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The gradient flow for the modified 
one-dimensional Willmore functional defined on 

planar curves with infinite length 

Shinya Okabe 

Abstract. 

In this paper, we are interested in a motion of non-closed planar 
curves with infinite length. The motion is governed by a gradient flow 
for the modified one-dimensional Willmore functional. We shall prove 
a long time existence of solution of an initial boundary value problem 
for the flow. 

§1. Introduction 

In this paper, we deal with a geometric evolution equation for non­
closed planar curves with infinite length. In particular, we focus on 
planar curves whose starting point is always fixed at the origin. The 
geometric evolution equation is defined as a steepest descent flow for 
the modified one-dimensional Willmore functional (see (1.3)). 

The geometric evolution equations for curves have been studied by 
many researchers. One of the most famous geometric evolution equation 
for curves is curve shortening flow ([1], [2], [3], [4], [7], [8], [9], etc.). The 
curve shortening flow is given by a steepest descent flow for the length 
functional of curve: 

(1.1) £('y) =ids, 
where s denotes the arc length parameter of curve 'Y. Another well­
known geometric evolution equation for curves is curve straightening 
flow ([10], [11], [14], [15], [18], [19], etc.). The curve straightening flow 
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is defined by a steepest descent flow for the total squared curvature 

(1.2) W('y) = 1 r;,2 ds, 

where r;, is the curvature of 'Y· The functional is also called one-dimensional 
Willmore functional. In this paper, we consider a steepest descent flow 
for the modified one-dimensional Willmore functional which is defined 
by (1.1) and (1.2). To begin with, we introduce the geometric functional 
and our problem. 

For a given constant .X =/- 0, the modified one-dimensional Willmore 
functional is defined as 

(1.3) 

The steepest descent flow for E is written as follows: 

(1.4) 

where v is the unit normal vector of 'Y pointing in the direction of the 
curvature. 

We mention the known results of the flow. First it has been proved 
by A. Polden ([17]) that the equation (1.4) admits smooth solutions 
globally defined in time, when the initial curve is smooth, closed, and 
has finite length. In [6], G. Dziuk, E. Kuwert, and R. Schatzle extended 
Polden's result ([17]) to closed curves with finite length in JR_n. However 
there are no results for non-closed curves with infinite length. One of 
our purpose of this paper is to extend Polden's result to non-compact 
case. 

We are interested in the following problem: 

Problem 1.1. What is a dynamics of non-closed planar curves with 
infinite length governed by shortening-straightening flow? 

Regarding the problem, we find a smooth solution of (1.4) starting 
from an initial curve 'Yo with infinite length. Indeed let 'Yo ( x) : [0, oo) -+ 
JR.2 be a non-closed smooth planar curve satisfying the following: 

(i) 'Yo(O) = (0,0), "'o(O) = 0, I'Yo'(x)l = 1, 
(ii) 'Yo(x) approaches a straight line in C 1 sense as x-+ oo, 

where r;,0 denotes the curvature of 'YO· The precise conditions of the 
initial curve are stated in Section 2. 

We state the main result of this paper in a concise form: 

Theorem 1.1. Let 'Yo(x) be a smooth non-closed planar curve sat­
isfying (i)-(ii). Then there exists a classical solution of (1.4) starting 
from 'Yo for any finite time. 
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Remark 1.1. We can not prove an uniqueness of solution in The­
orem 1.1. Furthermore, the solution in Theorem 1.1 is obtained as a 
solution of initial boundary value problem for (1.4). For, we have to im­
pose a certain boundary condition on the flow (1.4) as the compatibility 
condition. We shall show the precise initial boundary value problem in 
Section 2. 

The paper is organized as follows: In Section 2, first we formulate 
Problem 1.1 as a certain initial boundary value problem for the flow 
(1.4). And then we state the main result of this paper in a precise form. 
Finally we shall state an outline of proof of Theorem 1.1 in Section 3. 

