimal section of the canonical P1-fibration p : V → P1. The affine
plane A2 can be embedded into V as the complement V \ (M ∪ 	∞),
where 	∞ is the fiber at infinity of p. We consider a regular vector field
Δ on A2 and look for a condition with which Δ is extendable to a regular
vector field on V .

Write V = Proj (OP1 ⊕OP1(n)) and let M be defined by the projec-
tion OP1 ⊕OP1(n) → OP1 . To be more precise, let P1 = U0 ∪ U1, where
U0 = Spec k[x] and U1 = Spec k[x−1]. Then OP1(n)|U0 = OU0e1 and
OP1(n)|U1 = OU1e

′
1, where e′1 = xne1. We write the direct summand

OP1 as OP1e0 to give a base e0. Then V is covered by four open sets
V = V0 ∪ V1 ∪ V2 ∪ V3, where
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V0 = Spec k[x, y], y =
e0
e1

V1 = Spec k[u, v], u =
1

x
, v =

e0
e′1

=
y

xn

V2 = Spec k[x, z], z =
1

y
=

e1
e0

V3 = Spec k[u, t], u =
1

x
, t =

1

v
=

e′1
e0

=
xn

y

Write a regular vector field Δ on the open set V0 as

Δ = f
∂

∂x
+ g

∂

∂y

with f, g ∈ k[x, y]. Express Δ on the open sets V1, V2, V3 in terms of
the above respective coordinate systems and find the condition for Δ to
be regular on each of the above open sets. The computations show the
following result.

Lemma 1.3. Embed A2 into Fn (n ≥ 0) as A2 = Fn \ (M ∪ 	∞).
Let Δ = f ∂

∂x +g ∂
∂y be a regular vector field on A2. Then Δ is extendable

to a regular vector field on Fn if and only if

(1) f(x, y) = a20x
2 + a10x+ a00,

(2)

g(x, y) =

{
bn0x

n+· · ·+b10x+b00+b01y+b11xy (b11 = na20) (n > 0)
b02y

2 + b01y + b00 (n = 0)

Hence dimH0(Fn, TFn) is equal to n+ 5 if n > 0 and 6 if n = 0.

Remark 1.4. Let V be P2 or Fn. In Lemma 1.1 and Lemma 1.3,
we tacitly used the coincidence of two k-vector spaces H0(V, TV ) and

Γ =

{
Δ ∈ Γ(A2, TA2)

∣∣∣∣ a regular vector field on A2 which is ex-
tendable to a regular vector field on V

}

Since a given vector field on A2 is uniquely extendable to a rational
vector field on V , where only the coefficients are restricted if it is regular
on V , there is a natural correspondence which assigns Δ to itself

θ : Γ → H0(V, TV ).

Then the correspondence is an isomorphism. In fact, an element
Δ ∈ H0(A2, TA2) is identified with a k-derivation of the function field
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k(A2). So, H0(V, TV ) is a k-derivation of k(A2) which is regular on V .
The extendability of a given vector field on A2 onto V depends on the
embedding A2 ↪→ V . The above remark applies if one replaces A2 ↪→ P2

by An ↪→ Pn.

Remark 1.5. The dimension of H0(Fn, TFn) can be also computed
by an exact sequence

0 → H0(V,OV (2M + n	)) → H0(V, TV ) → H0(P1,OP1(2)) → 0,

where h0(V,OV (2M + n	)) = n + 2 if n > 0 and = 3 if n = 0. This
sequence is obtained from the exact sequence

0 → OV (2M + n	) → TV → p∗OP1(2) → 0,

which is dual to

0 → p∗Ω1
P1/k → Ω1

V/k → Ω1
V/P1 → 0.

Determination of regular vector fields on a smooth algebraic surface
is not so easy as for A2. As an example, we determine those for a
Danielewski surface X = {xy = z2 − 1} ⊂ A3. For a similar direction
of research, one can refer to [28]. Let K = k(X) and let Δ be a regular
vector field on X. Then, as a derivation of k(X)/k, Δ is written as

Δ = g
∂

∂x
+ h

∂

∂z
,

where g = Δ(x) and h = Δ(z). Since y = x−1(z2 − 1), we have

f := Δ(y) = − 1

x2
· xyg + 2z

x
h,

whence xf + yg = 2zh. Since Δ corresponds to δ ∈ HomR(Ω
1
R/k, R)

by Δ = δ · d with d : R → Ω1
R/k being the universal derivation of R,

where R is the coordinate ring of X [19, Definition, p.172]. We have
f = δ(dy), g = δ(dx) and h = δ(dz), whence f, g, h ∈ R.

Lemma 1.6. Since R = k[x, y] + k[x, y]z is a free k[x, y]-module,
write

f = f0 + f1z, g = g0 + g1z, h = h0 + h1z,

where fi, gi, hi ∈ k[x, y] for i = 0, 1. Then we have:

(1) h0 = 1
2 (xf1 + yg1).
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(2) There exist L,M,F ∈ k[x, y] such that

f0 = 2(xy + 1)L+ yF, g0 = 2(xy + 1)M − xF, h1 = xL+ yM,

where L,M,F, f1 and g1 are chosen arbitrarily.
(3) With the choice of these elements, Δ is written as

Δ = {2(xy + 1)M − xF + g1z}
∂

∂x

+{(1
2
f1 + Lz)x+ (

1

2
g1 +Mz)y} ∂

∂z
.

Proof. Since xf + yg = 2zh, we have

(xf0 + yg0) + z(xf1 + yg1) = 2h1(xy + 1) + 2h0z,

whence
xf0 + yg0 = 2h1(xy + 1) (i)

and

h0 =
1

2
(xf1 + yg1). (ii)

Let (x, y) be the maximal ideal in k[x, y]. Since xy + 1 �∈ (x, y), (i)
implies h1 ∈ (x, y). Hence we may write

h1 = xL+ yM. (iii)

By (i), we have an equality in k[x, y],

x{f0 − 2(xy + 1)L} = y{2(xy + 1)M − g0}.

Since gcd(x, y) = 1, we have

f0 = 2(xy + 1)L+ yF, g0 = 2(xy + 1)M − xF

for some F ∈ k[x, y]. Tracing the above computations backward, it is
clear that the choice of L,M,F, f1, g1 in k[x, y] is arbitrary. Q.E.D.

Let σ : W → V be the blowing-up of a smooth algebraic variety V
with a smooth center Z. Let Δ be a vector field on V which is regular
along Z. If V ′ is a variety birational to V , then Δ is viewed as a rational
vector field on V ′. So, we use the same symbol Δ to denote the rational
vector field on W . The regularity of Δ near the exceptional subvariety
σ−1(Z) is given by the following.



128 R.V. Gurjar, K. Masuda and M. Miyanishi

Lemma 1.7. With the above notations, let P be a point of Z and
let {x1, x2, . . . , xn} be a system of local parameters of V at P such that
Z is defined by x1 = x2 = · · · = xd = 0, where d = codim V (Z). Write
Δ near P as

Δ = f1
∂

∂x1
+ f2

∂

∂x2
+ · · ·+ fn

∂

∂xn
,

where f1, . . . , fn ∈ OV,P . Then Δ is regular near σ−1(P ) if and only if
f1(P ) = · · · = fd(P ) = 0.

Proof. Since σ−1(Z) is a Pd−1-bundle over Z, σ−1(P ) is a projec-
tive space Pd−1 with a system of homogeneous coordinates {X1, . . . ,Xd}.
Fix i with 1 ≤ i ≤ d. Then, on the open set Ui = {Xi �= 0}, it holds
that Xj/Xi = xj/xi for 1 ≤ j ≤ d and j �= i. Set uj = xj/xi if
1 ≤ j ≤ d and j �= i and ui = xi. For any point Q ∈ σ−1(P ), the set
{u1−u1(Q), . . . , ud−ud(Q), xd+1, . . . , xn} is a system of local parameters
of W at Q. Hence we can write

Δ = ξ1
∂

∂u1
+ · · ·+ ξd

∂

∂ud
+ fd+1

∂

∂xd+1
+ · · ·+ fn

∂

∂xn
,

where ξi = fi. If 1 ≤ j ≤ d and j �= i, we have

ξj = Δ(uj) = Δ

(
xj

xi

)
= −xj

x2
i

fi +
1

xi
fj

=
1

xi
{fj(u1xi, . . . , xi, . . . , udxi, xd+1, . . . , xn)

−ujfi(u1xi, . . . , xi, . . . , udxi, xd+1, . . . , xn)} .

If fj(P ) �= 0, then ξj has a simple pole along σ−1(Z). So, ξj is regular
only if fj(P ) = 0. This implies that Δ is regular along σ−1(Z) only if
f1(P ) = · · · = fd(P ) = 0. The converse is clear by the above expression
of the ξj . Q.E.D.

Example 1.8. Let σ : F1 → P2 be the blowing-up with center P .
By Lemma 1.7, Γ(F1, TF1) is identified with

Γ =

{
Δ

∣∣∣∣ a regular vector field on P2 which van-
ishes at P

}
.

Hence dimΓ(F1, TF1) = dimΓ(P2, TP2)− 2 = 8− 2 = 6.

Lemma 1.7 implies the following result.

Lemma 1.9. Let σ : W → V be the blowing-up of a smooth pro-
jective variety V with center P . Assume that dimV = n > 1. Then we
have

dimΓ(V, TV ) ≥ dimΓ(W, TW ) ≥ dimΓ(V, TV )− n.
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Proof. Let Δ̃ be a regular vector field on W . Let E = σ−1(P ).

Then Δ̃|W\E is a regular vector field on V \ {P}. Hence it extends
to a regular vector field Δ on V such that Δ = 0 at P . Indeed, let
{x1, . . . , xn} be a system of local parameters of V at P . As a ratio-

nal vector field on V , we can write Δ̃ =
∑n

i=1 fi
∂

∂xi
. Then f1, . . . , fn

are elements of k(V ) which are regular on an open neighborhood of P
punctured the point P . Then f1, . . . , fn are regular at P as well because

V is smooth at P and n ≥ 2. Hence Δ is regular at P and Δ̃ is the
extension of Δ on W . Then Δ = 0 at P by Lemma 1.7. The condition
that Δ vanishes at P imposes on Γ(V, TV ) the condition of dimension
by at most n. Hence we obtain the stated inequalities. Q.E.D.

Example 1.10. Consider Fn (n ≥ 0) as V . With the notations of
Lemma 1.3, let P be defined by u = t = 0 (the point of origin of the
open set V3). Let Δ be a regular vector field in Lemma 1.3. Then the
condition that Δ vanishes at P imposes the condition of dimension 1
(resp. 2) if n > 0 (resp. n = 0), i.e., a20 = 0 (resp. a20 = b02 = 0) if
n > 0 (resp. n = 0). Furthermore, by the computation in Lemma 1.7
repeated for the blowing-up at P , we conclude that

dimΓ(Fn+1, TFn+1) =

{
dimΓ(Fn, TFn)− 1 + 2 (n > 0)
dimΓ(Fn, TFn)− 2 + 2 (n = 0)

Hence dimΓ(Fn+1, TFn+1) = n+ 6.

We shall give one more result (see also [25, pp. 225–226]).

