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Strichartz estimates for Schrodinger equations with 
variable coefficients and unbounded potentials 

Haruya Mizutani 

Abstract. 

This note is concerned with Strichartz estimates for solutions to 
Schrodinger equations with asymptotically flat metrics and subquadrat­
ically growing potentials. We prove the estimates outside a large com­
pact set centered at origin. Under the non-trapping condition, we also 
prove global-in-space estimates. 

§1. Introduction 

Let ( M, g) be a complete, connected and smooth Riemannian man­
ifold with a metric g and consider formally self-adjoint Schrodinger op­
erators -(1/2).::\9 + V(x), where L\9 is the Laplace-Beltrami operator 
associated with g and V(x) is a smooth and real-valued function on M. 
We denote by H the unique self-adjoint realization of -~L\9 + V(x) on 
L 2 (M) and consider the following time-dependent Schrodinger equation: 

8tu(t) = Hu(t), t E lR; uit=O = u0 E L2(M). 

The solution is given by u(t) = e-itHu0, where e-itH is a one-parameter 
strongly continuous unitary group generated by H and is called a prop­
agator. The distribution kernel of the propagator e-itH is called the 
fundamental solution (FDS for short) of the above Cauchy problem. 

In the fiat case, that is the case with H = -~L\ + V(x) on the 
Euclidean space (lRd,Jjk), the construction of the FDS has been exten­
sively studied by many authors. It is well known that the FDS of the 
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free evolution eitt;./2 is explicitly given by 

1 eilx-YI2 /2t = _1_ { ei(x-y)·~-itl!:l2 /2d~. 
(2nit)d/2 (2n )d }Rd 

For the case with potential perturbations, it was shown by Fujiwara [5] 
that if the potential Vis real-valued, smooth and of quadratic type, that 
is I8;,'V(x)! :::; Ca for all!al;?: 2, then, for sufficiently small 0 <It!« 1, 
the FDS can be written in terms of an oscillatory integral form. Under 
the same condition, Kitada and Kumano-go [8] constructed the FDS as 
a Fourier integral operator: 

e-itHuo(x) = (2~)d l 2
d ei(w(t,x,~)-y·<";)b(t, x, ~)u0 (y)dyd~, 

where w(t,x,~) is real-valued and smooth, and b(t,x,~) is uniformly 
bounded with respect to (t,x,~). We also refer to [12] for the case with 
magnetic fields and singular potentials. It follows from the above repre­
sentations that for any u0 E L 2 (ffi.d) n L 1 (ffi.d), the solution e-itHu0 (x) 
satisfies the L 1 (ffi.d) --+ L 00 (ffi.d) estimates: 

lle-itHuollv""(Rd)::::: Cltl-d12 lluollucRd)' 0 <It!« 1. 

Since e-itH is bounded on L 2 (ffi.d), applying the TT*-argument due to 
Ginibre and Velo [6], we see that e-itH satisfies the so-called (local-in­
time) Strichartz estimates: 

"tH 
lie" uollLP([-T,T];Lo(Rd)) :::; Cr!luoii£2(Rd)' 

where (p, q) satisfies the following admissible condition: 

p;?:2, 2/p+d/q=d/2, (d,p,q)-=/=(2,2,oo). 

For the proof of the endpoint estimate (p, q) = (2, 2d/(d - 2)), we 
also refer to Keel and Tao [7]. Strichartz estimates imply that, for 
any u0 E L 2(ffi.d), e-itHu0 E Lq(ffi.d) for a.e. t E ffi. and for above q. 
These estimates hence can be regarded as Lq-type smoothing properties 
of Schrodinger equations. The estimates have been widely used in the 
study of nonlinear Schrodinger equations (see, e.g., Cazenave [3]). More 
recently, the construction of (microlocal) parametrices and Strichartz 
estimates for Schrodinger equations on manifolds have been studied by 
many authors under suitable assumptions on the geometry. For exam­
ple, Bouclet and Tzvetkov [2] studied Schrodinger equations on (ffi.d, g), 
where g is a long-range perturbation of the flat metric in the following 
sense: 
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with some positive constant f..L > 0, where (x) = y'1 + lxl 2 . They then 
showed that, for appropriate symbols x± (x, ~) supported in frequency 
localized outgoing and incoming regions and hE (0, 1], e-itH x±(x, hD) 
can be brought to the following form 

for 0 s ±t ;S 1, respectively, where s±(x, ~) solves the Eikonal equation 

ai and bi are h-dependent, smooth, uniformly bounded amplitudes and 
Uh(cp,w) is a semiclassical FlO: 

for suitable phase function cp and amplitude w. Such a representation is 
called the (semiclassical) Isozaki and Kit ada (IK for short) parametrix 
for e-itH. Moreover they proved that (i) local-in-time Strichartz esti­
mates, outside a large compact set centered at origin, by using the IK 
parametrix, (ii) global-in-space Strichartz estimates under the nontrap­
ping condition on the kinetic energy. If the potential V is bounded at 
least, then there are also several results for the case on manifolds (e.g., 
see [1], [9], [10], [11] and references therein). However, to my best knowl­
edge, there is no result for the case where both of non-flat geometries 
and unbounded potentials in the spatial variable are present. 

