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Resonance varieties of arrangement complements 

Sergey Yuzvinsky 

§1. Introduction 

This paper is a survey based on the lecture given by the author in 
the conference "Arrangements of Hyperplanes -Sapporo, 2009" at the 
University of Hokkaido. The main topic of the survey is the resonance 
varieties of the complement of an arrangement of several linear complex 
hyperplanes. These varieties can be defined for an arbitrary topological 
space M as the jumping loci for the kind of 'secondary cohomology' of 
M. More precisely this is the cohomology of the graded commutative 
algebra H*(M) provided with the differential given by the multiplica­
tion by an element of H 1 ( M). This cohomology has appeared first in 
topology as the first sheet of the Farber-Novikov spectral system (see, 
for example [25]) which converges to cohomology with local coefficients 
for compact manifolds. For arrangement complements first results for 
this cohomology were vanishing theorems from [30] and [35] and com­
parison theorems [14]. The jumping loci for this cohomology were first 
considered explicitly in [15] and called resonance varieties. In [1], this 
cohomology was considered for an arbitrary graded commutative alge­
bra as the measure of its complexity. For initial results about resonance 
varieties over arbitrary fields see [16]. 

At the beginning, the resonance varieties were mainly considered due 
to their connections with the jumping loci for the cohomology with local 
coefficients; the most recent results about these connections can be found 
in [10, 11]. Now resonance varieties appear in many areas of arrangement 
theory. The most recent appearance is in [5, 6] where these varieties 
have been used for results on the Milnor fiber cohomology and roots 
of b-functions. There are also several recent papers (see, for example 
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(12, 33]) where some properties of resonance varieties for arrangement 
complements were analyzed from the point of view which properties of 
the spaces imply them. This has allowed the authors to generalize them 
to other topological spaces. See also the survey by A. Suciu in the 
Proceedings. 

The outline of the paper is as follows. In Section 2, we give the main 
definitions and list the properties of the resonance varieties with just 
hints of proofs. Then in Section 3, we discuss the structure of the first 
resonance variety, that is the jumping locus for the first cohomology of 
the algebra H* ( M). The components oft his variety can be characterized 
equivalently in terms of classical projective geometry and in terms of 
pencils of plane curves. This theorem has been proved in (17] but here 
we give a proof that fills a small gap and uses some new ideas and 
shortcuts. In Section 3, we survey the results on the dimension of the 
first resonance variety. In Section 4, we list several open questions. 

§2. Resonance varieties and their properties 

Definition 2.1. Let M be a topological space and A = H*(M) 
its graded cohomology algebra (the coefficients can be apriori from an 
arbitrary field but for later use we assume they are in !.C). We write 
AP = flP ( M). For every x E A 1 we have x 2 = 0 since A is graded­
commutative. Thus the multiplication by x defines the differential A -+ 
A of degree + 1, i.e., converts A into a cochain complex that we denote 
by (A, x). 

The main object of this paper is the cohomology HP(A, x) as a func­
tion of x. 

For the next definition we assume that the linear spaces AP are finite 
dimensional. 

Definition 2.2. The p-th resonance variety RP = RP(M) is the 
(determinantal) subvariety of A1 defined as RP = {x E A 1 IHP(A,x) =1-
0}. 

The rest of the paper will be devoted to the case where M is the 
complement in a finite dimensional linear space V (V :::::! rc') to an ar­
rangement A of several (linear) hyperplanes. We will always assume that 
A is essential, i.e., nHEA H = 0. If we consider several arrangements at 
the same time we will use the symbol A(A) for A. 

The cohomology of such an M is determined by theorems of Arnold, 
Brieskorn and Orlik-Solomon, (3, 4, 26]. For each hyperplane HE A fix 
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a linear form aH with ker aH =H. Then A can be identified with the 
subalgbera of the algebra of all the (holomorphic) differential forms on 
M generated by the logarithmic forms daa// (HE A). The classes eH of 
these forms form a canonical basis of A 1 whence for every x E A 1 we 
have x = l:Hut XHeH for some XH E <C. Relations for the generators 
are well-known and can be found in [27]. 

Properties of RP. 
There are several properties of varieties RP for arrangement comple­

ments that hold for all p, 0 :S: p :S: /!. 

(i) (linearity of components) The irreducible components of RP are 
linear subspaces of A 1 . 

(ii) (sufficient condition for vanishing) If l.:HEA XH -/=- 0 then RP = 

0 for all p (we will write R* = 0). 