Example 1.11. Let V be a del Pezzo surface of degree d. If d ≤ 5,
then there are no regular vector fields on V .

Proof. The surface V is obtained by blowing up (9 − d) points
P1, . . . , Pm (m = 9− d) on P2 in general position, i.e., no three of them
lie on a line and no five of them lie on a conic. We can choose the line at
infinity 	∞ so that none of P1, . . . , Pm lies on 	∞. Suppose there exists

a nonzero regular vector field Δ̃ on V . Then, by the proof of Lemma
1.9, there exists a regular vector field Δ on P2 such that Δ vanishes at
points P1, . . . , Pm. We may choose a system of coordinates {x, y} on
A2 = P2 \ 	∞ so that P1 = (0, 0), P2 = (1, 0) and P3 = (0, 1). With the
notations in Lemma 1.1 (the proof in the case n = 2), it follows that
c2 = d2 = 0, d0 = 0, a1 + d1 = 0, a0 + c0 = 0 and c1 = 0. Hence we
have f = a0(x

2 − x) + a1xy and g = a0xy + a1(y
2 − y). Suppose that

P4 = (α, β) is involved. Then αβ �= 0 because no three of P1, P2, P3, P4
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lie on a line. Since f(α, β) = g(α, β) = 0, we have∣∣∣∣ α2 − α αβ
αβ β2 − β

∣∣∣∣ = 0.

For otherwise a0 = a1 = 0 and Δ = 0 everywhere. The above deter-
minant gives α + β = 1. Then P2, P3 and P4 are colinear, which is a
contradiction. So, P4 cannot be involved, and 9− d ≤ 3. Q.E.D.

This implies that there is no Ga-action on V if d = 5. The last
result follows from the following two facts.

(i) H0(V, TV ) is the Lie algebra of the algebraic group Aut0(V ).
(ii) Let ϕ be an element of Aut0(V ). Then ϕ comes from an auto-

morphism of P2 fixing the points P1, . . . , Pm. Hence if m ≥ 4
then ϕ = id. In fact, no three of P1, . . . , Pm lie on a line. Hence
any automorphism of P2 fixing four of them is the identity au-
tomorphism.

§2. Unipotent group orbit stratifications

Let X be a smooth algebraic variety with an algebraic group G
acting on it, whence there is a group homomorphism σ : G → Aut(X).
Taking the Lie algebra homomorphism, we have

dσ : g → Γ(X, TX),

where TX is the tangent bundle of X and g is the Lie algebra of G. If
(X,D) is a pair of a G-variety X and a G-stable effective divisor D with
simple normal crossings and further if G is connected, then G stabilizes
each of the irreducible components D = D1 + · · ·+Dm. Let x ∈ X and
let {t1, . . . , tn} be a system of local parameters at x ∈ X such that D
is defined by t1 · · · tr = 0. Then an infinitesimal automorphism exp(εδ)

with δ ∈ Tx acts on ÔX,x = k[[t1, . . . , tn]] as

exp(εδ)(a) = a+ δ(a)ε+
1

2!
δ2(a)ε2 + · · ·+ 1

j!
δj(a)εj + · · ·

Hence that exp(εδ) preserves each irreducible component Di means

δ(tia) ∈ tiÔX,x. If we write δ as

δ = c1∂1 + c2∂2 + · · ·+ ci∂i + · · ·+ cn∂n with ∂i =
∂

∂ti
,
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the above condition is that t1 | c1, . . . , tr | cr. Thus, δ belongs to the
stalk

TX(− logD)x = Ox(t1∂1) + · · ·+Ox(tr∂r) +Ox(∂r+1) + · · ·+Ox(∂n),

where TX(− logD) is the dual bundle Hom(Ω1
X(logD),OX) of the bun-

dle of logarithmic 1-differential forms Ω1
X(logD) along D and hence a

subbundle of the tangent bundle TX 1. Hence the above Lie algebra
automorphism dσ factors through a homomorphism

g → Γ(X, TX(− logD)) → Γ(X, TX).

We consider an orbit of a unipotent group U , which is a homogeneous
space U/H, where H is the isotropy group of a base point of the orbit.
We recall first the following well-known results [37, Corollary, p. 1043]
and [41].

Lemma 2.1. Let U be a unipotent group and X = U/H be a homo-
geneous space. Then X is isomorphic to An with n = dimX. In partic-
ular, the underlying scheme of U is the affine space Ad with d = dimU .

The following result follows from the closedness of orbits of unipo-
tent group actions on quasi-affine varieties (see [4, Prop. 4.10, Chap. 1]).

Corollary 2.2. Let U be a unipotent group and let X be a U -variety
containing an open U -orbit. Then the following assertions hold.

(1) Assume that X is affine. Then X coincides with the open U -
orbit and hence isomorpbic to the affine space An.

(2) Let Y be a U -stable open set of X. Then Y contains the open
orbit.

Let V be a smooth projective variety which is a U -variety and let
X be an open U -orbit. Since X is affine by Lemma 2.1, the comple-
ment D = V \X is a U -stable subvariety of pure codimension one. Let
D = D1 + · · · + Dr be the irreducible decomposition. Since U is con-
nected, each irreducible component is U -stable. We shall see in concrete
examples what takes place in the boundary D.

Example 2.3. (1) Embed A2 = Spec k[x, y] into P2 in the stan-
dard way (x, y) �→ (1, x, y). Let D = 	∞ be the line at infinity. Then
Γ(P2, TP2(logD)) is a k-module generated by the elements

Δ = (c0x+ c1y + c2)
∂

∂x
+ (d0x+ d1y + d2)

∂

∂y
,

1See [23] for the definition, where it is denoted by TX(logD).
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where ci, dj ∈ k. Hence dimΓ(P2, TP2(logD)) = 6. Let U be the upper
triangular unipotent subgroup of SL(3), which consists of matrices of
the form ⎛

⎝ 1 s1 s2
0 1 s3
0 0 1

⎞
⎠ , s1, s2, s3 ∈ k.

Then U acts from the right on P2 as (X0,X1,X2) �→ (X0,X1 +
s1X0,X2 + s3X1 + s2X0) with the line at infinity 	∞ = {X0 = 0}
stabilized under this action. With the inhomogeneous coordinates x =
X1/X0, y = X2/X0, the action is given as (x, y) �→ (x+s1, y+s3x+s2).
The Lie algebra u of U is generated by the matrices

δ1 =

⎛
⎝ 0 1 0

0 0 0
0 0 0

⎞
⎠ , δ2 =

⎛
⎝ 0 0 1

0 0 0
0 0 0

⎞
⎠ , δ3 =

⎛
⎝ 0 0 0

0 0 1
0 0 0

⎞
⎠

The Lie algebra homomorphism dσ : u → Γ(P2, TP2(logD)) is given by

(δ1, δ2, δ3) �→
(

∂

∂x
,
∂

∂y
, x

∂

∂y

)

(2) Let O = (1, 0, 0). Since U acts from the right on P2, the orbit
O · U is {(1, s1, s2) | s1, s2 ∈ k} and the isotropy group at O is

H =

⎧⎨
⎩
⎛
⎝ 1 0 0

0 1 s3
0 0 1

⎞
⎠∣∣∣ s3 ∈ k

⎫⎬
⎭ .

The homogeneous space H\U is the ordinary (x, y)-plane. The line at
infinity 	∞ has a U -action

(0,X1,X2) �→ (0,X1,X2 + s3X1).

Hence 	∞ contains an U -orbit O1 · U = {(0, 1, s3) | s3 ∈ k}, where
O1 = (0, 1, 0) and the isotropy group is

H1 =

⎧⎨
⎩
⎛
⎝ 1 s1 s2

0 1 0
0 0 1

⎞
⎠∣∣∣ s1, s2 ∈ k

⎫⎬
⎭ .

The point O2 = (0, 0, 1) is a unique U -fixed point. So, there exist a
decomposition of P2 into strata of U -orbits P2 = O · U ∪O1 · U ∪ {O2}.
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(3) The observation made in (2) above can be easily generalized to
the case of Pn and the group Un of upper triangular unipotent matrices
in SL(n+ 1). The decomposition into Un-orbits

Pn = O · Un ∪O1 · Un ∪ · · · ∪On−1 · Un ∪ {On}

is also the decomposition into the Bn-orbits, where Bn is the Borel
subgroup of SL(n+ 1) consisting of upper triangular matrices.

We prove only the first statement of the assertion (1). The rest
are obvious. By Lemma 1.1, Γ(P2, TP2) is a k-module generated by the
elements

Δ = (a0x
2+a1xy+c0x+c1y+c2)

∂

∂x
+(a0xy+a1y

2+d0x+d1y+d2)
∂

∂y
,

where ai, cj , d� ∈ k. Meanwhile, 	∞ is defined by x−1 = 0 near the
point (0, 1, 0) and by y−1 = 0 near the point (0, 0, 1). Hence Δ ∈
Γ(P2, TP2(logD)) if and only if Δ(x−1) (resp. Δ(y−1)) is divisible by
x−1 (resp. y−1). Hence we obtain the above expression of Δ.

Example 2.4. (1) With the notations before Lemma 1.3, identify
A2 = Spec k[x, y] with the open set V0 of Fn. Let D = 	∞ +M . Then
Γ(Fn, TFn(logD)) is a k-module consisting of vector fields

Δ =

⎧⎪⎨
⎪⎩

(a10x+ a00)
∂

∂x
+ (bn0x

n + · · ·+ b10x+ b00 + b01y)
∂

∂y
(n > 0)

(a10x+ a00)
∂

∂x
+ (b01y + b00)

∂

∂y
(n = 0)

Hence dimΓ(Fn, TFn(logD)) = n+ 4 for n ≥ 0.
(2) Assume that n > 0. By [29], the automorphism group G :=

Aut0(Fn) satisfies an exact sequence

(1) → H → Aut0(Fn) → PGL(2) → (1),

where H consists of automorphisms

(x, y) �→ (x, cy + d0 + d1x+ · · ·+ dnx
n)

with c ∈ k∗ and d0, d1, . . . , dn ∈ k. Hence H = U0 � Gm, where U0 is
the unipotent subgroup with c = 1 in the above expression and U0

∼=
G

×(n+1)
a . Let u0 be the Lie algebra of U0. Then the natural G-action σ

on Fn induces a Lie algebra isomorphism

dσ : u0 →
{
Δ

∣∣∣∣ Δ = (d0 + d1x+ · · ·+ dnx
n)

∂

∂y
, d0, d1, . . . , dn ∈ k

}
.
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Let U be a maximal unipotent subgroup of G containing U0. Then
U/U0 is a unipotent subgroup of PGL(2). For the Lie algebra u of U ,
(dσ)(u) = k ∂

∂x + (dσ)(u0). So, Fn is a G-variety and V0 is a U -orbit.
However G is not a reductive algebraic group if n > 0.

(3) The U0-action on 	∞ ∪M is given by

	∞ : u �→ u, v �→ v + d0u
n + · · ·+ dn

M : x �→ x, z �→ z

1 + d0z + d1xz + · · ·+ dnxnz

This shows that 	∞ \ {P∞} with P∞ = (u = 0, t = 0) is an U0-orbit
and all points on M are U0-fixed points. However since U/U0 moves
the x-coordinate, M \ {P∞} is a U -orbit and P∞ is the unique U -fixed
point. Thus the decomposition into U -orbits is

Fn = V0 ∪ (	∞ \ {P∞}) ∪ (M \ {P∞}) ∪ {P∞}

These examples suggest the following definition.