§2. Formulation and preliminaries 

To begin with, we formulate Problem 1.1 as an initial boundary 
value problem for (1.4). We start with the initial condition. Let 'Yo(x) = 
( ¢( x), 'lj; ( x)) : [0, oo) -+ JR2 be a smooth non-closed curve and satisfy the 
following conditions: 

(A1) ')'o(O) = (0, 0), ~~;o(O) = 0, l8x'Yo(x)l = 1, 

(A2) 

(A3) 

~~;o, 8r;'~~;o E £ 2 (0, oo) for all mEN, 

lim ¢(x) = oo, lim ¢'(x) = 1, 
x-+ex> x-+oo 

(A4) 
1 

'lj;(x) = O(x-<>) for some a> 2 as x-+ oo, '1/J' E £ 2 (0, oo), 

where ~~;0 denotes the curvature. The definition of 'Yo and condition (A1) 
imply that the length of 'Yo is infinite. Moreover, from the conditions 
(A3)-(A4), we deduce that 'Yo approaches the axis in C 1 sense as x-+ oo. 
Indeed, for sufficiently small p > 0, there exists a constant M > 0 such 
that 

(2.1) 

sup ll¢'(x)l- 11 < p, sup 1'1/J(x)l < p, 
xE(M,oo) 

sup 1'1/J'(x)l < P· 
xE(M,oo) xE(M,oo) 

Concerning Problem 1.1, we consider the following initial-boundary 
value problem: 

(SS) { an= ( -2a;,.- ~~;3 + .:\2 ~~;)v, 

')'(0, t) = (0, 0), ~~;(0, t) = 0, 

'Y(x, 0) = ')'o(x). 
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In the rest of this section, we shall mention several lemmas needed later. 
For a precise proof of these lemmas, see [16]. Let us set 

p>.. = 28;/'i, + /'i,3- )..2/'i,. 

Then the gradient flow (1.4) is written as 

8n = -F>..v. 

Lemma 2.1. Under (1.4), the following commutation rule holds: 

Lemma 2.1 gives us the following: 

Lemma 2.2. Let 'Y satisfy (1.4). Then the curvature K, satisfies 

(2.2) 8t/'i, = -8;F>..- /'i,2 p>.. 

= _ 284/'i, _ 5/'i,282/'i, + >..282/'i, _ 6/'i,(8 /'i,)2 _ /'i,5 + >..2/'i,3 s 8 8 8 . 

Furthermore, the line element ds of 'Y satisfies 

(2.3) 

Let us define the following notation: 

Definition 2.1. ([5]) We use a symbol qr(8!/'i,) for a polynomial as 
follows: 

Nm 

qr(8!/'i,) = L Cm II 8~m; /'i, 
m i=l 

with all the Cm; less than or equal to l and 

Nm 

L(Cm; +1) =r 
i=l 

for every m, where Cm are constant coefficients. 

By virtue of Lemmas 2.1 and 2.2, we have 

Lemma 2.3. For any j E N, the following formula holds: 

8t8t/'i, = -28t+4/'i,- 5/'i,2et+2/'i, + >..2et+2/'i, + >..2qi+3(8t/'i,) + qi+5(8t+l/'i,). 
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Let us define LP norm with respect to the arc length parameter of 
"f· For a function f(s) defined on"(, we write 

1 

llfiiL~ = {llf(sW ds}", 
llfllv"' = sup if(s)j, 

8 sE[O,.C(')')] 

where C('Y) denotes the length of "f. 

§3. Main result and outline of proof 

The main result of this paper is stated as follows: 

Theorem 3.1. Let 'Yo(x) be a smooth planar curve satisfying (A1)­
(A4). Then there exists a classical solution of (SS) for any finite time 
t > 0. 

As we have already mentioned above, the solution 'Y of (SS) is fixed 
at the origin. In [13], we will extend Theorem 3.1 to more general case. 

As a first step in proving Theorem 3.1, we consider a certain compact 
case with fixed boundary. Let r 0 (x) : [O,L]-+ JR.2 be a smooth planar 
curve and satisfy the conditions 

(C) 
lro'(x)l = 1, ro(O) = (0, 0), ro(L) = (R, 0), ko(O) = ko(L) = 0, 

where Land Rare certain positive constants, and k0 (x) is the curvature. 
For the initial curve r 0 , we solve the following initial boundary value 
problem: 

(SSC) { an= ( -2a;""- ""3 + >.?"")v, 
"f(O, t) = (0, 0), "f(L, t) = (R, 0), 
"f(X, 0) = ro(x). 

""(0, t) = ""(L, t) = 0, 

A short time existence of solution of (SSC) is followed from a stan­
dard argument. In order to show a long time existence of solution 
to (SSC), we have to prove that the curvature and its derivatives are 
bounded for any finite time. 

