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A survey on nonlinear Schrodinger equation with 
growing nonlocal nonlinearity 

Masaya Maeda and Satoshi Masaki 

Abstract. 

We consider nonlinear Schrodinger equation with nonlocal nonlin­
earity which is described by a growing interaction potential. This model 
contains low-dimensional Schrodinger-Poisson system. We briefly sur­
vey recent progress on this subject and then show existence of ground 
state in a specific model. 

§1. Introduction 

This article surveys several aspects on the following nonlinear 
Schrodinger equation 

(NLS) { 
iut + ~~u = Nv(u)u, (x, t) E ~d x ~' 
u(O) = uo, 

where the nonlinearity Nv is given, with a real-valued function V on 
~+, as follows: 

(1) Nv(u)(x) = (V(I·I) * lul 2)(x) = { V(lx- Yl)lu(y)l 2dy. 
Jffi.d 

In this article, we are interested in the case where the nonlinear potential 
grows at the spatial infinity. Hence, we suppose that the interaction 
potential V satisfies a growing condition 

(2) IV(r)l--+ oo as r--+ oo. 
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For simplicity, in this article, we have only a logarithmic potential 

(3) V(r) = ±logr 

and a power type potential 

(4) V(r) = ±r'Y, 

in mind. The "-" sign corresponds to the defocusing case and the 
"+" sign to the focusing case. This type nonlinearities appear when 
we consider Schrodinger-Poisson systems in dimensions less than three, 
and their generalizations (see [6] for details). For Nv making sense, it 
is natural to assume that 

We denote this condition by u0 E .JiVT-1 L2 . 

This article is organized as follows: We give a short survey on this 
equation in Sections 2 and 3. Our main result is in Section 4. 

§2. Formulation and well-posedness 

It have been turned out that the nonlinear effect caused by this type 
nonlinearity is different from which the usual power type nonlinearity 
±iu1P-1u or the Hartree type nonlinearity ±(lxi-'Y * lul 2 )u produce. The 
feature of Nv under (2) is that the Nv itself also grows at the spatial 
infinity no matter how fast u decays. Hence, an integral equation 

(5) 
itL:>. rt i(t-s)L:>. 

u(t) = e-,u0 - i Jo e 2 (Nv(u)u)(s)ds 

is not a good formulation since this equation requires that linear operator 
i(t-s)L:>. 

e 2 (and time integration) recovers the decay rate of u spoiled by 
multiplication by a growing term Nv, which seems hard to occur. 

A recipe for dealing with this nonlinearity is the following decom­
position: 

Nv(u) = lluolli2 V(lxl) + f (V(Ix- yl)- V(lxl))iu(y)i 2dy 
j,Rd 

=: lluolli2 V(lxl) + Nv(u) 

where we have applied conservation of mass llu(t)lli2 = lluolli2 which is 
a common property as long as the concerned nonlinearity is real-valued. 
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We regard the first term as a linear potential1, which is the key idea, 
and try to solve the following equation 

(6) u(t) = e-itAuo- i fat e-i(t-s)A(Nv(u)u)(s)ds, 

where A 
condition 

-~~ + [[u0 [[~2 V([x[) is the new linear part. When the 

(7) V([x- y[) - V([x[) does not grow at the spatial infinity 

is satisfied, the new nonlinearity Nv becomes harmless and so the inte­
gral equation (6) can be actually solved by a standard argument. We can 
summarize as follows: Nv grows at the spatial infinity, but, under (7), 
the growing part, which turns out to be time-independent, is successfully 
extracted and handled as a linear potential. The logarithmic potential 
(3) can be handled by this argument (see [5]). The situation is the same 
for the power type potential ( 4) as long as r ~ 1 (see [2], [9], [5], [6]). 
The condition (7) can be rephrased as "V is sub-linear." 

On the other hand, the above argument is not sufficient for the 
potential which does not satisfy the condition (7) (for example, (4) with 
r > 1 is such a potential). So, we refine the condition (7) as follows: 

There exists an 1Rd-valued function W such that V([x­
y[) - V([x[) - W(x) · y does not grow at the spatial 
infinity (with respect to x), 

where · stands for the usual inner product on JRd. We refer to this 
condition as sub-quadratic condition. Notice that (7) is included as a 
special case W = 0. As for (4), this condition is satisfied with W(x) = 
=t=r[x[~'- 2x, provided 0 < r ~ 2. Now, we introduce 

Nv(u) = r (V([x- y[)- V([x[)- W(x). y)[u(y)[ 2dy, 
JJRd 

which is harmless under the sub-quadratic condition, and obtain the 
following decomposition 