Remark 2.3. If Ai (i = 1, 2) are arrangements in linear spaces Vi 
then their product is the arrangement A1 X A2 in v1 EB v2 of the hyper­
planes H EB V2 (H E A1) and V1 EB H (H E A2), see [27]. One easily 
checks that A(A1 x A2) =A( AI) c>9c A(A2). An non-empty arrangement 
A is irreducible if it is not isomorphic to the product of non-empty ar­
rangements. Every non-empty arrangement A is the product of several 
uniquely defined irreducible arrangements, irreducible components of A. 

(iii) (equivalent condition for vanishing) R* -/=- 0 if and only if 
l:HEAj XH = 0 for every j = 1, ... , r where Aj is an irreducible com­
ponent of A. 

Remark 2.4. The subset sing(A) = sing(A) of A 1 consisting of all 
x satisfying H* (A, x) -/=- 0 is called the singular variety of A. It is usually 
viewed as a module over the exterior algebra E generated in degree 1 by 
{eHIH E A}. See [1] for another approach to it and its applications. 

( iv) (propagation of cohomology) If HP (A, x) -/=- 0 for some p then 
Hq(A, x) -/=- 0 (i.e., RP C Rq) for every q, p :S: q :S: I! (i.e., R* -/=- 0 is 
equivalent toR£-/=- 0). 

The known proofs of the properties are of different difficulties. The 
easiest property is (ii). It is a consequence of the existence of a differen­
tial 8 : A --+ A of degree -1 that satisfies the signed Leibniz formula and 
is normed by the condition 8(eH) = 1 for every HE A. Then ~8 

L...tHXH 

is a contracting homotopy for (A, x). 
If A is not a product of non-empty arrangements than the converse 

of (ii) follows from the non-vanishing of the Euler characteristic of ker 8 
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(cf. [9]). This and the fact sing(A1 xA2) = sing(A1) xsing(A2) implies 
(iii). 

Property (i) has been proved for an arbitrary pin [7] and [22]. The 
idea is to view the cohomology of (A, x) as a linearization of cohomology 
of another complex. 

Finally, property (iv) has been proved in [13] as a corollary of the 
linearity of the minimal injective resolution for A viewed as an E-module. 

A direct linear algebra proof of the propagation for p = 1 has been 
given by J. V. Pereira and goes as follows. 

Proof. Assume that a E A1 satisfies H 1(A, a) =f. 0 andHP(A, a)= 
0, for some 1 < p :=::; £. Let bE A1 \ <Ca with ab = 0. Since a and b can 
be identified with some rational one-forms on <C£, there exists a rational 
function h such that b = ha. This immediately implies that the cocycle 
spaces for a and b in all degrees r coincide: Z~ = Zb- In particular, 
this is true for r = p - 1 and r = p. Since by assumption BK = ZK, 
where BK is the space of coboundaries of degree p for a, we obtain that 
dim Bf: = dim BK = dim ZK = dim Zf: whence Bf: = BK. 

Now consider the isomorphisms ¢a, cPb: C = AP-1 /ZK- 1 -+ BK, 
given by multiplication by a and b, respectively, and the automorphism 
¢ = ¢-;;1¢b of C. If c E AP-1 is such that its projection to C is an 
eigenvector of ¢, then we have be = ..\ac for some ..\ E <C*. But since also 
be= hac, we have h = ..\, which contradicts the choice of b. Q.E.D. 

No proof of this kind is known for arbitrary p. 

§3. The first resonance variety 

For the first resonance variety R 1 the situation can be simplified. 
First, we projectivize the linear space and study an arrangement of 

projective hyperplanes in the complex projective space. The cohomol­
ogy algebra of the projectivized complement (that we still denote by A 
in this section) is the graded subalgebra of the cohomology algebra of 
M generated by eiJ = ei - eJ for i =f. j. For these generators the basic 
relations are rrj=2,3, ... ,k eitij where { ait' C¥i2' ... 'aik} runs through all 
minimal linearly dependent sets. Second, it suffices to consider arrange­
ments of lines in JP>2 . Indeed intersect arbitrary A with a generic plane 
and either apply the weak Lefschetz theorem or the description of A in 
terms of the intersection lattice of A. An arrangement of projective lines 
will be denoted by L. 
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3.1. Local components 

Here we describe the class of the simplest components of R 1 (in some 
sense trivial) . 