In this note we consider Schri:idinger equations with an asymptoti­
cally flat metric and subquadratically growing potentials. We then con­
struct a (short-time) microlocal approximation of e-itH in terms of two 
kinds of Fourier integral operators, and prove local-in-time Strichartz 
estimates for any admissible pair (p, q) including the end point. 

§2. Main results 

Let d ?: 1 and consider JRd equipped with a smooth Riemannian 
metric g = (g1k)· Let -~~9 + V(x) be a Schri:idinger operator on 
(JRd, g), where ~g is the Laplace-Beltrami operator associated tog and 
V(x) is a real-valued and smooth function. Let (g1k) = (g1k)- 1 and 

k(x, ~) := ~ 'L~,k=l g1k(x)~j~k the corresponding kinetic energy. We 
assume that k(x, ~) ?: cl~l 2 for all (x, ~) E JR2d with some constant 
c > 0. We also assume that there exists a constant f..L > 0 such that for 
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all a E Z%, there exists Ca > 0 such that 

Ja~(gik(x)- bjk)J :::; Ca(x) -~t-lal' 

la~V(x)l :::; Ca(x) 2 -~t-lal. 

It is known that - ~.6.9 + V(x) is then essentially self-adjoint on C0 (JR.d), 
and we denote by H the unique self-adjoint extension on L 2 (JR. d). 

Let (y0 (t), TJo(t)) be the Hamilton flow generated by k(x, ~): 

ilo(t) = a~;k(yo(t), TJo(t)), i]o(t) = -axk(yo(t), TJo(t)), 

with (y0 (0), TJo(O)) = (x, ~). We recall the nontrapping condition: 

(1) For any (x,~) E T*IR.d with~ =J 0, IYo(t,x,~)l-+ +oo as t-+ ±oo. 

For a set A, XA denotes the characteristic function on A. The main 
result is the following: 

Theorem 1. Let f.L > 0, T > 0, p?: 2, q < oo and 2lp+dlq = dl2. 
Then the followings hold. 
(i) For R > 1 large enough, 

(ii) For any r > 0, 

(3) IIX{Ixl<r }e-itH Uo IILv([-T,T];Lq(JRd)) :::; Cr,r lluo IIHl/v(JRd) · 

Moreover, if we assume in addition that k(x, ~) satisfies the non-trapping 
condition (1), then (3) holds with lluoiiHl/v(JRd) replaced by lluoii£2(JRd)· 
In particular, combining with (2), we have the global-in-space estimates: 

under the non-trapping condition. 

§3. Construction of parametrix 

Let g0 = dx2 I (x) 2 + d~2 I(~) 2 be a metric on T*IR.d. We say that 
a E S(g0 ) if a E C 00 (1R.2d) and, for any a, j3 E z:;_, there exists Caf3 > 0 
such that 
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We denote the pseudo-differential operator (PDO) and Fourier integral 
operator (FIO) by Op(a) and U('¢, a), respectively: 

Op(a)f(x) = (2~)d ld ei(x-y)-l;·a(x, ~)f(y)dyd~, 

U('¢, a)f(x) = (2~)d ld ei(.P(x,e)-y·e)a(x, ~)f(y)dyd~. 

As we mentioned above, if gjk = 8jk then e-itH is given by U('lj;, a) 
with some 'lj;(t, x, ~) and a(t, x, ~). On the other hand, if g is a long­
range perturbation of the flat metric and the potential V = 0 then 
e-itH Oph(x±) is given by Uh(s±, at)eiMf2Uh(s±, bt)* modulo some 

smoothing term, where Oph(x), Uh(S, a) are semiclassical PDO and 
FlO, respectively. Our model is regarded as a mixed case of these two 
models and we construct the semiclassical parametrix for e-itH in terms 
of a sum of these two representations as follows. 