Definiton 2.5. Let U be a unipotent group and let V be a smooth
projective variety of dimension n equipped with a nontrivial U -action.
A sequence of closed subsets

V0 = V ⊃ V1 ⊃ · · · ⊃ Vn−1 ⊃ Vn (∗)

is the unipotent group orbit stratification if the following conditions are
satisfied.

(1) Each Vi is a (possibly reducible) subvariety of pure dimension
n− i and Vi − Vi+1 is affine.

(2) Each irreducible component of Vi is the closure of a single U -
orbit.

Note that Vn consists of a single point because the U -fixed point
locus of V is connected (cf. [7]).

If a smooth projective variety V has the unipotent group orbit strat-
ification (∗), we may ask if the stratification determines the ambient va-
riety V . In order to answer the question, we first recall a result of C.P.
Ramanujam [38].

Lemma 2.6. Let V be a smooth projective variety of dimension
n > 2 and let H be a divisor of V isomorphic to Pn−1 such that V −H
is affine and H1(V −H;Z) is torsion free. Then V is isomorphic to Pn.

We can easily obtain the following result.
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Corollary 2.7. Let V be a smooth projective variety of dimension
n equipped with a nontrivial action of a unipotent group U . Assume that
V has the unipotent group orbit stratification (∗) such that every Vi is
smooth and irreducible. Then V is isomorphic to Pn.

Proof. If n = 1, it is clear that V ∼= P1. If n = 2, then V1
∼= P1

and V − V1
∼= A2. Then V ∼= P2 by the classification of minimal normal

completions of A2 [33]. Assume now that n ≥ 3. By induction on n,
we may assume that V1

∼= Pn−1 and V − V1 is an open U -orbit. Then
V − V1

∼= An by Corollary 2.2. Hence H1(V − V1;Z) = 0. Then V ∼= Pn

by Lemma 2.6. Q.E.D.

In the unipotent group orbit stratification (∗) with smooth and irre-
ducible Vi, we have the pair (Vi, Vi+1) of logarithmic Kodaira dimension
κ(Vi − Vi+1) = −∞. If we assume this property instead of a unipotent
group action, we can obtain a similar characterization of the projective
space Pn as we will see in Theorem 2.8 below. A stratification like (∗) is
obtained from a very ample divisor H on a smooth projective variety V
of dimension n. Namely, V and H satisfy the following two conditions.

(1) The linear system |H| has no base points and contains a smooth
member.

(2) There exist members H1,H2, . . . ,Hn of |H| such that Vi =
H1 ∩ H2 ∩ · · · ∩ Hi is a smooth and irreducible subvariety of
dimension n − i, where 0 ≤ i ≤ n and V0 = V . In particular,
Hn = 1.

We consider a descending chain of log pairs (Vi, Vi+1) for 0 ≤ i ≤ n− 1.

Theorem 2.8. With the above notations and conditions (1) and
(2), we assume that the pair (Vi, Vi+1) has log Kodaira dimension −∞
for 0 ≤ i ≤ n− 1. Then V is isomprphic to Pn and H is a hyperplane.

Proof. We consider first the case n = 2. Then V1 is a smooth
irreducible curve with κ(V1 − V2) = −∞. Hence V1

∼= P1 and V2 is
a point. This implies that the self-intersection number H2 is equal to
one. Let X = V \ V1. Since H is ample, X is an affine surface with
κ(X) = −∞. Hence there exists an A1-fibration ρ : X → C, where C
is a smooth curve. Suppose that ρ extends to a P1-fibration p : V → C.
Then V1

∼= C, and hence V is a rational ruled surface and V1 is a
cross-section of p. If V is not minimal, there exists an irreducible fiber
component which is disjoint from V1. This is absurd because H is ample.
So, V is a Hirzebruch surface Fd of degree d. Let M be a minimal section
of Fd. Then H ∼ M+s	, where 	 is a fiber of p. Since 1 = H2 = −d+2s,
we have d = 2s− 1. Meanwhile, H ·M = s− d = −s+1 ≥ 0 and d ≥ 0,
whence s = 1 and d = 1. Then H · M = 0, which contradicts the
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ampleness of H. This implies that the closures of the fibers of ρ in
V form a linear pencil Λ with a base point, say P . The curve V1 is a
member of Λ. SinceH2 = 1, the pencil Λ becomes free of base point after
a single blowing-up with center P . Then the blown-up surface becomes a
Hirzebruch surface F1 and the exceptional curve is the minimal section.
Here we note that if there is a reducible member, say F , of Λ, then
F ·V1 = 1 and hence there exists an irreducible component of F which is
disjoint from V1. This contradicts the ampleness of H. By contracting
the exceptional curve back to the point P , we know that V ∼= P2 and H
is a line.

Suppose that n > 2. We assume by induction that V1 is isomorphic
to Pn−1 and V2 is a hyperplane. We consider a Z-cohomology exact
sequence for a pair (V, V1):

H2n−2(V ;Z)
i∗2n−2−→ H2n−2(V1;Z) −→ H2n−1(V, V1;Z) −→ H2n−1(V ;Z)

where i : V1 → V is the canonical inclusion. Since V2 = V1 ∩ H2 for a
general member H2 of |H| and V2 is a hyperplane of Pn−1, H2 is also
Pn−1 and V2 is a hyperplane of H2. Then there exists a line L on H2

such that L intersects V1 transversally in one point P . By the Poincaré
duality, H2n−2(V1;Z) ∼= H0(V1;Z) ∼= Z. We may assume that H0(V1;Z)
is generated by the point P . Similarly, H2n−2(V ;Z) ∼= H2(V ;Z). The
class [L] in H2(V ;Z) gives rise to an element α of H2n−2(V ;Z) which
is mapped by i∗2n−2 to the element of H2n−2(V1;Z) corresponding to
[P ]. By the Poincaré duality, this mapping is simply the intersection
L ∩ V1 = {P}. Hence the mapping i∗2n−2 is surjective. On the other
hand, H2n−1(V ;Z) is isomorphic to H1(V ;Z) by the Poincaré duality,
and H1(V ;Z) ∼= H1(V1;Z) by the Lefschetz hyperplane section theorem.
Then H1(V1;Z) = (0) because V1

∼= Pn−1. Hence H2n−1(V ;Z) = (0).
The above exact sequence shows that H2n−1(V, V1;Z) = (0). By the
Lefschetz duality, it follows that H1(V − V1;Z) = (0). Now we can use
Lemma 2.6 to conclude that V ∼= Pn and V1 is a hyperplane. Q.E.D.

In Lemma 2.6, the condition that H1(V −H;Z) is torsion free is cru-
cial and the condition is satisfied if V −H is simply connected. Instead
of an open orbit of a unipotent group in V −H, we can think of inde-
pendent Ga-actions σ1, . . . , σn on V −H. We shall make the situation
more precise.

Let X be a smooth affine variety of dimension n. Let σi : Ga×X →
X be an action of Ga for 1 ≤ i ≤ m. We say that the actions σi (1 ≤ i ≤
m) are independent if there exists a point P such that the vector fields
Δi associated with σi span a vector subspace of dimension m in the
tangent space TX,P . It is clear that we can choose as P any point from
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an open set U of X. In fact, let Δi be the vector field associated with
the action σi. Then the mapping P �→ (Δ1)P ∧ · · · ∧ (Δm)P ∈ ∧m

i=1TX,P

defines a section

Δ1 ∧ · · · ∧Δm : X → ∧m
i=1TX ,

which is nonzero at the point P by the assumption. Then it is non-zero
in an open neighborhood of P . We then prove the following result.

Theorem 2.9. Let X be a smooth affine variety of dimension n
defined over C with n independent Ga-actions σi (1 ≤ i ≤ n). Then the
following assertions hold.

(1) The fundamental group of X is a finite group and Γ(X,OX)∗ =
C∗.

(2) Assume that n = 2 and X is factorial. Then X ∼= A2 and
hence X is simply connected.

(3) If n = 3, X is factorial and the (algebraic) quotient surface of
X with respect to one of the actions σi, say σ1, is smooth, then
X is simply connected.

Proof. (1) We denote the group schemeGa byGi ifGa acts onX by
σi. The corresponding vector field Δi is a locally nilpotent derivation
of the coordinate ring A of X. Let B1 = Ker Δ1. By slice theorem,
Ab := A[b−1] is a polynomial ring in one variable over B1,b := B1[b

−1]
for some nonzero element b ∈ B1. Then the inclusion B1,b ↪→ Ab defines
an A1-bundle morphism qb : Xb → Yb := SpecB1,b.

Let P be a general point of Xb. Hence G1P ∼= A1 is a fiber of qb. Let
τ : G2 × · · · ×Gn → Yb be a rational mapping defined by (g2, . . . , gn) �→
qb(gn(· · · (g2P ) · · · )). Then τ is a dominant mapping and holomorphic
in a small analytic neighborhood of the point of origin (e2, . . . , en) of
G2×· · ·×Gn. In fact, if εi (2 ≤ i ≤ n) moves a complex number with |εi|
small, then exp(εnΔn) · · · exp(ε2Δ2)P is considered to be a transversal
section of a tubular neighborhood of the orbit G1P . This implies that
σ : G1 × · · · × Gn → X defined by (g1, . . . , gn) �→ gn(· · · (g2(g1P )) · · · )
is a dominant morphism. In fact, if |ε1| is small, exp(ε1Δ1)P is a disc
neighborhood of P in the orbit G1P . Hence exp(εnΔn) · · · exp(ε2Δ2) ·
exp(ε1Δ1)(P ) gives a ball-like, analytic, open neighborhood of the point
P . SinceG1×· · ·×Gn has An as the underlying space, σ gives a dominant
morphism σ : An → X. Let q : Z → X be a connected topological
covering. Then the fiber product qAn : Z ×X An → An is a topological
covering. Since π1(A

n) = (1), Z ×X An contains An as a connected

component. Then the morphism σ splits as σ : An −→ Z
q−→ X.

In fact, Z has locally the same complex structure as X since Z is a
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topological covering of X. Hence Z is a smooth connected complex
manifold of dimension n. Since Z ×X An is a disjoint union of the
connected components isomorphic to An, the canonical projection prZ :
Z ×X An → Z yields a morphism of complex manifolds An → Z which
factors σ : An → X. By counting the number of points in An (resp. Z)
lying over a general point P of X, we infer that deg q ≤ deg σ. Hence
q : Z → X is a finite covering of X and Z is a smooth affine algebraic
variety of dimension n. Hence |π1(X)| ≤ deg σ. Since σ : An → X is a
dominant morphism, it follows that A∗ = Γ(X,OX)∗ = C∗.

(2) By an algebraic characterization of the affine plane, X is iso-
morphic to A2 because X is factorial, Γ(X,OX)∗ = C∗ and X has a
Ga-action.

