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Projective surfaces with many nodes 

JongHae Keum 

Abstract. 

We prove that a smooth projective complex surface X, not nec­
essarily minimal, contains h1•1 (X) -1 disjoint ( -2)-curves if and only 
if X is isomorphic to a relatively minimal ruled rational surface F 2 or 
P 2 or a fake projective plane. 

We also describe smooth projective complex surfaces X with 
h1•1(X)- 2 disjoint (-2)-curves. 

§1. Introduction 

Throughout this paper, we work over the field C of complex num­
bers. 

A smooth rational curve on a surface with self-intersection -2 is 
called a ( -2)-curve or a nodal curve as it may be contracted to give 
a nodal singularity (conical double point). For a smooth surface X, 
we denote by ~-t(X) the maximum of the cardinality of a set of disjoint 
(-2 )-curves on X. Hodge index theorem implies that 

~-t(X) ~ p(X)- 1 ~ h1•1(X)- 1, 

in particular, X contains at most h1•1 (X) - 1 disjoint nodal curves, 
where p(X) denotes the Picard number and h1•1 (X) the (1,1)-th Hodge 
number of X. 
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A result of I. Dolgachev, M. Mendes Lopes, and R. Pardini gives 
a classification of smooth projective complex surfaces X with q(X) = 
p9 (X) = 0 containing p(X) - 1 disjoint nodal curves ([6], Theorem 3.3 
and Proposition 4.1). 

Theorem 1.1. [6] Let X be a smooth projective surface, not neces­
sarily minimal, with q(X) = p9 (X) = 0. Then J.L(X) = h1•1 (X) - 1 if 
and only if X is isomorphic to the minimal rational ruled surface F2 or 
the complex projective plane P 2 or a fake projective plane. 

Note that p(X) = h1•1 (X) for a smooth projective surface X with 
p9 (X) = 0. The Hirzebruch surface F 2 contains one nodal curve, while 
P 2 or a fake projective plane contains none. The latter two cases were 
not mentioned in [6], as the authors focused on the case with J.L(X) > 0. 

A Q-homology projective plane is a normal projective surface having 
the same Q-homology groups as P 2 . If a Q-homology projective plane 
has rational singularities only, then both the surface and its resolution 
have p9 = q = 0. Theorem 1.1 also gives the following classification of 
Q-homology projective planes with nodes only. 

Corollary 1.2. Let S be a Q-homology projective plane. Assume 
that all singularities of S are nodes. Then S is isomorphic to P 2 or a 
fake projective plane or a cone in P 3 over a conic curve. 

In this paper we first show that the condition "q(X) = p9 (X) = 0" 
in Theorem 1.1 is not necessary. 

Theorem 1.3. Let X be a smooth projective surface, not necessarily 
minimal. Then J.L(X) = h1•1(X)- 1 if and only if X is isomorphic to 
F2 or P 2 or a fake projective plane. 

Next, we describe smooth projective complex surfaces X with J.L(X) = 
h1•1(X)- 2. 

Theorem 1.4. Let X be a smooth projective surface, not necessarily 
minimal. Assume that J.L(X) = h1•1(X)- 2. Then X belongs to one of 
the following cases: 

(1) nef Kx: 
(i) a bi-elliptic surface, i.e. a minimal surface of Kodaira 

dimension 0 with q = 1, p9 = 0, h1•1 = 2; 
(ii) a minimal surface of Kodaira dimension 1 with q = 1, 

p9 = 0, h1•1 = 2; 
(iii) an Enriques surface with 8 disjoint nodal curves; 
(iv) a minimal surface of Kodaira dimension 1 with q = p9 = 

0 whose elliptic fibration has 2 reducible fibres of type 10 
whose end components give the 8 disjoint nodal curves; 
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(v) a ball quotient with q = 0, p9 = 1, i.e. a minimal surface 
of general type with q = 0, p9 = 1, h1•1 = 2; 