Suppose P E 1P'2 is a point where k lines of L intersect, k :::: 3. Define 
the linear subspace 

Vp={x= LxeeeiLxe=O} 
PEC 

of A 1 . Using the relations above it is easy to show that xy = 0 for every 
x, y E Vp and for every x E Vp the equality xy = 0 implies y E Vp. 
Thus Vp is a component (of dimension k- 1) of R1 . This component is 
called a local component of R 1 . 

Notice that there is no uniform upper bound for the dimension of 
local components of arrangements. As we will see later, this makes local 
components different from all others. 

3.2. Nets in 1P'2 

Now we want to study the non-local components. Our goal is to 
state the theorem that gives at least two different characterizations of 
them. For that we need to define the terms to be used. 

First we discuss some special configurations of lines and points in 

Definition 3.1. A finite set L of lines partitioned in k (k > 2} 
blocks L = U1=l Lj is a k-net if for every point P which is the intersection 
of lines from different blocks there is a precisely one line from each block 
passing through P. 

The following numerical equalities for a k-net are almost obvious. In 
order to state them we denote by X the set of all points of intersection 
of lines from different blocks. 

(i) For arbitrary 1 :S: i,j :S: k and I! E L we have ILil = IL1I = IXn£1. 
The latter integer is denoted by d and the net is called (k, d)-net. 
(ii) ILl = kd. 
(iii) lXI = d2 • 

Nets can be defined purely combinatorially using an incidence rela­
tion. Then after identifying two blocks of a (k, d)-net with each other, 
every ot~r block gives a Latin square of size d and these k- 2 squares are 
pairwise orthogonal. If k = 3 identifying all blocks gives a multiplication 
table of a quasi-group. 
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c 

A A c 

Fig. 1. The (3,2) net 

A (k, 1)-net consists of k lines passing through a point with each 
block consisting of one line. Clearly maximal (k, 1) nets in an arrange­
ments correspond to local components of R 1 . Thus from now on we will 
assume that d > 1. 

The combinatorial nets that can be realized in lP'2 form a very re­
stricted class (e.g., see the restrictions on k below). However there are 
plenty of examples of 3-nets. The simplest nontrivial one is given by 
all the reflection lines of the Coxeter group of type A3 . In appropriate 
coordinates the blocks can be described by the equations 

see Fig. 1 for the picture of it in the affine plane z = 1. This is the only 
example of a (3, 2)-net up to a projective isomorphism. As a classical 
example of a (3, 3)-net one can use the generic Pappus configuration 
taking for X all the triple points. 
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The first attempt to study 3-nets in IP'2 was taken in [36]. In partic­
ular, a general way to construct examples of (3, d)-nets for every d was 
found there. 

If H is a group of order d then we say that a (3, d)-net realizes 
H if there is a way to identify all the blocks of the net to obtain the 
multiplication table of H. 

Theorem 3.2. Let H be a finite subgroup of a two dimensional 
torus. Then there exists a 3-net in IP'2 realizing H. 

Proof. Fix a non-singular plane cubic curve C and define the addi­
tive group operation on it (converting it to the two dimensional torus) 
by choosing one of the flexes of C as the neutral element. Then three 
points P1, P2, and P3 from C are collinear if and only if Pl + P2 + P3 = 0. 
We can identify H with a subset of C and put d = IHI. Now choose 
a, (3 E C / H such that a, (3, and -a- (3 are distinct. The union of these 
three cosets is a set of 3d points partitioned in three blocks. It is clear 
that the lines in the projective plane dual to these points form a 3-net 
and this net realizes H. Q.E.D. 

The construction used in that proof can be extended to reducible 
cubics. We say that a 3-net is algebraic if there exists a cubic curve 
C c (P2 )* containing the points dual to the lines of the net in the 
set C0 of its regular points. Then the following partial converse of the 
previous theorem has been proved in [36]. 

Theorem 3.3. Let H be a finite Abelian group that is either cyclic 
or it has at least one element of order greater than g_ Then every real­
ization of H by a 3-net in IP'2 is algebraic. 

Remark 3.4. It was also proved in [36] that under the extra con­
dition that all the lines in one class of the net are concurrent then 6 
instead of 9 suffices for the conclusion of Theorem. In the case where 
each of three classes consists of concurrent lines, 2 can be substituted for 
9. In fact, the conclusion of the theorem holds for Z2 and is false for Z~ 
fork> 2. The group Z~ is an unknown case. 