(3) Since n = 3, B1 = KerΔ1 is a normal affine domain of dimension
2. Hence we can think of the algebraic quotient Y = X//G1 and the
quotient morphism q : X → Y instead of the morphism qb. In fact,
the restriction of q onto Xb is the morphism qb. Further, the mapping
τ : G2 × G3 → Yb extends to a dominant morphism τ : A2 → Y .
Assume that X is factorial. Then Y is factorial because Γ(Y,OY ) is
factorially closed in Γ(X,OX) as the kernel of Δ1. Since τ : A2 → Y
is dominant, it follows that κ(Y ) = −∞ and there are no non-constant
units in Γ(Y,OY ). In fact, Y is smooth by the assumption, and hence
we have κ(Y ) ≤ κ(A2) = −∞. Then Y is isomorphic to A2. Since
the general fiber of q is isomorphic to A1 and the factorial closedness
of Γ(Y,OY ) in Γ(X,OX) implies that the fibers over codimension one
points of Y are all reduced, we can apply Nori’s lemma [35, Lemma 1.5]
to obtain an exact sequence

π1(A
1) → π1(X) → π1(Y ) → (1) .

This implies that π1(X) = (1). In fact, if there is a point Q ∈ Y such
that the fiber q−1(Q) has all non-reduced irreducible components, let
Y ◦ = Y \ S, where S is the finite set

{Q ∈ Y | every component of q−1(Q) is non-reduced}

and letX◦ = q−1(Y ◦). Since π1(Y
◦) = π1(Y ) = (1), we can apply Nori’s

lemma to q◦ : X◦ → Y ◦ to obtain π1(X
◦) = (1). Since codim X(X \

X◦) ≥ 2, we have π1(X) = π1(X
◦) = (1). Q.E.D.

For the X in Theorem 2.9, the universal covering space X̃ of X is a

smooth affine variety of dimension n such that X̃ is simply connected and
has n independent Ga-actions. In fact, any locally nilpotent derivation
of an affine domain extends uniquely to a locally nilpotent derivation of a
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finite étale extension of the domain (cf. [31]). It is an interesting problem

to find out what kind of structure the variety X̃ has. In the surface case,
let X be a smooth affine surface which is an ML0-surface (i.e., whose
coordinate ring has trivial Makar-Limanov invariant; see [13] for the
definition and relevant results) and simply connected. In general, π1(X)
for an ML0-surface X has order bounded by the intertwining number of
two Ga-orbits corresponding to two independent Ga-actions [30, Lemma
1.3]. If X is further a Q-homology plane, or equivalently if X has the
Picard number 0, then X is isomorphic to A2. If the Picard number is
positive, the structure of such surface X is described in [13].

In the threefold case, let X be the product of a Danielewski surface
{xy = z2 − 1} and the affine line A1. Then X has three independent
Ga-actions because the Danielewski surface has two independent Ga-
actions and the direct product factor A1 has a third Ga-action making
the Danielewski surface invariant. Furthermore, X is simply connected
because the Danielewski surface is isomorphic to P1 × P1 − {diagonal}.
Meanwhile, the Picard number of X is 1. A similar example is a
hypersurface X = {xyz = u3 − 1} in A4. X has three Ga-actions
which are defined by locally nilpotent derivations δi (i = 1, 2, 3), where
δ1(x) = δ1(y) = 0, δ1(z) = 3u2 and δ1(u) = xy with δ2 and δ3 defined in
a similar fashion by changing the roles of x, y, z. X is simply connected,
but the Picard number is nonzero. So, we can ask if a smooth factorial
affine threefold X is isomorphic to A3 provided it has three independent
Ga-actions. But there are again many counterexamples to this question.
A typical one is SL(2) which is the hypersurface xz − yu = 1 in A4 (see
[8, Remark 5.15]).

§3. Ga-actions on projective varieties

Let V be a smooth projective variety of dimension n defined over k.
Let Δ be a regular vector field. We say that Δ has a locally nilpotent
stratification if V has a decomposition V =

∐
i Wi into locally closed

subsets satisfying the following conditions:

(1) W0 is an affine open set of V , Wi is an affine open set of the
closure W i and W i \Wi is the union of closures W j of several
Wj with j > i.

(2) For every i, Δ|Wi is a locally nilpotent derivation on
Γ(Wi,OWi) unless Wi is a point.

The locally nilpotent stratifications used in the subsequent argu-
ments are constructed in such a way that V \ W0 is supported by an
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ample divisor, and for i > 0, W i \ Wi is also supported by an ample
divisor on W i provided W i is smooth (cf. Definition 3.9).

Lemma 3.1. Let U = SpecR be an affine open set. Then Δ|U , the
restriction of Δ onto U , is a k-derivation D of R.

Proof. Since Δ ∈ Γ(V, TV/k), it follows that Δ|U ∈ Γ(U, TU/k) ∼=
Derk(R). Q.E.D.

Lemma 3.2. Let U = Spec R and let D be as above. Let U ′ =
Spec R′ be an affine open set such that U ′ ⊆ U and let D′ be the k-
derivation corresponding to Δ|U ′ . Then D is the restriction of D′ to R.
If D′ is locally nilpotent, then so is D on R.

Proof. Note that R and R′ are subalgebras in the function field
k(V ) and hence that R ⊆ R′ in k(V ). Define a k-algebra homomorphism
ΦD : R −→ R[[t]] by

ΦD(a) =
∑
i≥0

1

i!
Di(a)ti.

Then we have a commutative diagram

R
ΦD−−−−→ R[[t]]⏐⏐�i

⏐⏐�i[[t]]

R′ −−−−→
ΦD′

R′[[t]]

where i and i[[t]] are the canonical inclusions. If D′ is locally nilpotent,
ΦD′ splits via R′[t]. Then ΦD splits via R[t] because R[t] = R′[t]∩R[[t]].
Hence D is locally nilpotent. Q.E.D.

This result implies that if Δ is locally nilpotent on a non-empty
affine open set, there exists a maximal affine open set Umax of V such
that Δ induces a locally nilpotent derivation on Umax.

Let Ã = ⊕n≥0An be a graded affine domain over k with A0 = k

and generated by A1 and let Δ̃ be a nonzero locally nilpotent derivation

of Ã which is homogeneous of degree 0. Let V = Proj (Ã) which is

identified with (Spec (Ã) \ {M})//Gm, where M is the irrelevant ideal

of Ã and Gm acts on Spec (Ã) via the grading. Then the Ga-action

on Spec (Ã) induced by Δ̃ commutes with the Gm-action and hence
induces a Ga-action on V . This Ga-action is described as follows. Since
Δ̃ restricted on A1 is a nilpotent linear endomorphism, there exists an

element s0 �= 0 of A1 such that Δ̃(s0) = 0. Then Δ̃ induces a locally
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nilpotent derivation Δ on Ã[s−1
0 ]0 and it gives rise to a Ga-action on the

affine open set V \V+(s0). This Ga-action coincides with the restriction
of the above-obtained Ga-action on V restricted to V \ V+(s0). The
Ga-action on V+(s0) is described by the locally nilpotent homogeneous

derivation Δ̃ (mod (s0)) induced on Ã/(s0).
Conversely, a Ga-action on a smooth projective variety is obtained

via Ga-linealization from this construction.

Theorem 3.3. Let V be a smooth projective variety which has an
algebraic Ga-action and let Δ be the regular vector field associated with
the Ga-action. The following assertions hold:

(1) Let H be an effective ample divisor such that the subset Hred

of codimension one is Ga-stable and let W0 = Spec R0 be the
complement of Hred. Then D0 = Δ|W0 is a locally nilpotent
derivation.

(2) Let H be an effective ample divisor. Then H is Ga-linearizable.
Hence there exists a member of |H| which is Ga-stable. If H0

is a Ga-stable member of |H|, then V \H0 is a Ga-stable affine
open set.

(3) Let H be a Ga-stable effective very ample divisor and let

Ã = ⊕n≥0H
0(V,O(nH)). Then there exists a locally nilpo-

tent, homogeneous derivation Δ̃ of degree 0 on Ã such that Δ̃
induces the Ga-action on V .

Proof. (1) Since H is ample, the complement W0 = V \ Hred is
an affine open set and has the induced Ga-action. Hence the restriction
Δ|W0 gives rise to the induced Ga-action on W0. This implies that D0

is locally nilpotent.
(2) Since Pic (Ga) = (0), H is Ga-linearizable by [24, Prop. 2.4

and its remark]. Hence Ga acts linearly on H0(V,OV (H)), and hence
acts on the projective space |H|. Since the fixed point locus on |H| is
connected and non-empty (see [7]), there exists an element of |H| which
is Ga-stable.

(3) Since H is very ample, H0(V,O(nH)) is generated by
H0(V,O(H)). Hence the extended Ga-coaction on H0(V,O(H)) (cf.

[34, p. 32]) extends to a locally nilpotent homogeneous derivation Δ̃ on

the graded domain Ã. Since Δ̃(H0(V,O(H))) ⊆ H0(V,O(H)), Δ̃ has
degree 0. Let H0 be a Ga-stable member of |H| and let {s0, s1, . . . , sN}
be a basis of H0(V,O(H)) such that H0 = {s0 = 0}. Then Δ̃ induces
the Ga-action on V −H0 = Spec k[s1/s0, . . . , sN/s0] which is the given
Ga-action on V by construction. By repeating the same argument to
H0 and H|H0 , it is now easy to conclude the assertion. Q.E.D.
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Remark 3.4. Let V be a smooth projective variety with a nontriv-
ial Ga-action. Let H be a very ample divisor. If we assume that the
irregularity q := h1(V,OV ) = 0 and the Ga-fixed point locus consists of
a single point, we can take a sequence of closed subvarieties

V0 = V ⊃ V1 ⊃ · · · ⊃ Vn−1 ⊃ Vn

as considered before Theorem 2.8 in a Ga-equivariant way provided the
smoothness condition on Vi is guaranteed. In fact, by Theorem 3.3, (2),
there is a Ga-stable open set W0 such that W0 = V \ H1 with a Ga-
stable member H1 ∈ |H|. If V1 := H1 is smooth, then we consider a very
ample divisor H|H1 . Since the induced Ga-action on V1 is nontrivial if
dimV1 > 0, we find a Ga-stable member of |H|V1 |. Suppose further that
the irregularity q := h1(V,OV ) = 0. Then the exact sequence

0 −→ OV −→ OV (H) −→ OH1(H) −→ 0

induces the surjection H0(V,OV (H)) → H0(H1,OH1(H)). So, the Ga-
stable member of |H|H1 | is written as H1∩H2. Note that the irregularity
of H1 vanishes. In fact, if dimV ≥ 3, then the exact sequence

H1(V,OV ) −→ H1(H1,OH1) −→ H2(V,OV (−H))

implies the assertion because H2(V,OV (−H)) = 0 by the Kodaira van-
ishing theorem. If dimV = 2, then H2(V,OV (−H)) ∼= H0(V,O(KV +
H)) = 0 because the existence of a Ga-action implies κ(V \H1) = −∞.
Since the Ga-fixed point locus on V consists of a single point by assump-
tion, we proceed the above construction inductively under the assump-
tion that H1 ∩H2 ∩ · · · ∩Hi is smooth for 1 ≤ i ≤ dimV − 1. Then the
Ga-action on Vi := H1 ∩ · · · ∩ Hi is nontrivial if i ≤ dimV − 1. Thus
we reach to the set-up of Theorem 2.8. Since the nontrivial Ga-action
on Vi − Vi+1 implies that κ(Vi − Vi+1) = −∞, the theorem shows that
V ∼= Pn. If V �∼= Pn, it fails to hold that H1∩· · ·∩Hi is smooth for some
1 ≤ i ≤ dimV − 1.