(vi) a minimal surface of general type with q = p9 = 0, K 2 = 
1, 2, 4, 6, 7, 8 containing 8- K 2 disjoint nodal curves; 

(2) non-nef Kx : 
(i) the blowup of a fake projective plane at one point or at 

two infinitely near points; 
(ii) a relatively minimal irrational ruled surface; or its blow­

up at two infinitely near points on each of k ::;:: 1 fibres 
so that each of the k fibres becomes a string of 3 rational 
curves (-2)-(-1)-(-2); 

(iii) a rational ruled surface Fe, e =/= 2; 
(iv) the blowup ofF e at two infinitely near points on each of 

k ::::: 1 fibres so that each of the k fibres becomes a string 
of3 rational curves (-2)-(-1)-(-2); 

( v) the blowup ofF 2 at two infinitely near points away from 
the negative section so that one fibre becomes a string of 
3 rational curves (-1)-(-2)-(-1); 

(vi) the blowup of F2 at one point away from the negative 
section; or equivalently the blowup ofF 1 at one point on 
the negative section. 

We remark that all cases of Theorem 1.4 are supported by an ex­
ample except the case (1-vi) with K 2 = 1, or 7. 

For the case (1-ii), such surfaces can be obtained by taking a quotient 
(E x C)/G of the product of an elliptic curve E and a hyperelliptic 
curve C of genus g( C) ::::: 2 by a group G of order 2 acting on E as a 
translation by a point of order 2 and on C as the hyperelliptic involution. 
(If g( C) = 1 we get a hi-elliptic surface.) 

For (1-iii), such Enriques surfaces were completely classified in [13]. 
See also [11] and [9] for explicit examples. 

For (1-iv), the Jacobian fibration of such a surface is a rational 
elliptic surface Y with two singular fibres of type !0. (The Jacobian 
fibration of an elliptic fibration has singular fibres of the same type as 
the original fibration (cf. [5]).) In other words, such surfaces are torsors 
of Y, i.e., can be obtained by performing logarithmic transformations 
on Y. If the orders of logarithmic transformations are (2, 2), then the 
resulting surface is an Enriques surface belonging to the case (1-iii). 
Such a rational elliptic surface Y can be constructed in many ways, e.g., 
by blowing up the base points of a specific cubic pencil on P 2 ([5]) or 
by taking a minimal resolution of a Z/2-quotient of the product of an 
elliptic curve E and P 1 where the group acts onE as the inversion and 
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on P 1 as an involution. It is easy to see that any such rational elliptic 
surface Y is a special case of (2-iv). (Consider a free pencil\N1 +2C+Nz\ 
on Y where C is a section meeting two simple components N1 and Nz 
of the two reducible fibres.) 

For the case (1-vi) with K 2 = 2, 4, 6, examples can be found in [2]. 
See Remark 4.2. 

Notation 
Fe :=Proj(Opl EB Op1(e)), e ~ 0, a rational ruled surface (Hirzebruch 
surface) 
pn: the complex projective n-space 
p(Y): the Picard number of a variety Y 
K y: the canonical class of Y 
bi(Y): the i-th Betti number of Y 
e(Y): the topological Euler number of Y 
ci(X): the i-th Chern class of X 
eorb(S): the orbifold Euler number of a surface S with quotient singu­
larities only 
hi,j(X): the (i,j)-th Hodge number of a smooth variety X 
q(X) := dimH1(X, Ox) the irregularity of a surface X 
p9 (X) := dimH2 (X,Ox) the geometric genus of a surface X 
\G\: the order of a finite group G 
( -m)-curve: a smooth rational curve on a surface with self-intersection 
-m 
1-l(Z): the maximum of the cardinality of a set of disjoint ( -2)-curves 
on a smooth surface Z 

§2. The orbifold Bogornolov-Miyaoka-Yau inequality 

A singularity p of a normal surface S is called a quotient singularity 
if the germ at pis analytically isomorphic to the germ of C2 jGp at the 
image of the origin 0 E C2 for some nontrivial finite subgroup Gp of 
GL2 (C) not containing quasi-reflections. Brieskorn classified all such 
finite subgroups of GL(2, q in [4]. We call Gp the local fundamental 
group of the singularity p. 