Further examples of nets and attempts to classify some of them can 
be found in [31, 34]. In particular, J. Stipins found in [31] example of a 
(3, 5)-net that does not represent a group whence is not algebraic. 
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3.3. Multinets in JID2 • 

The example of the B 3-arrangement (i.e., the arrangement of all re­
flection hyperplanes of the Coxeter group of type B3) shows that there 
are arrangements that do not support nets but would support very sim­
ilar configurations if provided with some multiplicities. 

Definition 3.5. (1} A multi-arrangement of lines in lP'2 is an ar­
rangement L of lines together with a multiplicity function m: L--+ Z>o· 
For every£ E L the integer m(£) is called the multiplicity of£. 

(2} Let k be an integer, k ;:::: 3. A k-multinet is a multi-arrangement 
(L, m) with L partitioned into k blocks L 1 , ... , Lk subject to the following 
conditions: 

(i} As for the nets, let X be the set of the intersections of lines from 
different blocks; then for each P E X the number n( P) = LeEL, ,PE£ m( £) 
is independent of i; 

This number is called the multiplicity of P; 
(ii} For every 1 :<;; i :<;; k and £, £' E Li there exists a sequence 

Ro =R,£1, ... ,Rr =£'such thatRJ-1 nRJ tj. X, for allj = 1,2, ... ,r. 

Remark 3.6. (1} The axiom (i} is a direct generalization of the 
definition of nets. 

(2} The more technical axiom (ii} guarantees that the partition is 
the finest for given (L, m) and X. Due to this axiom, the blocks Li are 
the equivalent classes of the transitive closure of the relation £ rv £' if 
Rn£' tf. X. 

(3} If n(P) = 1 for all P E X then clearly m(£) = 1 for all£ E L 
and we have a k-net. The converse is false-there are multinets with 
m(£) = 1 for all lines £ but n(P) =/:: 1 for some P (see Fig. 3}. 

Multinets satisfy the numerical equalities which generalize those for 
nets. 

(1) L£EL, m(£) does not depend on i; 
This integer is denoted by d and the multinet is called (k, d)-multinet. 
(2) L£EL m(£) = dk; 
(3) LPEXn£ n(P) = d for every £ E L; 
(4) LPEX n(P)2 = d2. 
Also dividing all m(£) by their common divisor does not spoil the 

properties. Thus we can and always will assume that the numbers 
{ m( £) 1£ E L} are mutually relatively prime. 

As stated above, the simplest and motivating example of a multinet 
that is not a net is supported by the Coxeter arrangement of the type 
B 3 , see Fig. 2. It can be given (up to projective isomorphism) by the 
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2 

A B A 

Fig. 2. A (3,4) multinet 

equation 
[x2(y2 _ 2 2)][y2(x2 _ y2)][z2(x2 _ y2)] = 0 

where the exponents signify that the coordinate axes are taken each with 
multiplicity 2. The brackets show the partition into 3 classes. It is a 
(3, 4)-multinet with 9 lines (12 counting with multiplicities) and 7 points 
(16 counting with squares of multiplicities). 

3.4. Pencils of plane algebraic curves 

Here we briefly discuss the second ingredient for the characterization 
of R 1 . 

We will identify homogeneous polynomials in three variables that 
differ by a non-zero constant multiplier. Thus we do not make a distinc­
tion between a homogeneous polynomial and the projective plane curve 
(perhaps non-reduced) defined by it, and treat it either as a polynomial 
or as a curve. A pencil of plane curves is a line in the projective space of 
homogeneous polynomials of some fixed degree. Thus any two distinct 
curves of the same degree generate a pencil, and conversely a pencil is 
determined by any two of its curves C1 , C2 . An arbitrary curve in the 
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Fig. 3. A multinet with m(Ji) = 1 for all J! E L, which is not 
a net 

pencil (called a fiber) is then aC1 + bC2 , [a : b] E lP'1 . A pencil 1r with 
generators cl and c2 can be equivalently defined as a rational morphism 
lP'2 --+ lP'1 via x c-+ [C2 (x): -C1 (x)]. We denote this morphism also by 1r. 

Every two fibers in a pencil intersect in the same set of points X = 
cl n c2, called the base of the pencil. If fibers do not have a common 
component then the base is a finite set of points. The base X coincides 
with the indeterminacy locus of the rational morphism 1r. 