Nv(u) = [[uo[[~2 V([x[) + Nv(u) + W(x). r y[u(y)[ 2 dy. 
JJRd 

1Strictly speaking, V(lxl) would have a singularity at the origin. Since our 
purpose is to extract the growing part near the spatial infinity, in that case, it 
suffices to choose lluoll~2 V(lxl+l), lluoll~2 V((x)), or lluoll~2 x(lxi)V(Ixl) as the 
linear potential instead of lluoll~2 V(lxl), where X is a suitable smooth cut-off. 
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The third term is new, and the others are treatable. The quantity 
fn~.d ylu(y)l 2 dy is known as center of mass. The key is to nail this vector 
to zero by introducing a center-of-mass frame. Let us be more precise. 
Just as the mass conservation law, as long as the nonlinear potential is 
real-valued, we can expect that 

dd r ylu(yWdy = Im r u(y)\lu(y)dy 
t }Jiil.d }Jiil.d 

holds. Similarly, since our model (NLS) does not involve any external 
force, which is usually described by a linear potential or a magnetic field, 
the momentum conservation 

d 1--d Im u(y)\lu(y)dy = 0 
t Jlil.d 

would also hold2 . As a result, we see that JJIII.d ylu(y)l 2 dy is a straight 
line 

Let us now use the Galilean transform. If u(t, x) is a solution to (NLS), 
then for any abE JR.d u b(t x) ·= e-!a·(at+b)eix·au(t x-at-b) is also 

' ' a, ' . ' 
a solution. One verifies, in light of mass conservation, that 

Thus, if we choose 

ao = - --1-2- Im r Uo \luody, 
lluoll£2 JJIII.d 

1 1 2 - -
11 

-
11

-2 yluol dy, 
uo £2 Jlil.d 

bo = 

then Uao,bo is a solution of (NLS) with JJIII.d yluao,bo(Y)I 2 = 0. For such 
Ua0 ,bo, the decomposition 

2This is just the first law of motion "the velocity of a body remains constant 
unless the body is acted upon by an external force." 
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is available. Hence, the equation for Uaa,bo is 

t -
(10) Ua 0 ,b0 ( t) = e-itAUa0 ,b0 (0)- i Jo e-i(t-s)A(Nv ( Ua0 ,b0 )uao,bo) ( S )ds, 

where A= -~.6..+lluoll~2 V(lxl) is as above. By a standard perturbation 
argument3 , we obtain a solution of (10). Once Uaa,bo is obtained, the 
inverse Galilean transform, which is the Galilean transform with signs 
of a and b being opposite, gives the desired solution u. 

Using the above argument, we obtain the following well-posedness 
results. 

Theorem 1 ([5, 6]). Suppose V(x) is either ±logr or ±r' with 

0 < "Y :( 2. Then, (NLS) is globally well-posed in H 1 n VfVT- 1 L2 . 

§3. On scattering 

A natural next question would be global behavior of the solution. 
As seen in Theorem 1, blow-up does not occur in this model even in 
the focusing case. In the defocusing case, one may expect a kind of 
scattering occur. However, it seems that the solution cannot behave like 
a free solution. This is because growing nonlocal nonlinearity creates a 
linear potential and so the linear part of the equation is not i8t + ~ .6.. 
any more but i8t- ( -~.6.. + lluoll~2 V(lxl)). 

The obstacle is analysis of (i8t- (-~.6.. + lluoll~2 V(lxl)))ulin = 0. 
So for, beside few exceptional cases, we have no knowledge on global 
behavior, global dispersive estimate, or global Strichartz estimates on 
solutions to a linear Schrodinger equation, provided the linear potential 
grows at the spatial infinity. One exceptional case is V ( r) = -r2 ( cf. 
harmonic oscillator). In this case, we know an explicit representation of 
the solution not only of the linear Schrodinger equation but also of the 
full nonlinear equation (NLS) (see [6, 7]). This exception suggests that 
solutions to (NLS) would behave like U!in with phase modification ( cf. 
long range scattering) and Galilean transform. However, we would be 
far from complete understanding. 