Let S be a normal projective surface with quotient singularities and 

f: S'---+ S 

be a minimal resolution of S. For each quotient singular point p E S, 
there is a string of smooth rational curves Ej such that 

f- 1 (p) = uj=lEj. 
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It is well-known that quotient singularities are log-terminal singularities. 
Thus one can compare canonical classes K 8 , and Ks, and write 

Ks' = f* Ks- "'vv 
num ~ 

where Dv = 2::~= 1 ( ajEj) is an effective «]-divisor supported on f- 1 (p) = 
u;=1 Ej and 0 ::::; aj < 1. It implies that 

K~ = K~, - L v;. 
pESing(S) 

The coefficients a 1 , ... , az of Dv are uniquely determined by the system 
of linear equations 

Dv · Ei = -Ks' · Ei = 2 + Ef (1 ::::; i::::; l). 

In particular, Dv = 0 if and only if pis a rational double point. 
Also we recall the orbifold Euler characteristic 

earb(S) := e(S)- L ( 1- T2h) 
pESing(S) P 

where e(S) is the topological Euler number of S, and IGvl the order of 
the local fundamental group Gv of p. 

The following theorem is called the orbifold Bogomolov-Miyaoka­
Yau inequality. 

Theorem 2.5 ([15], [14], [10], [12]). Let S be a normal projective 
surface with quotient singularities such that Ks is nef. Then 

K~ :=:; 3earb(S). 

In particular, 
0 :=:; earb(S). 

The second (weaker) inequality holds true even if -Ks is nef. 

Theorem 2.6 ([8]). LetS be a normal projective surface with quo­
tient singularities such that - K s is nef. Then 

0 :=:; earb(S). 

The following corollary is well-known (e.g. [7], Corollary 3.4) and 
immediately follows from Theorems 2.5 and 2.6. 

Corollary 2. 7. A «]-homology projective plane with quotient sin­
gularities only has at most 5 singular points. 
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§3. Proof of Theorem 1.3 

The "if" -part is trivial. 
Let X be a smooth projective surface, not necessarily minimal, with 

h1•1(X)- 1 disjoint nodal curves. We shall show that X is isomorphic 
to F 2 or P 2 or a fake projective plane. Let 

f:X-+S 

be the contraction morphism of the h1•1(X)- 1 disjoint nodal curves. 
Note first that p(S) = 1. Thus Ks is nef or anti-ample. 

Assume that K s is nef. 
Then we can apply the orbifold Bogomolov-Miyaoka-Yau inequality 
(Theorem 2.5). Note that K~ = Ki. From Noether formula 

Ki = 12{1- q(X) + p9 (X)} - {2- 4q(X) + h1•1 (X) + 2p9 (X)}. 

Also we have 
h1•1(X)- 1 

earb(S) = e(S) - 2 . 

Since e(S) = e(X)- (h1•1 (X)- 1) = 3- 4q(X) + 2p9 (X), Theorem 2.5 
implies that 

i.e., 

hence 

hl,l 1 
4q+4p +- <-

g 2 - 2' 

q(X) = p9 (X) = 0, h 1•1 (X) = 1. 

In particular, b2(X) = 1, e(X) = 3, K1 = 9. Note that Kx = f* Ks is 
nef, hence X is not rational. Thus, by classification theory of complex 
surfaces (see [3]), X must be a fake projective plane, i.e. a smooth 
surface of general type with q = p9 = 0, K 2 = 9. 

Assume that -Ks is ample. 
Then -Kx =-f* Ks is nef and non-zero, hence X has Kodaira dimen­
sion ~>;(X)= -oo. Suppose X is not rational. Then there is a morphism 
g: X-+ C onto a curve of genus 2 1, with general fibres isomorphic to 
P 1 . Since a curve of genus 2 1 cannot be covered by a rational curve, 
we see that all nodal curves of X are contained in a union of fibres. 
This implies that S has Picard number 2 2, a contradiction. Thus X is 
rational. Now by Theorem 3.3 of [6], X ~ F 2 or P 2 . 