We call a pencil connected if the proper transform of each fiber after 
the blowup at all the points of the base stays connected. Notice that if 
generic fibers of a pencil 1r are irreducible then 1r is connected. A curve 
of the form Tii=l a7'i, where ai are different linear forms and mi are 
positive integer for 1 ::; i ::; q will be called completely reducible. We are 
interested in connected pencils with at least three completely reducible 
fibers. Following (17], we say that such a pencil is of Ceva type. 

3.5. Characterizations of R 1 

Now we can give a characterization of the resonance variety R 1 by 
characterizing its components. Let V be a component of R 1 . The support 
U of V is the smallest subarrangement U = supp V of L such that for 
every a = LCEL acec E V if ac -I= 0 then £ E U. If suppV is a set of 
several concurrent lines from L then V is local. For every component V 
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we can restrict our consideration to supp V whence we can always assume 
that V is supported on the whole L. 

Theorem 3.7. Let (L, m) be a multi-arrangement of lines in IP2 not 
passing all through a point. The following conditions are equivalent: 

(i) There exists a partition 1r = {L1 , L 2 , ... , Lk} (k 2: 3) of (L, m) 
that forms a (k, d)-multinet (d > 1); 

(ii) The curves Ci = ITeELi a;'(£) are all the completely reducible 
fibers of a pencil of Ceva type of curves of degree d > 1; 

(iii) There is an irreducible component of R 1 of dimension k - 1 
supported on the whole L. More precisely, the cohomology classes in A 1 

of the logarithmic forms d(ii - dg,, i = 2, 3, ... , k, form a basis of the 
component. 

Partial results in this direction have been obtained in [24] in a com­
pletely different way. 

Proof. The implication (ii)===?(iii) can be checked straightforwardly. 
The implications (i) ===?(ii) and (iii) ===?(i) have been proved in [17]. 

Here we give the proofs that are somewhat different with several new 
ideas and short cuts. Also the proof of the former implication fills a 
small gap in [17]. 

Proof of implication (i) ===?(ii). It suffices to prove that the 
pencil 7r generated by c1 and c2 is connected and ci is a fiber of 7r for 
every i > 2. Fix i > 2 and put D = Di = ITeELi ag. 

(a) Claim 1. There exists a fiber F = Fi of 1r such that D divides 
F. Indeed by the part (ii) of the definition of multinets we can order 
£1,£2, ... ,Rk of Li so that Rj n£J+1 r:J_ X for all j, 1::::; j::::; k -1. Choose 
a point P E £1\ X and put F = C2(P)C1 - C1 (P)C2. Then by Bezout's 
Theorem £1 is a component of F. Now substituting points Rj n £J+1 for 
P, claim 1 follows by induction on j. 

(b) For each R ELi denote by k(R) the largest integer such that a;(e) 

divides F and put D = ITeELi a;(£). Notice that 1 ::::; k(R) ::::; m(£). We 
have F =DE where Eisa polynomial relatively prime with D of degree 

(1) 

(2) 

degE = d- L k(R) = L (m(£)- k(R)). 
£ELi £ELi 

In particular, using the same idea as in (a) we have EnD C X. 
Thus, due again to Bezout's Theorem, we have for every Ro ELi 

degE = L (m(R)- k(R)) + s(m(Ro)- k(Ro)) 
£EL; 
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where L~ {f E Lil£ n fo E X} and s = 1£~1- Also by properties of 
multinets we have 

(3) 

for every fo E Li. 

sm(fo) = L m(f) 
£EL,\L; 

Comparing (1) and (2) and using (3) we obtain 

(4) sk(£0 ) = L k(f) 
£EL,\L; 

for every fo E Li. 
( ) Cl . Th f . · L Ill\ • b fl m(£) · c a1m 2. e unctwn p . i -+ "-1!. giVen y {_ c-+ k(£) 1s 

constant. 
Indeed choose £0 E Li such that p(fo) is the greatest value on Li. 

Then multiplying the equality(3) by p(~o) we have 

(5) 

which has to be an equality. Thus p(£) = p(£0 ) for every f E Li \ L~, 
i.e., p is constant on Li \ L~. Applying again part (ii) of the definition 
of multinets, pis constant on Li. 

(d) Here we conclude the proof using Stein Factorization Theorem 
(SFT) ([19, Cor. III.11.5], see also [18, p. 556]). 