Since (1.4) is the steepest descent flow for (1.3), we deduce an esti­
mate of the curvature. 

Lemma 3.1. Let 'Y be a solution of (SSC) and"" denote the curva­
ture. Then it holds that 

(3.1) 



198 S. Okabe 

By virtue of Lemmas 2.2 and 2.3, we observe the following: 

Lemma 3.2. Let r;, be the curvature of"( satisfying (SSC). Then, 
for any mEN, it holds that 

(3.2) 

In order to estimate any order derivative of r;, with respect to its arc 
length, we need a Gagliardo-Nirenberg type interpolation inequality. 

Lemma 3.3. Let "f(X, t) be a solution of (SSC). Let u(x, t) be a 
function defined on "( and satisfy 

a;mu(O, t) = a;mu(L, t) = 0 

for any m E N. Then, for integers 0 :::; p < q < r, it holds that 

(3.3) 

Moreover, for integers 0:::; p:::; q < r, it holds that 

(3.4) IIB~ullu"' :::; h IIB~ull~¥<~~~) 1 IIB~ull~~(~~~r. 
s s 8 

With the aid of Lemma 3.2, we can apply (3.3) and (3.4) tor;,. Then 
we obtain the following estimate: 

Lemma 3.4. For any j EN, we have 

d II ,;,i 11 2 II 11 4j+6 II 11 4j+l0 dt US r;, L~ :::; C r;, L~ + C r;, L~ . 

It is followed from Lemmas 3.1 and 3.4 that the curvature r;, and 
its derivatives are bounded for any finite time. Concerning the problem 
(SSC), we obtain the following result: 

Theorem 3.2. ([16]) Let r 0 be a smooth planar curve satisfying 
the condition (C). Then there exists a unique classical solution "t(x, t) 
of (SSC) for any time t > 0. Moreover there exist a sequence { ti}~0 
with ti ---+ oo and a stationary solution i of (SSC) such that "f(·, ti) 
converges to i(·) in the coo topology as ti---+ oo. 

Remark 3.1. If we are able to know a stability of a stationary 
solution, then we can comprehend a dynamical aspect of solution (SSC) 
in a neighborhood of the stationary solution. The representation formula 
of the stationary solutions is given by A. Linner ([12]). However its 
stability is an outstanding question. 
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By virtue of Theorem 3.2, we are able to construct an "approximate 
solution" of (SS). Indeed, using a cut-off function 7Jr(x) E Cg<'(O, oo) 
with 7Jr(x) = 1 on [0, r -1] and 7Jr(x) = 0 on [r, oo), we define a smooth 
planar curve ro,r(x) : [0, r] -+ JR.2 as 

ro,r(x) = (¢(x), 7Jr(x)1/J(x)) lo~x~r. 

It is easy to check that the curve ro,r(x) satisfies the conditions 

(3.5) ro,r(O) = (0,0), ro,r(r) = (¢(r),O), ko,r(O) = ko,r(r) = 0, 

where ko,r(x) denotes the curvature ofro,r(x). For the initial curve ro,n 
we solve the following problem: 

ae, = ( -2a;""- ""3 + >.. 2"")v, 
1(0, t) = (0, 0), 1(r, t) = (¢(r), 0), 

1(x,O) = ro,r(x). 

""(0, t) = ""(r, t) = 0, 

By virtue of (3.5) and Theorem 3.2, we observe the following: 

Lemma 3.5. Let r > M. Then there exists a unique classical 
solution !r(x, t) of (SSr) for any timet > 0. Moreover there exist a 
sequence { ti}~0 with ti -+ oo and a stationary solution "rr of (SSr) such 
that lr(·, ti) converges to "rr(·) in the c= topology as ti-+ 00. 

We close this paper by showing a key to proving Theorem 3.1. By 
applying Arzela-Ascoli's theorem to the sequence { lr }r>M, we construct 
a solution of (SS). To do so, we have to observe that the sequence 
{ lr }r>M is uniformly bounded and equicontinuous. The point is to 
prove an uniform boundedness of the sequence. By virtue of Lemma 
3.4, we see that it is sufficient to prove a uniform boundedness of ""r· 

Lemma 3.6. ([13]) There exists a positive constant C being inde­
pendent of r such that 

(3.6) sup ll""r(t)ll£2 < C 
rE(M,CXJ) s 

for any t > 0. 
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