Projective surfaces with many nodes 251 

Here we give an alternative proof. Since we assume that X is rational, S 
is a <Ql-homology projective plane with nodes only. Let k be the number 
of nodes on S. Then k ::; 5 by Corollary 2. 7. Note that b2 (X) = 1 + k, 
so K1- = 9- k. Let L be the sublattice of the cohomology lattice of 
X generated by the class of Kx and the classes of the k nodal curves. 
Then L is of finite index in the cohomology lattice that is unimodular, 
hence I det(£)1 is a square integer. Note that I det(£)1 = (9- k)2k. If 
k ::; 5, then it is a square integer only if k = 0 or 1. If k = 0, then 
X~ P 2 . If k = 1, then K1- = 8 and p(X) = 2, hence X~ F2. 
This completes the proof of Theorem 1.3. 

Remark 3.8. Proposition 4.1 of [6] was also proved by using the 
orbifold Bogomolov-Miyaoka-Yau inequality. Our proof is just a slight 
refinement of their argument. 

§4. Proof of Theorem 1.4 

For a smooth surface Z, we denote by !-l(Z) the maximum of the 
cardinality of a set of disjoint ( -2)-curves of Z. The following useful 
lemma is due to M. Mendes Lopes and R. Pardini. 

Lemma 4.9. Let X be a smooth surface with Kodaira dimension 
"(X) ?: 0. Let¢ : X --+ Y be the map to the minimal model, and let 
r := p(X)- p(Y). Then 

r 
!-L(X) ::; !-L(Y) + 2. 

Proof. The proof is essentially contained in the proof of Proposition 
4.1 of [6]. 

Use induction on r. 
When r = 0, it is trivial. 
Assume r > 0. Write 

Kx =if;*Ky+E 

and let C1, ... , Cf..L(X) be disjoint ( -2)-curves on X. For each i there are 
2 possibilities: 

(1) Ci is exceptional for f, hence ( ¢* K y )Ci = 0. 
(2) Ci is not exceptional for¢. Then since KxCi = 0 and Ky is 

nef, we see that ( ¢* K y )Ci = 0, ECi = 0, hence Ci is disjoint 
from the support of E. 

Let E 1 be an irreducible ( -1 )-curve of X and let X 1 be the surface 
obtained by blowing down E1. If E1 does not intersect any of the Ci 's, 
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then the Ci's give J-L(X) disjoint ( -2)-curves on X1 , hence J-L(X) ::::; J-L(Xl) 
and the statement follows by induction, i.e., 

r-1 
J-L(X) ::::; J-L(Xl) ::::; J-L(Y) + - 2-. 

So assume that E 1 C1 > 0. By the above remark, this implies that 
C1 is exceptional for ¢. In particular, we have C1E1 = 1. Notice that 
E1 Ci = 0 for every i > 1. Indeed, if, say, E1 C2 = 1, then the images 
of C1 and C2 in X 1 are ( -1 )-curves that intersect, contradicting the 
assumption that ib(X1) 2:: 0. Hence the image of C1 in X1 is a (-I)­
curve that can be contracted to get a surface X 2 with J-L(X)- 1 disjoint 
( -2)-curves, and again we get the result by induction, i.e., 

r-2 
J-L(X) -1::::; J-L(X2)::::; J-L(Y) + - 2-. 

Now we prove Theorem 1.4. Let 

f:X-+S 

Q.E.D. 

be the contraction morphism of the disjoint nodal curves C1, ... , C J.L(X), 

where J-L(X) = h1•1 (X)- 2. 
Note first that Kx = f* Ks. Thus Kx is nef if and only if Ks is 

nef. 