As it proved in (c), for every i ~ 1 there is a constant Pi such that 
m(f)/k(f) = Pi for all f E Li. Suppose 1r is not connected which is 
definitely the case if at least one Pi -:f. 1. The rational map 1r : lP'2 -+ lP'1 
lifts to a regular map ir : § -+ lP'1 where cp : § -+ lP'2 is the blowup at 
X. By SFT we can write ir = f o ir0 where ir0 :§-+Cis a regular map 
with connected fibers to a curve C, and f : C -+ lP'1 is a finite regular 
map. Since cp is birational, ir0 can be pushed down to a rational map 
7ro : lP'2 -+ C. Since 1r is not connected the degree e of f : C -+ lP'1 is 
greater than 1. The fibers of 1r0 are curves of degree d' where d = ed' 
for some integer e > 1. 

Now, again by condition (ii) of definition of multinets, the proper 
transform Di of Di is connected. Since Di and Ei are disjoint away 
from the base locus, Di is in fact a connected component of the proper 
transform of Fi = DiEi· Then Di is a (perhaps multiple) fiber of 7ro 
whence there exists a curve Doi such that Dt{i = Di for an integer JL 
and D'Qi = Ci. Since the proper transforms of C1 and C2 are also con­
nected by definition of multinets the respective fibers of f are points of 
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multiplicity e each. This implies that all the multiplicities m(£) (£ E L) 
are divisible by e contradicting the condition that the line multiplici­
ties m(£) are mutually relatively prime. We conclude that e = 1, 1r is 
connected, and Ci is its fiber for every i. 

Remark 3.8. Notice that unlike in the proof of the same implication 
in [17] the condition {ii) from definition of multinets is used for all Ci. 
In fact, the Example 3. 9 from [17] shows that if this condition fails even 
for one ci then the implication may not hold. 

Proof of the implication (iii)==?(i). 
For the proof of this implication [17] refers to [23]. Here we give 

details of a simplified version of the proof in [23]. 
Fix an irreducible component V of R1 supported on a the whole 

L. For every a E V put Z(a) = {b E A1 lab = 0}. Recall from the 
end of section 2 that for every b E Z(a) we have Z(b) = Z(a). This 
implies that Z(c) n Z(a) = {0} for each c E R1 \ Z(a). Since V is an 
irreducible component of R1 it coincides with Z(a) and in particular is 
a linear subspace of A 1. Now without any loss we can assume that a is 
in general position in V in the sense that ae -=f. 0 for every £ E L. 

Now we define the subset X of the set of all multiple points of 
intersections of lines from L: X= {PI 'l:PER ae = 0}. Denote by J the 
incidence matrix (of the size lXI x ILl) of points from X and lines from 
L and define the square ILl x ILl-matrix Q = JT J - E where JT is 
the transpose of J and E is the matrix with all entries equal to 1. The 
importance of Q for the component V is that 

V = Z(a) = ker J n ker E = ker Q n ker E. 

This follows from the description of local components. Besides Q is a 
symmetric integer matrix with the diagonal entries equal to te -1, where 
te is the number of points in X which are contained in £. The assumption 
that the support of V is equal to the whole L implies that Qe,£ > 0 for 
£ E L. An off-diagonal entry Qe,e' is equal to zero when £ n £' E X, 
and is equal to -1 otherwise. In particular, Q is a (generalized) Carlan 
matrix. These matrices were classified by E. Vinberg, see [20]. 

In order to apply Vinberg's classification (and construct the par­
tition for the multinet) we represent Q as the direct sum of indecom­
posable matrices, as follows. Define the equivalence relation on L as 
the transitive hull of the relation £ ~ £' if £ n £' rf_ X and denote by 
{L1, L2, ... , Lk} the partition of L into the equivalence classes. Due to 
properties of Q we have a direct sum decomposition Q = EElf=1 Qi where 
the matrices Qi are again generalized Cartan and besides are indecom­
posable. 
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According to Yin berg's classification, each of these matrices is of one 
of three possible types. We denote by u elements of the linear space over 
Ql with L as a basis and write u > 0 if all coordinates u(£) are positive. 

(1) Qi is finite if it is positive definite; equivalently Qiu > 0 for 
every u > 0; 

(2) Qi is affine if it is positive semidefinite (i.e., Qiu ;::: 0 for every 
u > 0) and ker( Qi) = Qui for some ui > 0; 

(3) Qi is indefinite if Qiu < 0 for some u > 0. 