§4. On standing waves 

Another typical behavior of the solution is standing waves. This 
happens when we work with a focusing nonlinearity. For V(r) = logr in 

3To use the Strichartz estimates fore-itA, we need o"'V E £ 00 for lal;;;, 2. 
This is essentially the same condition as the sub-quadratic condition above. 
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two dimensions and V ( r) = r in one dimension, existence of the ground 
state is known ([1, 3, 10]). In [7], the special case V(r) = r 2 is considered 
and explicit examples of ground states and all excited states are given 
thanks to the explicit representation of the solution. Our aim here is 
to prove that the ground states exist and are radially symmetric for the 
focusing power type potential V(r) = r'Y for 0 < 'Y < 2. In what follows, 
we concentrate our attention to 

{ 
iut + ~~u = (lxl7 * lul 2)u, (x, t) E JR.d x JR., 

u(O) = uo E E 1'7 / 2 , 

where E1'7 12 = {! E H 1 I lxl 7 / 2 f E L2 }. We follow the paper of 
Choquard and Stubbe [1] in which the case 'Y = 1 is treated. Set 

E(u) := -41 r 1Vul2 dx + -41 r r lx- Yl 7 lu(x)l 2 lu(y)l 2 dxdy lrrtd lrrtd lrrtd 
=: T(u) + P(u), 

M(u) := ~ ld lu(x)l2 dx. 

We minimize the energy E under the constraint of the mass M, that is, 
we consider the minimizing problem 

eo(J-L) = inf{E(u) I u E E1'712 , M(u) = J.-L}. 

By the Lagrange multiplier method, a minimizer w satisfies -~~w­
(lxl7 * lwl 2 )w + ww for some w E JR., which implies eiwtw(t, x) is a 
standing-wave solution. 

Theorem 2. For any J1 > 0, there exists uJL E E1,"fl2 such that 
M(uJL) = J1 and eo(J-L) = E(uJL). Further, such uJL E E1,"f/2 is spherically 
symmetric decreasing modulo translation and phase. 

Proof of Theorem 2. Let {un} C E1,"fl2 be a minimizing sequence 
for eo(J.-L), that is, M(un) = J1 and E(un) -+ eo(J-L) as n -+ oo. Since 
Cff is dense in E1 '7 12 , we can further assume that Un E Cff. Let u~ be 
the spherically symmetric-decreasing rearrangement of Un. Then, by [1, 
Lemma 3.2] and the rearrangement inequality (see [4]), it holds that 

M(u~) = M(un) = J-L, T(u~) :::; T(un), P(u~) :::; P(un)· 

For any fixed y E JR.d, by using [4, Theorem 3.4], we have 

r max{O, m- lx- Yl 7 }lun(x)l2 dx:::; r max{O, m- lxl 7 }lu~(x)l 2 dx. lrrtd lrrtd 
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Therefore, multiplying -1, adding mp, to the both sides, and then taking 
the limit m --+ oo, one verifies 

Thus, 

This implies u~ E E1·'Y/2 . Since { u~} satisfies the same condition as 
{un} and since E(u~) ~ E(un), we can replace Un by u~. Now, by 
the compact embedding (see [8, Theorem XIIL65]), there exists u* such 
that u~ -' u* weakly in E 1·'Y/2 and u~ --+ u* strongly in L2(JR.d). One 
then sees that M(u*) = p,, T(u*) ~ liminfn-+oo T(u~), and u* is radial. 
Hence, to see that u* is a minimizer, it suffices to show that 

P(u*)::; liminf P(u~)-
n-+oo 

Let x be a smooth cut-off such that x(s) = 1 for 0::; s::; 1 and x(s) = 0 
for s > 1 and set XR ( s) = x( s / R). Then, by the monotone convergence 
theorem, we have 

lim { { XR(Ix- yl)lx- YI'Yiu*(x)l 2 lu*(y)l2 dxdy 
R-+oo }fRd }fRd 

= { { lx- YI'Yiu*(xWiu*(y)l 2 dxdy. 
JfRd JfRd 

Therefore, for any E > 0, there exists R > 0 such that 

{ { lx- YI'Yiu*(xWiu*(y)l 2 dxdy 
JfRd JfRd 

::; { { XR(Ix- yl)lx- YI'Yiu*(xWiu*(y)l 2 dxdy + E 
JfRd JfRd 

= liminf { { XR(Ix- yl)lx- yi'Yiu~(x)l 2 lu~(y)l 2 dxdy + E 
n-+oo }fRd }fRd 

::; liminf { { lx- YI'Yiu~(xWiu~(y)l 2 dxdy +E. 
n-+oo }fRd }fRd 

Since E was arbitrary, we conclude that P(u*) ::; liminfn-+oo P(u~)­
Therefore, u* is the minimizer. If we can pick up u E E 1·'Y/2 such 
that u* ¢. {ei0u(x- a) : () E JR.d, a E JR.d}, then the strict version of 
rearrangement inequality leads us to a contradiction. Q.E.D. 
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