Assume that Kx is nef. 
Then we again apply the orbifold Bogomolov-Miyaoka-Yau inequality 
(Theorem 2.5). In this case we have 

K~ = K1 = 12{1- q(X) + Pg(X)}- {2- 4q(X) + h1•1(X) + 2pg(X)}, 

h1•1(X)- 2 h1•1(X)- 2 
eorb(S) = e(S) - 2 = 4- 4q(X) + 2pg(X) - 2 . 

Thus Theorem 2.5 implies that 

and hence, 
hl,l 

4q + 4pg + -2- ::::; 5. 

This inequality has the following solutions: 

• (A) q(X) = 1, Pg(X) = 0, h1•1 (X) = 2; 
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• (B) q(X) = 0, p9 (X) = 1, h 1•1 (X) = 2; 
• (C) q(X) = p9 (X) = 0, 2::; h1•1 (X)::; 10. 

Assume the case (A). In this case, e(X) = 0 and K1- = 0. Since X 
is a minimal surface of Kodaira dimension K(X) ?: 0, the classification 
theory of complex surfaces ( cf. [3]) shows that X belongs to the case 
(1-i) or (1-ii). 

Assume the case (B). In this case, e(X) = 6 and K1- = 18. Hence, 
X is of general type. Since 3e(X) = K1-, it is a ball quotient. This gives 
the case (1-v). 

Assume the case (C). In this case, e(X) = hl,l(X) + 2 and K1- = 
10- h1•1 (X). 

If h 1•1 (X) = 10, then e(X) = 12 and K1- = 0. Since X is a minimal 
surface of Kodaira dimension K(X) ?: 0, X is an Enriques surface or a 
minimal surface of Kodaira dimension K(X) = 1. This gives the case 
(1-iii) and (1-iv). In the latter case, a fibre of the elliptic fibration 
of X is a rational multiple of Kx, hence the 8 nodal curves must be 
contained in fibres of the elliptic fibration. By the formula for computing 
the topological Euler number of a fibration ( cf. [3], Chap. III) this is 
possible only if the reducible fibres are two fibres of type !0 and the 
eight nodal curves are the end-components of these fibres. 

If 2::; h1•1 (X)::; 9, then 8?: K1-?: 1. Since X is a minimal surface 
of Kodaira dimension K(X) ?: 0, X is of general type. By Theorem 1.3, 
any minimal surface X of general type with p9 (X) = 0 and K1- = 8 
cannot contain a ( -2)-curve, hence belongs to the case (1-vi). 

We claim that K1- i- 3, 5. This can be proved by a lattice theoretic 
argument. Let L be the cohomology lattice H 2 (X, Z)/(torsion), which 
is an odd unimodular lattice of signature (1, h1•1(X) -1). Let M be the 
sublattice of L generated by the classes of the nodal curves C1 , ... , C p,(X) 

where f-l(X) = hl,l(X) - 2. Consider the homomorphism of quadratic 
forms of finite abelian groups 

T: M/2M--+ L/2L. 

Note that 

M /2M ~ (.Z/2-Z)M(X) 

is totally isotropic, and 

Lj2L ~ (Z/2.Z)M(X)+2 . 
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Assume that Kl = 3. Then J.L(X) = 5, so the kernel ker(T) must have 

length~ 2. If L7=l Cii(mod 2M) E ker(T), then 

k 

L cij = 2D +torsion 
j=l 

for some divisor D. Since D·Kx = 0, D 2 is an even integer. This implies 
that k is a multiple of 4. This means that any non-trivial element of 
ker( T) is a sum of 4 members of ell ... 'c5. But this is impossible since 
ker(T) has length ~ 2. Assume that Kl = 5. Then J.L(X) = 3, so 
the kernel ker(T) must have length ~ 1. But no linear combination of 
cl, c2, c3 gives a non-trivial element of ker(T). This completes the case 
(1-vi). 

Assume that Kx is not nef and K,(X) ~ 0. 
In this case X is not minimal. Consider the map ¢ : X --> Y to the 
minimal model, and let 

r := p(X) - p(Y). 

By Lemma 4.9, 

hence 
r:::; 2. 