Given a regular vector field Δ on a smooth projective variety V , an
irreducible subvariety W of codimension one is called integral if for every
smooth point P of W and for a system of local parameters {u1, . . . , un}
of V at P such that W is defined by u1 = 0, we have Δ(u1) ∈ u1OV,P .
If dimV= 2, we call W an integral curve of Δ.

Example 3.5. With the notations in Lemma 1.1, we consider the
case V = P2 = U0

∐
H0 with H0 = {X0 = 0}, where U0 = Spec k[x, y].
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Write a regular vector field Δ on P2 as Δ = f ∂
∂x + g ∂

∂y , where

f = a0x
2 + a1xy + c0x+ c1y + c2

g = a0xy + a1y
2 + d0x+ d1y + d2 .

In terms of the coordinates {u, v} on U1 = {X1 �= 0} and {z, w} on
U2 = {X2 �= 0} (cf. Lemma 1.1), we compute Δ|U1 and Δ|U2 as follows.

Δ|U1 = −(a0 + a1v + c0u+ c1uv + c2u
2)

∂

∂u

+(d0 + d1v + d2u− c0v − c1v
2 − c2uv)

∂

∂v

Δ|U2 = −(a1 + d1z + a0w + d2z
2 + d0zw)

∂

∂z

+(c1 + c2z + (c0 − d1)w − d2zw − d0w
2)

∂

∂w
.

We assume that H0 is an integral curve of Δ. By the above expression
of Δ|U1 and Δ|U2 , where H0 is defined by u = 0 and z = 0 respectively,
H0 is an integral curve if and only if a0 = a1 = 0. Hence we have

Δ = (c0x+ c1y + c2)
∂

∂x
+ (d0x+ d1y + d2)

∂

∂y
.

Namely we have

Δ

(
x
y

)
=

(
Δ(x)
Δ(y)

)
=

(
c0 c1
d0 d1

)(
x
y

)
+

(
c2
d2

)
Furthermore, we have

Δn

(
x
y

)
=

(
c0 c1
d0 d1

)n (
x
y

)
+

(
c0 c1
d0 d1

)n−1 (
c2
d2

)
for all n ≥ 1. This implies that Δ is locally nilpotent if and only if the

matrix

(
c0 c1
d0 d1

)
is a nilpotent matrix. Hence there exists a matrix

P ∈ GL(2, k) such that

P−1

(
c0 c1
d0 d1

)
P =

(
0 α
0 0

)
.

Let P̃ =

(
1 0
0 P

)
. By a change of coordinates t(X0,X1,X2) �→

P̃−1t(X0,X1,X2), we may assume that

Δ = (αy + c2)
∂

∂x
+ d2

∂

∂y
,
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whence Δ(x) = αy + c2 and Δ(y) = d2. Now we define a Ga-action on
P2 by

t ·

⎛
⎝ X0

X1

X2

⎞
⎠ =

⎛
⎝ 1 0 0

c2t+
1
2!αd2t

2 1 αt
d2t 0 1

⎞
⎠

⎛
⎝ X0

X1

X2

⎞
⎠ .

It is now clear that Δ is the vector field associated to the Ga-action.
Consider a regular vector field Δ = (c1y + c2)

∂
∂x with c1 �= 0. Then

Δ|U2∩H0 = c1
∂
∂w . This implies that the Ga-action is effective on U2∩H0

and the fixed point locus Γ consists of a single point (0, 1, 0). In fact, the
decomposition U0

∐
(U2 ∩H0)

∐
Γ is a locally nilpotent stratification of

Δ.

A similar thing holds in the case n > 2. With the notations in
Lemma 1.1, we have the following.

Remark 3.6. Assume that the hyperplane H0 is integral for Δ as
in Lemma 1.1. This implies that Δ(X0

Xi
) is divisible by X0

Xi
for every

i �= 0. This condition is equivalent to a1 = a2 = · · · = an = 0. Hence we
have

Δ

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ = B

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

c1
c2
...
cn

⎞
⎟⎟⎟⎠ .

Since

Δn

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ = Bn

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠+Bn−1

⎛
⎜⎜⎜⎝

c1
c2
...
cn

⎞
⎟⎟⎟⎠ ,

Δ is locally nilpotent if and only if B is nilpotent. Hence, after a suitable
base change of (x1, . . . , xn), we may assume that B is an upper triangular
matrix (cij) with all the diagonal entries zero. Then the vector field Δ is
associated with a Ga-action on Pn which stabilizes the hyperplane H0.

Modeled after the above examples, we introduce the following two
definitions, where we note that the stratifications stop at the second
strata.

Definiton 3.7. Let V be a smooth projective variety of dimension
n. A Ga-action on V is called a stratified action if there exists a re-
duced effective divisor H = H1 + · · · + Hr (irreducible decomposition)
supporting an ample divisor satisfying the following two conditions.
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(1) H is Ga-stable, whence there exists the induced effective Ga-
action on X = V \H. Further, there is an induced Ga-action
on each Hi.

(2) For each irreducible component Hi, there exists a reduced ef-
fective divisor Ki supporting an ample divisor on Hi such that
Ki is Ga-stable and the induced Ga-action on Hi \Ki is effec-
tive.

Remark 3.8. In view of Remark 3.4 and the argument therein, if
V is a smooth projective variety with a nontrivial Ga-action and if the
Ga-fixed point locus has codimension greater than or equal to 2, then
the Ga-action is a stratified Ga-action.

Definiton 3.9. Let V be a smooth projective variety of dimension n
and let Δ be a regular vector field. We call Δ effectively locally nilpotent
with stratification if there exists a reduced effective divisorH = H1+· · ·+
Hr supporting an ample divisor satisfying the following two conditions.

(1) Δ induces a nontrivial locally nilpotent derivation on X =
V \H and each irreducible component Hi is Δ-integral in the
sense that, for each smooth point P of Hi, Δ(ui) is divisible
by ui in OV,P , where ui = 0 is a local defining equation of Hi.

(2) For each Hi, there exists a reduced effective divisor Ki on Hi

supporting an ample divisor such that Δ|Hi\Ki
induces a non-

trivial locally nilpotent derivation.

It is well known that a Ga-action on an affine scheme corresponds
bijectively to a locally nilpotent derivation on the coordinate algebra of
the scheme. The following result will correspond partly to this result for
affine schemes and explain when a given regular vector field comes from
a Ga-action on a smooth projective variety.

Theorem 3.10. Let V be a smooth projective variety of dimension
n ≥ 2. Then the following assertions hold.

(1) A stratified Ga-action σ on V induces the regular vector field
Δ on V which is effectively locally nilpotent with stratification.

(2) Let Δ be a regular vector field on V which is effectively locally
nilpotent with stratification. Then there exists a stratified Ga-
action on V which induces the vector field Δ.

Proof. (1) By the hypothesis, the Ga-action σ on X (see the no-
tations in Definition 3.7) is effective, whence the associated vector field
is nontrivial on X. Similarly, we can extend this vector field, say Δ,
to Hi \Ki for each i because it is associated to the induced Ga-action
on Hi \ Ki. Then Δ is an element of Γ(V \ (∪r

i=1Ki), TV/k), where
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codim V (∪r
i=1Ki) ≥ 2. Then Δ is defined on V as a regular vector field.

It is now clear that Δ is effectively locally nilpotent with stratification
because the Ga-action on Hi \Ki is effective.

(2) Let R = Γ(X,OV ). Then Δ is considered as a locally nilpotent
derivation of R. Let σX be the induced Ga-action, which is given by the
coaction

Φ : R → R[t], Φ(z) =
∑
i≥0

1

i!
Δi(z)ti .

For α ∈ k, define the automorphism ϕα of R by ϕα(z) = Φ(z)|t=α. Then
σα := aϕα is the automorphism of X such that σα ·σβ = σα+β for α, β ∈
k. The k-algebra homomorphism Φ extends to a k-homomorphism
Φk(V ) : k(V ) → k(V )(t) such that Φk(V )(

z2
z1
) = Φ(z2)/Φ(z1), where

k(V ) = Q(R) is the function field of V over k and z1, z2 ∈ R. Then σα

for α ∈ k is viewed as a birational automorphism of V . Although σα is
biregular on X = V \H, it may not be biregular on the irreducible com-
ponent H1, . . . ,Hr. Suppose that σα induces a correspondence between
Hi and a curve or a point. However, the correspondence induces an
automorphism on the affine open set Hi \Ki by the hypothesis. Hence
σα is biregular on all codimension one points of V . This implies that σα

is a biregular automorphism of V . Since σα · σβ = σα+β for α, β ∈ k,
the collection {σα | α ∈ k} defines a Ga-action on V . It is clear that
this Ga-action is stratified and induces the vector field Δ. Q.E.D.

Example 3.11. Let V = Fn with n ≥ 0. With the notations
in Lemma 1.3, a regular vector field Δ = f ∂

∂x + g ∂
∂y makes the divisor

M+	∞ integral if and only if a20 = 0 if n > 0 and a20 = b02 = 0 if n = 0.
Δ is locally nilpotent on Fn \ (M + 	∞) if and only if a10 = b01 = 0 for
n ≥ 0. If the latter condition is satisfied, Δ is associated with a stratified
Ga-action on Fn provided other constants a00 and the bi0 are nonzero.

Remark 3.12. Dubouloz-Liendo [6] introduced the notion of ra-
tionally integrable k-derivation and showed that regular Ga-actions on
a semi-affine variety X are in one-to-one correspondence with ratio-

nally integrable k-derivations ∂̃ : OX → OX such that the derivation

Γ(X, ∂̃) : Γ(X,OX) → Γ(X,OX) is locally nilpotent, where an al-
gebraic variety X is said to be semi-affine if the canonical morphism
p : X → Spec Γ(X,OX)) is a proper morphism. Hence a complete
variety or an affine variety is semi-affine.

§4. Ga-actions on Fano varieties

Our objective in this section is to describe the structure of a smooth
projective variety V with a stratified Ga-action, mostly in the case where



Unipotent group actions on projective varieties 147

V is a Fano variety of rank 1. Our result is very restrictive since we
only know of few examples for which all possible Ga-actions are known
together with the fixed-point loci and the behaviors of orbits. We shall
see first what is the situation with the simplest example P2.

Lemma 4.1. (1) The standard form of a Ga-action on P2 is given
by

t · (X0,X1,X2) = (X0,X1 + (bX2 + c1X0)t+
1

2
bc2X0t

2,X2 + c2X0t)

where t ∈ k, b, c1, c2 ∈ k with the notations being slightly different from
Example 3.5.

(2) The fixed point locus Γ is given by

Γ =

⎧⎨
⎩

one point {(0, 1, 0)} if c2b �= 0
line {X0 = 0} if c2 �= 0, b = 0
line {bX2 + c1X0 = 0} if c2 = 0 .

