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Two dimensional topological strings and gauge 
theory 

Nikita A. Nekrasov* 

Abstract. 

We study topological A-type string on an arbitrary two dimen­
sional target space. Using the Virasoro constraints, proven by A. Ok­
ounkov and R. Pandharipande, we find an explicit formula for the parti­
tion function. The target space field theory reproducing this partition 
function is proposed. This field theory has infinite set of deforma­
tions which are overlooked by the standard definition of the topological 
string. We also discuss the relations to the multi-trace deformations 
of gauge theories, and make contact with quantum integrable systems. 
In addition, the target space theory can be in turn coupled to gravity, 
thereby realizing the topological string version of M. Green's "world­
sheets for worldsheets" idea. 

Topological strings are a continuous source of inspiration for gauge 
and string theorists. They can be studied on their own, for the purely 
mathematical reasons. Sometimes the amplitudes of the topological 
string can be viewed as the subset of the "physical" superstrings. The 
topological strings produce exact all-loop results [4], from which one 
hopes to gain some intuition about the quantum theory of gravity, per­
haps even at the non-perturbative level. For example, the topological 
strings give a realization of the quantum space foam picture [11]. The 
topological strings of A and B type play a crucial role in describing the 
compactifications of II string theories on Calabi-Yau manifolds, which 
gives rise to the N = 2 theories in four dimension. The partition func­
tion Z(t) of a topological string, of A or B type, depends on a some set 
of couplings t, which correspond to the cohomology of the target space 
of string theory, valued in some sheaf. For example, for the B model on a 
Calabi-Yau manifold X of complex dimension d, the coupling constants 
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t belong to 

d 

Hs(X) = E9 HP(X,AqTx) ~ Hd-*,*(X), 
p,q=O 

while for A model the couplings are valued in 

d 

HA(X) = E9 HP(X,AqTx) ~ H*,*(X), 
p,q=O 

In addition, every operator 0, describing these couplings, comes with 
the so-called gravitational descendents O"k(O), k = 0, 1, 2, .... Thus the 
full set of couplings of the topological string is an infinite dimensional 
space 

HA,s(X) 0 C[[z]] 

where we using a formal variable z to label the gravitational descendents: 

In the case d = 3 the gravitational descendents decouple for k > 0, 
except for the dilaton 0"1 (1), which corresponds to the string coupling 
constant !i. The (disconnected) partition function of the topological 
string 

00 

Zx(t; !i) = exp L: !i29- 2 :F9 (t) , 
g=O 

where t E HA,s(X), is a generating function of genus g topological 
string diagrams. For the B model these diagrams can be identified with 
Feynman diagrams of a certain quantum field theory on X, the so-called 
Kodaira-Spencer theory [4]. For the A model the analogous theory, the 
so-called theory of Kahler gravity [3] is expected to be non-local and is 
constructed only in the large volume limit where the non-local effects 
are exponentially suppressed. 

In this note we shall construct the Kahler gravity theory for the two 
dimensional X and will find that it is a local theory of an infinite number 
of fields. The proofs and derivations will appear in a companion paper 
[21]. 

Duality CY vs. R 4 : topological string-supersymmetric gauge the­
ory. A topic which keeps attracting attention of many researchers in the 
field, is the duality between the topological strings on local Calabi-Yau 
manifolds and the chiral sector in the four dimensional N = 2 and N = 1 
supersymmetric gauge theories. The simplest example of that duality is 
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the geometrical engineering of [12]. One starts with an ADE singularity, 
i.e. a quotient C2 jrc, fibered over a CP1 so that the total space is a 
(singular) Calabi-Yau manifold. By resolving the singularities one ob­
tains a smooth non-compact Calabi-Yau manifold Xc. If one views the 
IIA string on Xc x R 1•3 as a large volume limit of a compactification 
on a Calabi-Yau manifold with the locus of ADE singularities over an 
isolated rational curve, then the effective four dimensional theory will 
decouple from gravity. Moreover one can be model the effective the­
ory on the four dimensional N = 2 theory with the MacKay dual ADE 
gauge group G, where the resolution of singularities of Xc corresponds 
to fixing a particular vacuum expectation value of the adjoint scalar. 
Then the prepotential of the low-energy effective theory is given by the 
genus zero prepotential of the type A topological string on Xc (more 
precisely, it is the prepotential of the five-dimensional gauge theory com­
pactified on a circle which arises in this way [19] [14], in order to see the 
four dimensional prepotential one has to go to a certain scaling limit in 
the CY moduli space [12]). 