First, consider a partition of unity on {x; lxl > R} x ~d: 

l(x,~) + h+(x,~) + h-(x,~) = 1, lxl > R, ~ E ~d, 

where l, h± E S(g0 ) so that 

supp l C { (x, ~) E ~2d; lxl > R/2, lxl > (~} }, 

supp h± C {(x, ~) E ~2d; R/2 < lxl < (~} /2, ±x · ~/lxll~l > -1/2}. 

We also consider the dyadic partition of unity with respect to the fre­
quency. Let r.p E C0(~d) be such that suppr.p c [1/2, 2], 'Pi(~) = 
r.p(~j2i) and 

00 

2: 'Pj(~) = 1, 1~1 2: 1, 
j=O 

and set hj(x,~) = h±(x,~)r.pj(~). We then have the following theorem: 

Theorem 2. Suppose f..L > 0. Let R ~ 1 be large enough and 
0 < 8 «: 1 small enough. The followings then hold: 
(1) There exists a time-dependent phase function 'lj; E 0 00 (( -8, 8) x 
~2d; ~) such that, for x, ~ E ~d and It I < 8, 

l8';8:('¢(t,x,~)- x · ~ + tk(x,~) + tV(x))l :S: CaJ31tl 2 (x} 2-[a+J31. 

For sufficiently large j 0 2: 1, there exists a family of time-independent 
phase functions {SJ E C00 (~2d; ~);j 2: jo} such that 
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uniformly with respect to x, ~ E JR.d and j 2: io. 
(2) For any N 2: 0, there exist bounded families of amplitudes 

{aN(t) E S(go); ltl < o}, 

{b~,i E S(go);j 2: Jo}, 

{c~,j E S(go);j 2: Jo}, 

such that, for all s E JR. with N > 2s + 1, 

Op(l)e-itH Op(l)* = U('¢(t), aN(t)) + On-•-;.H•(Itl), ltl < o, 
Op(h±)e-itH Op(h*)* = U(S± b± .)eitt:.f2U(S± c± .)* 

J J J ' N,J J ' N,J 

+ OH-•-;.H•(Tj(N-2s-1)), 0 ~ ±t < 0. 

Moreover, if we choose N > 2d + 1 then the distribution kernels of 
Op(l)e-itH Op(l)* and Op(hj)e-itH Op(hj)* satisfy 

IK(t,x,y)l ~ Cltl-d/2, x,~ E JR.d, 0 < ltl < o, 
IKj(t,x,y)l ~ Cltl-d/2, x,~ E JR.d, 0 < ±t < o, j 2: ]o, 

respectively. 

For the proof of Theorem 2, we refer to [11]. 

§4. Sketch of the proof of Theorem 1 

We here give an outline of the proof of Theorem 1 by using The­
orem 2. Observe that Theorem 2, combined with a trick by using a 
duality argument due to Bouclet and Tzvetkov [2, Lemma 4.3] and the 
Keel and Tao theorem, imply Strichartz estimates for Op(l)e-itH and 
Op(hj)e-itH: 

(4) II Op(l)e-itHuolb([-T,T];LQ(JRd)) ~ CTIIuoii£2(JRd)' 

(5) II Op(hj)e-itH e-itH uoiiLP((-T,T];Lq(JRd)) ~ CTIIuo II£2(JRd), 

uniformly with respect to j 2: j 0 . We consider a 4-adic partition of unity 
i(H) + I:j2o fi(H) = Id, where J, f E C0 (JR.) and fi(>..) = j(>..j22i). 
Then, we can prove that 

(a) Lq-functional calculus. For any 2 ~ q ~ oo, Op(hj)i(H) and 
Op(hj)fi(H) satisfy 

II Op(hj)i(H)II£2-+Lq +II Op(hj)Ji(H)II£2--;.Lq ~ Cq2jd(l/2-l/q)' j 2: 0. 
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(b) Littlewood-Paley estimates. For 2 :::; q < oo and 1 «: j 0 < oo, 
there exists Cq,jo > 0 such that 

By (5), Littlewood-Paley estimates with u = e-itH u0 and Minkowski 
inequality, we have Strichartz estimates for Op(h±)e-itH. Since Op(l) + 
L± Op(h±) = Id, we obtain (2). 

Strichartz estimates with the derivative loss 1/p can be proved by a 
standard method using the WKB parametrix for e-itH Op(xh) for It I«: 
h, where Xh(x, ~) = x(x, h~) with x E C0 (ffi.2d) (see, e.g., [2]). Finally, 
if k(x, ~) satisfies the non-trapping condition (1), then the missing 1/p 
derivative can be recovered thanks to the local smoothing effects due to 
Doi [4]. For the details of the proof, we refer to [11]. 
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