(3) Suppose c2b �= 0. Then the closure of each Ga-orbit passes
through the point P0 := (0, 1, 0) and is smooth at P0, and the intersec-
tion multiplicity of the closures of two distinct Ga-orbits is 4. By the
blowing-ups with centers P0 and its 3 more consecutive, infinitely-near
points, the proper transforms of the closures of general Ga-orbits are
separeted from each other. If either c2 �= 0 and b = 0 or c2 = 0, the
closure of each Ga-orbit is a line passing through the point (0, c1, c2) or
the point P0 respectively.

(4) If c2b �= 0 then the Ga-action is a stratified action. If either
c2 �= 0 and b = 0 or c2 = 0 then the action is not a stratified action. The
third Ga-action with c2 = 0 is brought to the second one by a projective
transformation.

Proof. (1) By Theorem 3.3, (2), the system of hyperplanes |H|
has an induced Ga-action. Hence it contains a member H0 which is
Ga-stable. Then we can choose a system of homogeneous coordinates
(X0,X1,X2) so that H0 is defined by X0 = 0. By Example 3.5, we can
write the associated vector field Δ as

Δ

(
x
y

)
=

(
0 b
0 0

)(
x
y

)
+

(
c1
c2

)
.

The expression of the Ga-action in (1) is obtained from this Δ. Then
the assertion (2) is straightforward.

(3) Let P (α, β) be a point of U0 = {X0 �= 0}. Then the Ga-orbit is
the set of points

t · (1, α, β) = (1, α+ (bβ + c1)t+
1

2
bc2t

2, β + c2t) .
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Eliminating t from

x = α+ (bβ + c1)t+
1

2
bc2t

2, y = β + c2t ,

we obtain the equation of an affine curve on U0 which is the Ga-orbit.
If c2 �= 0, the curve is defined by

c2(x− α) = (bβ + c1)(y − β) +
1

2
b(y − β)2 .

The projective closure of the curve is defined by

c2(X1 − αX0)X0 = (bβ + c1)(X2 − βX0)X0 +
1

2
b(X2 − βX0)

2 .

If c2b �= 0, then this curve is irreducible and smooth at the point P0 =
(0, 1, 0). If c2 �= 0 and b = 0, then the projective closure of the curve is
defined by

c2(X1 − αX0) = c1(X2 − βX0) .

Hence it passes through the point (0, c1, c2). If c2 = 0, the orbit through
a point (α, β) is defined by y = β and its projective closure is X2 = βX0.
Hence it passes through the point P0.

(4) It is easy to verify the assertion. For the last assertion, let
Y0 = bX2 + c1X0, Y1 = X2 and Y2 = X1. Then the Ga-action becomes

t · (Y0, Y1, Y2) = (Y0, Y1, Y2 + Y0t)

which is the case c2 = 1 and b = c1 = 0. Q.E.D.

We consider next the case of the Hirzebruch surface V = Fn (n ≥ 0).

Example 4.2. (1) Suppose that V = Fn with n > 0. Then the
minimal section M is Ga-stable because (M2) = −n < 0. Furthermore,
the pencil |	| of fibers has an induced Ga-action and contains a Ga-
stable member 	∞. By Lemma 1.3, the associated vector field Δ on
A2 = Fn \ (M ∪ 	∞) is locally nilpotent. This implies that f(x, y) = a00
and g(x, y) = bn0x

n + · · · + b10x + b00. If a00bn0 �= 0, then the point
M ∩ 	∞ is the fixed point locus, and the Ga-action is stratified with
respect to M + 	∞.

(2) Suppose that n = 0. Then the pencils |	| and |M | contain Ga-
stable members 	∞ and M∞. The complement A2 = F0 \ (	∞ ∪ M∞)
has the associated vector field

Δ = a00
∂

∂x
+ b00

∂

∂y

which is locally nilpotent. If a00b00 �= 0 then 	∞∩M∞ is the fixed point
locus, and the Ga-action is stratified with respect to M∞ + 	∞.
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In the case dimV = 2, we have the following result.

Theorem 4.3. Let V be a smooth projective surface with an effec-
tive Ga-action. Then the following assertions hold.

(1) V is birationally a ruled surface. If there is a (−1) curve E on
V , then E is Ga-stable. Hence we can contract E so that the
Ga-action is preserved on the contracted surface. We assume
below that V is relatively minimal.

(2) Suppose that V is irrational. Then the fixed point locus Γ con-
sists of a cross-section S0 and a (possibly empty) set of the
fibers 	1, . . . , 	r, where S0 is not an ample section. Let L :=
OS0(S0). Then there exists a non-zero section s ∈ H0(C,L−1)
such that the zeroes of s defines the fibers 	1, . . . , 	r.

(3) Suppose that V is a rational ruled surface. Then the Ga-action
on V is described in Example 4.2.

(4) Suppose that V ∼= P2. Then the Ga-action is described in
Lemma 4.1.

Proof. (1) Let H be a very ample divisor. Since H is Ga-
linearizable, the linear system |H| contains a Ga-stable member H0.
Since X = V \H0 has a non-trivial Ga-action, V is birationally a ruled
surface. The rest of the assertion (1) is clear.

(2) Any Ga-orbit is contained in a fiber of the canonical P1-fibration
π : V → C, where C is an irrational smooth projective curve. Hence the
fixed point locus Γ contains a corss-section S0. The other components
of Γ is a (possibly empty) set of fibers 	1, . . . , 	r. The section S0 is not
ample. In fact, if S0 is ample, the complement X = V \ S0 is affine and
endowed with a Ga-action. The quotient morphism is the restriction
π|X of the P1-fibration π : V → C such that π(X) = C. This is a
contradiction because X//Ga is an affine curve.

Consider an exact sequence

0 → OV → OV (S0) → OS0(S0) → 0

whose direct images by π gives an exact sequece

0 → OC → π∗OV (S0) → L → 0 ,

where L ∼= OS0(S0) with degL = (S2
0). Let E = π∗OV (S0). Then E is a

rank 2 vector bundle over C and V = Proj (E). Let U = {Ui}i∈I be an
open covering of C such that L|Ui = OUiei. Let E|Ui = OUie ⊕ OUi ẽi,
where ẽi is a lift of ei in E . Then

(ẽj , e) = (ẽi, e)

(
fji 0
gji 1

)
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over Ui ∩ Uj . Then π−1(Ui) = Proj Γ(Ui,OC)[ẽi, e] and π−1(Ui) \ S0 =

Spec Γ(Ui,OC)
[
ẽi
e

]
. Then the Ga-action is given by a locally nilpotent

derivation Δ defined by Δ
(
ẽi
e

)
= si ∈ Γ(Ui,OC). Since

ẽj
e = fji

ẽi
e +

gji, we have sj = fjisi. Hence {si} defines a section of H0(C,L−1).
The zeroes of s gives the fiber components of the fixed point locus Γ.
Conversely, a section s ∈ H0(C,L−1) yields a Ga-action on V . Q.E.D.

Now we consider the case dimV ≥ 3. We assume further the condi-
tion that the Picard number ρ of V equals one, i.e., V has (Picard) rank
one.

Lemma 4.4. With the above condition, if V has an effective Ga-
action, then V is a Fano variety of ρ = 1.

Proof. Let H be a very ample divisor. Then |H| contains a Ga-
stable (possibly reducible) member H0. Then V \ (H0)red is an affine,
Ga-stable open set. There exists an open set U of V \ (H0)red such that
U ∼= U0 × A1, where U0 is an affine variety. Hence V is birationally a
ruled variety. In particular, the canonical divisor KV is not a torsion
divisor. Since ρ = 1, it follows that −KV is ample. So, V is a Fano
variety of ρ = 1. Q.E.D.

The following properties are well known about Fano threefolds (not
necessarily of the Picard number one).

(1) A Fano manifold, i.e., a smooth projective variety with ample
anti-canonical divisor, is rationally connected and hence simply con-
nected [26]. The Kodaira vanishing theorem implies that Hi(V,OV ) = 0
for every i > 0.

(2) Let r be the index of a Fano threefold V , i.e., r is the maximal
positive integer such that −KV ∼ rH with H ∈ Pic (V ). Then the
linear system |H| contains a smooth irreducible surface. If r ≥ 2 then
the set of base points of |H| is finite [40]. More precisely, H is very
ample if H3 ≥ 3, the base point locus Bs|H| = ∅ if H3 ≥ 2 and Bs|H| is
a one-point set if H3 = 1 (see [39]).

(3) Let V be a smooth projective threefold with H0(V,KV ) = 0.
Then the Brauer group Br(V ) is isomorphic to the torsion group T
of H3(V ;Z) (see [22, p.166]). If V is a Fano threefold, Br(V ) = 0,
whence the torsion group T is zero (see p.168, loc.cit.). The torsion
group T is isomorphic to the torsion group of H2(V ;Z) by the univer-
sal coefficient theorem. In fact, if H2(V ;Z) has the torsion group T ′,
then H3(V ;Z) ∼= Hom(H3(V ;Z),Z) ⊕ Ext(H2(V ;Z),Z) by the univer-
sal coefficient theorem, where Hom(H3(V ;Z),Z) is a free abelian group
and Ext(H2(V ;Z),Z) ∼= T ′. Hence T ∼= T ′. The torsion group T of
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H3(V ;Z) is a birational invariant by [1]. For example, if V is rational,
then H3(V ;Z) ∼= H3(P3;Z) = 0. So, T = 0.

We are interested in the affine open set X = V \H when V is a Fano
threefold and H is an effective ample divisor. X is also the first stratum
if V has a Ga-action with H stable. We prove the following result.

Theorem 4.5. Let V be a smooth Fano threefold with Pic (V ) =
Z[H], where H is an ample effective divisor 2. Assume that H is smooth.
Let X = V \H. Then the following assertions hold.

(1) H1(X;Z) = H2(X;Z) = 0.
(2) If X is a homology threefold, i.e., H3(X;Z) = 0, then H ∼= P2

and V ∼= P3.
(3) In addition to the assumption in (2), assume further that V

has a non-trivial Ga-action and H is Ga-stable. Then the quo-
tient surface Y := X//Ga is isomorphic to A2 and the quotient
morphism q : X → Y is surjective.

Proof. The proof of the assertion (1) consists of several steps.
(i) We have H1(V ;Z) = 0 because V is simply connected. The

Lefschetz hyperplane theorem implies H1(H;Z) = 0. In fact, Fujita [10]
proved a generalization of the Lefschetz theorem, which we use here.

(ii) Consider the exact sequence

H1(V,OV ) → H1(V,O∗
V ) → H2(V ;Z) → H2(V,OV )

associated to
0 → Z → OV

exp−→ O∗
V → 0 .