Since V is supported on the whole L the partition that we defined 
does not have finite blocks. Since matrix JT J is positive Q can have at 
most one indefinite block and in that case no affine blocks, in particular 
k = 1. Indeed otherwise it would be easy to find a positive vector u 
with LtEL u(£) = 0 and (JT Ju, u) = (Qu, u) < 0. On the other hand, 
by definition of the partition, the restriction of V to every Li is at most 
one-dmensional and dim V ;::: 2. Thus k -!=- 1 whence all the blocks are 
affine. We see that V = ker Q is generated by the vectors ui - Uj where 
ui is a positive integer vector generating ker Qi such that LtELi ui(£) 
does not depend on i. Now we choose for each i = 1, 2, ... , k such 
vectors ui and put m(£) = ui(£) if £ E Li. Then it follows from the 
construction that the partition of the multiarrangement (L, m) defines 
a (k, d) multinet. Q.E.D. 

Examples 

We start with the example of a multinet of type B 3 and change the 
exponent 2 to an arbitrary d ;::: 2. What we obtain are examples of 
(3, d)-multinets that we call Nd (N2 = B3 ). This can be seen easier if 
we consider first the respective pencil of Ceva type. Indeed the curves 
zd(xd- yd), and xd(yd- zd), generate the pencil (the Fermat penciQ of 
Ceva type with the third completely rerducible fiber yd(xd- zd). 

The other classical example of a pencil of Ceva type is the Hesse 
pencil of cubics generated by x 3 + y3 + z3 and xyz. This pencil has 
four completely reducible fibers, each of which is the product of three 
distinct lines. The resulting ( 4, 3)-net has 12 lines and lXI = 9. In this 
example each of the four blocks is in general position (i.e., lines of each 
block intersect at three double points). The set X can be realized as the 
the set of all inflection points of a smooth irreducible cubic. It is the 
only known example of a (4, d)-net for any d (see below). 

§4. Upper bound on k 

Theorem 4.1. A Ceva pencil of degree d > 1 cannot have more 
than four completely reducible fibers. 
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Due to the main theorem this result can be also formulated in at 
least two other equivalent ways. 

(i) For a (k, d)-multinet in IP'2 if d > 1 then k < 5. 
(ii) Every non-local irreducible resonance component has dimension 

either two or three. 
(iii) dimH1 (A, x) ::::; 2 if xis not supported on several lines passing 

through a point. 
These inequalities have resulted from work by different authors. The 

first result k ::::; 5 was proved in [23] for nets (not explicitly defined there) 
using the pencil corresponding to a components of R1 and computing 
the Euler characteristic of the blowup at the base in two different ways. 
This proof was generalized in [17] to the multinets with all m( £) = 1. 
Then this inequality was proved in general case in [29] with a help of 
foliations of IP'2 generated by pencils of curves. The stronger inequality 
k ::::; 4 was proved in the dissertation of J. Stipins [31] for nets. He 
used the pencil of Hessians of the fibers of 1r. Finally this method was 
generalized in [37] to the general case. 

Let us recall that while there are plenty of examples with k = 3, 
the Hesse pencil is the only example of a Ceva pencil with 4 completely 
reducible fibers whence the only known ( 4, d)-multinet. ( 4, d)-multinets 
that are not nets do not exist (see [37]). The only possible examples 
would be nets with d ~ 7. 

Open problems 

1. Give a direct proof of the propagation property of the resonance 
varieties RP. 

2. Give a more constructive description of irreducible components 
of RP for p > 1. In particular, how are they related to linear systems of 
subsurfaces? 

3. Describe all the groups that can be represented by a 3-net in IP'2 • 

Conjecture 4.2. These are all the finite subgroups of PG L(2, C). 

4. Find other 4-nets besides the Hesse configuration. 

Conjecture 4.3. They do not exist. 

The conjecture has been proved for d=4,5,6. 

5. Is every multinet the limit of a family of nets (in IP'2 )? 
For instance, (3, 2d)-multinet Nd (d = 2, 3, ... ) considered above has 

this property. The easiest way to see this is to consider an arrangement 
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of planes in IP'3 given by the polynomial 

(xg- xt)(xg- x~)(xg- xg)(xt- x~)(xg- x~)(xt- xg). 

Intersection of this arrangement with a generic (projective) plane gives 
a (3, 2d)-net in IP'2 . Moving this plane to x 3 = 0 makes the intersection 
approach the multinet Nd. 
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