If r = 1, then the above inequality shows that 

1 
h1•1(Y)- 1 = J.L(X) :::; J.L(Y) + 2, 

hence J.L(Y) = h 1•1 (Y)- 1. So by Theorem 1.3 Y is a fake projective 
plane and J.L(X) = h 1•1 (Y)- 1 = 0. 
If r = 2, then the above inequality shows that 

hence J.L(Y) = h 1•1 (Y) - 1. So by Theorem 1.3 Y is a fake projective 
plane and J.L(X) = h1•1 (Y) = 1. This gives the case (2-i). 

Assume that K,(X) = -oo and X is irrational. 
In this case X is an irrational ruled surface. If X is relatively minimal, 
then J.L(X) = h1•1 (X)- 2 = 0. Assume that J.L(X) = h1•1 (X) - 2 > 0. 
The ( -2)-curves must be contained in the union of fibers of the Albanese 
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fibration ax on X. Let ¢:X---+ Y be the map to a relatively minimal 
irrational ruled surface. Then 

J-t(X) = h1•1(X)- 2 = h1•1 (Y) + p(X)- p(Y)- 2 = p(X)- p(Y), 

i.e. the number of disjoint nodal curves on X is the same as the the 
number of blowups from Y to X. This is possible only if the number of 
nodal curves contained in each reducible fibre of ax is the same as the 
number of blowups on the corresponding fibre ofY. The only possibility 
is that each reducible fibre of ax is a string of three smooth rational 
curves ( -2)-( -1)-( -2) obtained by blowing up twice. This gives the 
case (2-ii). 

Assume that ~~;(X) = -oo and X is rational. 
This case has been classified in [6], Theorem 3.3 and Remark 3. This 
gives the cases (2-iii), (2-iv), (2-v), (2-vi). 

This completes the proof of Theorem 1.4. 

Remark 4.10. (1} There are examples of the case (1-vi} with K 2 = 
6, 4, 2, as given in [2]. In the paper they give a complete classification 
of the surfaces Y occurring as the minimal resolution of a surface Z := 
(C1 x C 2)/G, where G is a finite group with an unmixed action on a 
product of smooth projective curves C1 X C2 of respective genera 2: 2, 
and such that (i} Z has only rational double points as singularities, (ii} 
q(Y) = p9 (Y) = 0. In particular they show that Z has only nodes as 
singularities, and the number of nodes is even and equal to t := 8 - K~ 
(see Corollary 5.3, ibid}. Furthermore, they give examples with t = 
2, 4, 6. The case t = 0, i.e., G acts freely on cl X c2, was completely 
classified in [1]. 

The cases t = 6, 4 can also be obtained as the quotient of a minimal 
surface of general type with K 2 = 8 and p9 = 0 by an action of (Z/2Z)2, 
or by an action of Z/2Z, where each non-trivial involution has isolated 
fixed points only. This was confirmed by Ingrid Bauer. 

(2} We do not know the existence of the case (1-vi) with K 2 = 1, 
i.e. a Godeaux surface with 7 disjoint nodal curves. However, there is 
a possible construction of such an example. If one can find a minimal 
surface of general type with K 2 = 8 and p9 = 0 admitting an action 
of (Z/2Z)3 , each of the 7 involutions having isolated fixed points only, 
then the quotient has the minimal resolution with K 2 = 1, p9 = 0, and 
7 disjoint nodal curves. 

(3} We do not know the existence of the case (1-vi} with K 2 = 7. 

Remark 4.11. The case (2-i} gives counterexamples to Proposition 
4.1 of [6]. Indeed the authors, though their proof was correct, overlooked 
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the case of fake projective planes for the minimal case, and consequently 
the case of blowups of fake projective planes for the non-minimal case as 
they used induction on the number of blowups from the minimal model. 
Thus the first statement of their proposition holds true except for the 
case where Y is a fake projective plane, and the second statement except 
for the case where Y is the blowup of a fake projective plane at one point 
or at two infinitely near points. 
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