This implies that H2(V ;Z) ∼= H1(V,O∗
V ) = Pic (V ) ∼= Z by the hypoth-

esis. By the universal coefficient theorem, it follows that H2(V ;Z) = Z

because H2(V ;Z) has no torsion group.
(iii) Now consider the long exact sequence of singular cohomology

groups for a pair (V,H),

H2(V,H;Z) → H2(V ;Z) → H2(H;Z) → H3(V,H;Z) →
H3(V ;Z) → H3(H;Z) → H4(V,H;Z) → H4(V ;Z) →
H4(H;Z) → H5(V,H;Z) → H5(V ;Z) ,

where Hi(V,H;Z) ∼= H6−i(X;Z) by the Lefschetz duality and hence
Hi(V,H;Z) = 0 if i ≤ 2 because X is affine. Since H4(V ;Z) ∼=
H2(V ;Z) ∼= Z by (ii), H4(H;Z) ∼= H0(H;Z) ∼= Z and H5(V ;Z) ∼=

2It is an easy consequence of Pic (V ) = Z[H] that H is irreducible and
reduced.
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H1(V ;Z) = 0 by (i), a part of the long exact sequence reads as an exact
sequence

H2(V ;Z)
α−→ H0(H;Z) → H1(X;Z) → 0 ,

where α : H2(V ;Z) → H0(H;Z) is non-trivial. In fact, H2(V ;Z) is
represented as Z[C], where C is a curve and α(C) = H ·C. Since H is an
ample divisor, H ·C > 0. So, H1(X;Z) is a finite cyclic group Z/nZ. By
the universal coefficient theorem, H1(X;Z/nZ) ∼= H1(X;Z) ∼= Z/nZ.
On the other hand, the exact sequence of étale sheaves on X

0 → μn → Gm
t
→tn−→ Gm → 1

yields an exact sequence

H0(X,O∗
X)

t
→tn−→ H0(X,O∗
X) → H1(X;Z/nZ) → Pic (X)

×n−→ Pic (X) ,

where Pic (X) = Pic (V )/〈H〉 = 0 and H0(X,O∗
X) = k∗. Hence we have

n = 1 and H1(X;Z) = 0.
(iv) Since α is an isomorphism, the above long exact sequence gives

an exact sequence

H3(V ;Z) → H3(H;Z) → H2(X;Z) → 0 .

Since H3(H;Z) ∼= H1(H;Z) = 0, we have H2(X;Z) = 0. This completes
the proof of the assertion (1).

We prove the assertion (2). Since H2(V,H;Z) ∼= H4(X;Z) = 0, the
long exact sequence in the step (iii) above yields an exact sequence

0 → H2(V ;Z) → H2(H;Z) → H3(X;Z) → H3(V ;Z) → 0 .

Suppose that H3(X;Z) = 0. Then H2(H;Z) ∼= Z and H3(V ;Z) = 0
because H2(V ;Z) ∼= Z. Let r be the index of V . Then H is a del Pezzo
surface if r ≥ 2 and a K3 surface if r = 1. Since the second Betti number
b2(H) = 1 now, H cannot be a K3 surface for which b2(H) = 22. Hence
r ≥ 2 and H is a rational surface. Since H2(H;Z) ∼= Z as above, it
follows that Pic (H) ∼= H2(H;Z) ∼= Z. This implies that H ∼= P2. Since
H1(X;Z) = 0 by (1), V ∼= P3 by Lemma 2.6. In fact, H is a hyperplane
and X ∼= A3.

(3) Now the assertion (3) that Y ∼= A2 follows from [32], and the
surjectivity of q : X → Y follows from [3]. Q.E.D.

Perhaps we need some explanation on the significance of the asser-
tion (3) of Theorem 4.5. If an affine varietyX has a nontrivial Ga-action,
the slice theorem shows that X contains an A1-cylinder. The property
that X contains an A1-cylinder and how big is it is a crucial matter in
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determining the structure of an affine variety. So, the algebraic quotient
Y := X//Ga being isomorphic or not to A2 is thought of as a measure to
know how close a given variety is to a rational threefold like P3. Further-
more, the quotient morphism q : X → Y being surjective or not when
Y ∼= A2 is another measure. The assertion (3) above is generalized in
Theorem 4.9 below by dropping the assumption that X be a homology
threefold.

Theorem 4.5 shows that with the above notation X is not, in gen-
eral, a homology threefold. A simple counter-example is given by a
smooth quadric hypersurfaceQ in P4. Before stating the result, a smooth
quadric hypersurface is given by a nondegenerate quadratic form in the
homogeneous coordinates {X0,X1,X2,X3,X4}. By a suitable change of
coordinates, we may assume that Q is of Fermat type, i.e., it is defined
by X2

0 +X2
1 +X2

2 +X2
3 +X2

4 = 0. Again, by a change of coordinates,
we may assume that Q is defined by X2

0 −X1X3 +X2X4 = 0.

Theorem 4.6. Let Q be a quadric hypersurface in P4 defined by
F = X2

0 −X1X3 +X2X4 = 0. Then the following assertions hold.

(1) Pic(Q) is generated by a hyperplane section HQ = H∩Q, where
H = {X0 = 0}, and hence Pic(Q) ∼= Z[HQ], and KQ ∼ −3HQ,
whence Q is a Fano threefold.

(2) Q has the Ga-action induced by a Ga-action on P4

t(X0,X1,X2,X3,X4) = (X0,X1,X2,X3 +X2t,X4 +X1t) .

The surface HQ is Ga-stable, and the induced action on X =
Q \HQ

∼= Spec k[x, y, z, u]/(xz − yu − 1) is given by a locally
nilpotent derivation δ such that δ(x) = δ(y) = 0, δ(z) = y and
δ(u) = x.

(3) X is simply connected, H1(X;Z) = H2(X;Z) = 0 and
H3(X;Z) ∼= Z. Hence X is not a homology threefold.

(4) Y := X//Ga is isomorphic to A2, but the quotient morphism
q : X → Y is not surjective.

Proof. (1) This follows from [11, Exp. 12, Cor. 3.7]. Hence X :=
Q \ HQ is factorial and Γ(X,OX)∗ = k∗. This also follows from [16,
Example 1.12].

(2) It is straightforward. By loc.cit., the quotient surface Y :=
X//Ga

∼= A2 = Speck[x, y] and the quotient morphism q : X → Y is the
projection (x, y, z, u) �→ (x, y). Furthermore, q(X) = A2 − {(0, 0)} and
every fiber of q over a point of q(X) is reduced and isomorphic to A1.
This proves the assertion (4).
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(3) By Nori’s result [35, Lemma 1.5], we have an exact sequence

π1(A
1) → π1(X) → π1(A

2 \ {(0, 0)}) → 1 .

Hence π1(X) = 1. Namely, X is simply connected. By [42, Theorem
1.2], we have h1,2(Q) = h2,1(Q) = 0. Since b1(Q) = 0 and b2(Q) = 1 by
Lefschetz theorem, we have b0(Q) = b6(Q) = 1, b1(Q) = b5(Q) = 0 and
b2(Q) = b4(Q) = 1. Since h3,0(Q) = h0,3(Q) = 0, we have b3(Q) = 0.
Hence the Euler number χ(Q) is equal to 4. On the other hand, HQ is
a quadric surface in P3. Hence χ(HQ) = 4. So, χ(X) = 0. If b3(X) = 0
which is equivalent to H3(X;Z) = 0 because H3(X;Z) has no torsion by
Hamm’s theorem [12, Lemma 1.2], then X is contractible and χ(X) = 1.
This contradicts the above calculation of χ(X). Hence, b3(X) = 1 and
H3(X;Z) ∼= Z. 3 Q.E.D.

Remark 4.7. Let V be a cubic hypersurface in P4. Then V is a
Fano threefold and Pic (V ) is generated by a hyperplane section. How-
ever, V has no Ga-actions because V is irrational and unirational. See
[5] and [17]. Similarly, if V is a quartic hypersurface in P4, it seems
that V has no Ga-actions because some of quartic hypersurfaces are not
rational, but unirational. See [21].

Concerning the assertion (3) in Theorem 4.6, we have a more general
result.

Theorem 4.8. Let V be a Fano threefold such that Pic (V ) = Z[H]
for an ample effective divisor H. Assume that the index r of V is greater
than one and H is smooth. Let X := V \H. Then X is simply connected.

Proof. Let S be a general member of |H|, which is irreducible and
smooth. Since r ≥ 2 by the assumption, S is a del Pezzo surface with
KS ∼ −(r−1)Γ, where Γ = H|S . Since 1 ≤ K2

S ≤ 9, we have r−1 = 3, 2
or 1, whence r = 4, 3 or 2. By the Lefschetz theorem for affine threefolds
(see [35]), we have an isomorphism

π1(S \ Γ) ∼= π1(V \H) = π1(X) .

Hence it suffices to show that π1(S \ Γ) = 1. If r = 4 then S ∼= P2 and
Γ is a line. Hence S \ Γ ∼= A2 and π1(S \ Γ) = 1. If r = 3 then S is

3One of the referees suggested us the following simple argument for the step
(3). By the argument in the step (2) above, q : X → A2 \ {(0, 0)} is a locally
trivial A1-bundle (actually a principal Ga-bundle). Hence q gives a homotopy
equivalence of topological manifolds, and X has the same homology type as
A2 \ {(0, 0)} ≈ R4 \ {(0, 0, 0, 0)}, which is itself homotopy equivalent to the real
3-space S3.
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isomorphic to P1×P1 and Γ ∼ 	+M , where 	 andM are respective fibers
of two projections onto P1. So, S \ Γ contains A2 as an open set and
π1(S \ Γ) = 1. Suppose now that r = 2 and 1 ≤ K2

S ≤ 7. Then we have
K2

S = H3 and S is obtained from P2 by blowing up s points in general
position lying on a cubic curve C on P2, where 2 ≤ s = 9 − H3 ≤ 8.
If s �= 8 then H3 ≥ 2 and Bs|H| = ∅. Hence we can take C to be a
smooth curve. In fact, |HS | is the restriction of |H| onto S, and |HS | has
no base points. If s = 8, then |HS | is the proper transform of a pencil
generated by two smooth cubic curves on P2 intersecting transversally
in 9 points, out of which we choose 8 points to blow up. So, for any
value of s (2 ≤ s ≤ 8), we can choose S so that the image of Γ on P2

is a smooth cubic curve. The divisor Γ on S is the proper transform
of C, and P2 \ C is an open set of S \ Γ. Hence we have a surjection
π1(P

2\C) → π1(S\Γ). Since π1(P
2\C) ∼= Z/3Z, we know that π1(S\Γ)

is abelian.
On the other hand, by the Lefschetz theorem for affine threefolds,

we have
H1(S \ Γ;Z) ∼= H1(X;Z) .

Since H1(X;Z) = 0 by Theorem 4.5, we have π1(S \ Γ) = 1. Q.E.D.

We have shown in Theorem 4.5 that Y is isomorphic to A2 under
the assumption that V has a non-trivial Ga-action with Ga-stable H
and X is a homology threefold. In the following theorem, we show that
the same result holds without assuming that X is a homology threefold.

Theorem 4.9. Let V be a smooth Fano threefold with Pic (V ) =
Z[H], where H is an ample effective divisor. Assume that the index r
of V is greater than one and H is smooth. Let X = V \ H. Assume
further that V has a non-trivial Ga-action and H is Ga-stable. Then
the quotient surface Y := X//Ga is isomorphic to A2.

Proof. The proof consists of several steps.
(1) Let q : X → Y be the quotient morphism. SinceX is factorial, so

is Y by [16]. Since V is rationally connected and the quotient morphism
q : X → Y extends to a proper morphism q : V ′ → Y , where V ′ is
birational to V and Y is a smooth completion of Y , the surface Y is
then rationally connected and hence rational. So, Y is rational and
has no non-constant invertible regular functions. Furthermore, every
fiber of q is one-dimensional, and Y has at most quotient singularities
because there is locally a smooth hyperplane of X dominating the given
point of Y . Since Y is factorial and rational, every singularity is E8-
singularity. Set Y anew a smooth normal completion of Y . Namely, Y
is a normal projective surface such that Y is smooth at every point of
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D := Y − Y and D is a divisor with simple normal crossings. Then q
defines a rational mapping q′ : V → Y . We eliminate the indeterminacies
of q′ by blowing up a Ga-fixed point of H and subsequently blowing
up the smooth centers which consist of Ga-fixed points, and obtain a

morphism q̃ : Ṽ → Y such that the divisor D̃ = Ṽ −X is a divisor with
simple normal crossings.

Since κ(X) = −∞ asX contains an A1-cylinder and sinceKV +H ∼
−(r−1)H with the index r, it follows that r > 1. Then H is a del Pezzo
surface.

(2) Let Δ = q̃−1(D). Then Δ ⊆ D̃. Since q̃|Δ : Δ → D is a
proper morphism, Δ is a finite connected union of irreducible compo-
nents which consist of the proper transforms of the divisor H and the
exceptional divisors. We shall show that π1(Δ) = 1 by making use of
Van Kampen’s theorem on the fundamental group of a connected sim-
plicial complex. The proper transform of any exceptional divisor which
constitutes Δ is either the blowing-up of P2 or the blowing-up a P1-
bundle over a smooth curve. We prove π1(Δ) = 1 by induction on the
number of irreducible components of Δ which are indexed after the or-

der of blowing-ups p : Ṽ → V by which they appear. The divisor H is
rational since H is a del Pezzo surface. So, π1(H) = 1. The exceptional
divisor E1 which appear by the blowing-up of the fixed point on H is
isomorphic to P2 meeting the proper transform H ′ of H along a smooth
rational curve. By Van Kampen’s theorem applied to E1∪H ′, it follows
that π1(E1∪H ′) is the amalgamated product of π1(E1) and π1(H

′) over
π1(E1 ∩ H ′). Since π1(H

′) = π1(E1) = 1, we have π1(E1 ∪ H ′) = 1.
After performing blowing-ups at least k times, we obtain the exceptional
divisors E1, . . . , Ek and the proper transform of H ′, although some of
the exceptional divisors may have the images by q̃ meeting the open set
Y and do not appear in Δ. Here we denote the proper transforms of H ′

and the exceptional divisors obtained by the earlier blowing-ups by the
same letters. By induction, we assume that π1(H

′∪E1∪· · ·∪Ek−1) = 1.
In order to compute π1(H

′ ∪ E1 ∪ · · ·Ek−1 ∪ Ek), we need more obser-
vations on what are the centers of the above blowing-ups.

The indeterminacy of q′ : V → Y or of the subsequently induced
rational mappings is either a base point where the closures of general
Ga-orbits pass through or an irreducible curve C such that each general
point of C is a base point of a one-dimensional subfamily of the closures
of Ga-orbits. Namely, there exists a morphism q′′ : V ′′ → C, where

V ′′ appears in the course of blowing-ups p : Ṽ → V . In the first case,
the center of the blowing-up is a smooth point. In the second case, C
is contained in an exceptional divisor and it is possibly singular. The
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curve C is possibly the intersection curve of a newly born exceptional
divisor with the old exceptional divisor, in which case C is smooth. If
C is singular, we blow up smooth points in a threefold to eliminate the
singularities of C. After making the proper transform of C a smooth
curve, we blow up C to obtain the exceptional divisor E which is a P1-
bundle over C. Afterwards, the centers to be blown up are the irreducible
smooth intersection curves of two irreducible components, say F1 ∩ F2,
where one of F1, F2, say F2, meets a chain of P1-bundles F3, . . . , Fs and
where only possible intersections of F2, F3, . . . , Fs with each other and

with other components of D̃ are the intersection curves F2 ∩ F3, F3 ∩
F4, . . . , Fs−1 ∩ Fs which are all isomorphic to C.

Now we return to the computation of π1 := π1(H
′∪E1∪· · ·∪Ek−1∪

Ek).
(i) If Ek is the exceptional divisor of the blowing-up with center at

either a point or an irreducible smooth curve, Van Kampen’s theorem
shows that π1 = 1. In fact, the π1 of a P1-bundle over a smooth curve
C is equal to π1(C) and the π1 of the intersection curve is also equal to
π1(C). Since π1(H

′ ∪E1 ∪ · · · ∪Ek−1) = 1, we obtain π1(H
′ ∪E1 ∪ · · · ∪

Ek−1 ∪ Ek) = 1.
(ii) Suppose that the center is the intersection curve C = F1 ∩ F2

and F2 meets a chain of P1-bundles F3, . . . , Fs. Again, we have π1(Ek ∪
F2 ∪ · · · ∪ Fs) ∼= π1(C) by Van Kampen’s theorem, where Ek is the
exceptional divisor arising from the blowing-up of C and F2, . . . , Fs are
identified with the proper transforms by this blowing-up. It is then easy
to see that π1(H

′∪E1∪· · ·∪Ek−1∪Ek) ∼= π1(H
′∪E1∪· · ·∪Ek−1) = 1.

Thus we have shown that π1(Δ) = 1.
(3) Let q := q̃|Δ : Δ → D, where D (resp. Δ) is a reduced effective

divisor with simple normal crossings in Y (resp. Ṽ ). Let Z → D be
an unramified connected (topological) covering of D. Then the fiber
product Δ×D Z → Δ is a connected unramified covering of Δ because
the fibers of q are connected, and the unramifiedness of Z → D implies
that Z and Δ ×D Z are the unions of smooth irreducible components
with simple normal crossings. Hence π1(Δ) → π1(D) is surjective by
the covering space theory. This implies that π1(D) = 1.

(4) We shall show that Y is a homology plane. Note that Y has

at most E8-singularities. Let Y ◦ = Y − SingY and Ỹ be the minimal

desingularization of Y . Then Y ◦ = Ỹ \ (D ∪ E), where E is the union
of the exceptional curves of the desingularization. Consider an exact
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sequence of integral cohomology groups for a pair (Ỹ ,D ∪ E),

H1(Ỹ ;Z) → H1(D ∪ E;Z) → H2(Ỹ ,D ∪ E;Z) →
H2(Ỹ ;Z) → H2(D ∪ E;Z) → H3(Ỹ ,D ∪ E;Z) →
H3(Ỹ ;Z) → 0 ,

where H1(Ỹ ;Z) = 0 and H3(Ỹ ;Z) ∼= H1(Ỹ ;Z) = 0 since Ỹ is rational,
H1(D ∪ E;Z) = 0 because π1(D) = 1 and E is a rational tree, and

H2(Ỹ ;Z) ∼= Pic (Ỹ ) is a free abelian group of rank #D + #E. Hence

H2(Ỹ ;Z) is isomorphic to H2(D ∪ E;Z). So, H2(Y
◦;Z) ∼= H2(Ỹ ,D ∪

E;Z) = 0 and H1(Y
◦;Z) ∼= H3(Ỹ ,D ∪ E;Z) = 0. Meanwhile, a small

open neighborhood (in the Euclidean topology) of an E8-singularity is
homologous to a ball in C2. This implies that Hi(Y ;Z) ∼= Hi(Y

◦;Z) = 0
for i = 1, 2. This shows that Y is a homology plane. Furthermore, Y
is topologically contractible. In fact, the quotient morphism q : X → Y
has irreducible and reduced fibers over all codimension one points of
Y if X is factorial, q has no multiple fibers over the codimension one
points of Y (see the argument in the step (3) of the proof of Theorem
2.9). Hence, by Nori’s theorem [35, Lemma 1.5] and since π1(X) = 1 by
Theorem 4.8, it follows that π1(Y ) = 1.

(5) We argue by the logarithmic Kodaira dimension of Y ◦. If
κ(Y ◦) = 2, then the singular point of Y is at most one cyclic singu-
larity by [15]. This is impossible if SingY �= ∅ because Y has only
E8-singularities. Suppose that Y has an A1

∗-fibration. Then the singu-
larities are at most cyclic singularities. By the same reason as above,
SingY = ∅. Suppose that Y ◦ has an A1

∗-fibration, but the A1
∗-fibration

does not extend to an A1
∗-fibration on Y (hence Y is singular). Then Y

has a unique singular point, and the closures (in Y ) of general fibers of
the A1

∗-fibration form a family of rational curves with one place at infinity
which pass through the singular point of Y . Then the desingularization

Ỹ of Y is dominated by a smooth surface with an A1-fibration. Hence

κ(Ỹ ) = −∞. Then, by Koras-Russell [27, Theorem 1.1], κ(Y ◦) = −∞.
We treat this case later. If κ(Y ◦) = 0, then by Palka [36, Theorem 7.2],
either Y is smooth or Y has only A1 or A2 singularity. So, the singular
case does not occur, and the smooth case does not occur either by Fujita
[9] and [18].

We consider finally the case κ(Y ◦) = −∞. If Y ◦ is affine-ruled,
then Y ∼= A2 since Y is factorial and has no non-constant invertible
regular functions. If Y ◦ is not affine-ruled, then Y ∼= A2//G, where G
is a binary icosahedral group. Then Y is isomorphic to a hypersurface
x2 + y3 + z5 = 0 in A3. Then π1(Y

◦) ∼= G �= (1). Meanwhile, the
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fiber of q : X → Y over the singular point is one-dimensional. Hence
π1(X

◦) = (1), where X◦ = q−1(Y ◦). Then π1(Y
◦) = 1 by Nori’s result,

loc.cit. This is a contradiction. Hence we have proven that Y is a smooth
contractible surface.

We have a very conceptual proof of Y being smooth by using an
Affine Mumford Theorem [14]. Since X is simply connected by Theorem
4.8 and the fibers of the quotient morphism are one-dimensional, Nori’s
theorem [35, Lemma 1.5] implies that π1(Y − SingY ) = 1. In (4) above,
we have shown that π1(Y ) = 1. Now, Y is smooth by [14, Theorem 3.6].

(6) As in the proof of Theorem 4.8, we take a general member S of
|H|. Then S is a smooth del Pezzo surface, and Γ = H|S is a smooth
curve on S. Since KS ∼ −(r − 1)Γ with r ≥ 2, it follows that κ(S \ Γ)
is 0 or −∞. We may assume that r = 2 since we have treated the cases
r = 4 and r = 3 in Theorems 4.5 and 4.6. Then S is horizontal to the
quotient morphism. In fact, Γ is then isomorphic to a smooth curve,
and S \ Γ does not contain an A1-cylinder because κ(S \ Γ) = 0. If S
were not horizontal to the quotient morphism, S would contain a family
of Ga-orbits. This is a contradiction. So, the restriction of q : X → Y
onto S \ Γ is a dominant morphism, and therefore κ(Y ) = 0 or −∞.
Meanwhile, there is no homology plane in the case κ(Y ) = 0 by Fujita’s
result [9, 18]. This implies that κ(Y ) = −∞. Since Y is factorial and
Γ(Y,O∗

Y ) = k∗, it follows that Y ∼= A2. Q.E.D.
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