Duality :E vs. R 4 : topological string-supersymmetric gauge theory. 
Another remarkable duality between the chiral sector of the four dimen­
sional N = 2 theories and the topological strings on the two dimensional 
manifolds was discovered in [16] and further studied in [17]. It is based on 
the comparison of the instanton calculus in the four dimensional gauge 
theory [20] and the Gromov-Witten/Hurwitz correspondence of [23]. 
The physics of that correspondence involves the theory on a fivebrane 
wrapped on a Riemann surface. One can actually stretch the duality 
beyond the realm of the physical superstrings and conjecture a powerful 
S-duality at the level of the topological strings only [22], leading to the 
concept of the topological string version of M-theory, or Z-theory [18] 
[6]. 

The duality of [16] (see also a paper on the mathematically related 
subject [15] and recent works on the duality with N = 1 four dimen­
sional theories [7]) identified the disconnected partition function of the 
topological string on CP1 in the background with the arbitrary topo­
logical descendents of the Kahler form a-k(w) turned on. The couplings 
t'k (up to a k-dependent factor) are identified with the couplings of the 
operators 
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where in the left hand side we write the worldsheet couplings. In this 
paper we shall deepen the duality discovered in the original paper [16]. 

Duality ~ vs. ~: topological string-two dimensional gauge theory. 
About fifteen years ago D. Gross has proposed to attack the problem 
of finding the large N gauge theory description in terms of some kind 
of string theory via the analysis of the two dimensional gauge theories. 
By carefully analyzing the 't Hooft limit of the two dimensional Yang­
Mills theory on a Riemann surface ~ D. Gross and W. Taylor have 
identified many features of the corresponding string theory, while [5] 
have proposed a new kind of topological string theory. An important 
aspect of the construction of [5] was the realization of the fact that the 
topological Yang-Mills theory (which is the perturbative limit of the 
physical Yang-Mills theory) can be described by the Hurwitz theory. 
The latter counts ramified coverings of a Riemann surface ~. In this 
paper we shall find a different version of the string field theory, the one 
corresponding to the A type topological strings on a Riemann surface 
~. It will turn out to be a kind of an infinite N gauge theory, but most 
likely not the ordinary 't Hooft large N limit of the gauge group with 
the finite dimensional gauge group like SU(N) or SO(N). 

Worldsheets for worldsheets. In [9] M. Green has proposed to study 
the two dimensional string backgrounds as the theories ofworldsheets for 
yet another string theories. With the advent of the string dualities a few 
interesting examples of this construction were invented. For example, 
M-theory fivebrane wrapped on K3 becomes a heterotic string on T 3 . 

This is not exactly a realization of the [9] idea as we are using the 
localized soliton to generate the string. One could try to study the 
CY 4 or Spin(7) compactifications of the Type II string [10]. but this is 
difficult due to the lack of the detailed knowledge of the moduli spaces 
of these manifolds. In this paper we shall approach this problem in the 
context of the topological string. 

Very large phase space of the topological string. The conventional 
formulation of the A model assigns to every cohomology class ea E 

H*(X) of the target space X an infinite sequence of observables ak(ea), 
k = 0, 1, 2, .... The corresponding couplings t'k parametrize the so-called 
large phase space. For k = 0 one gets the small phase space. Viewed 
from the worldsheet, the observable ak(ea) is the k-th descendent of ea. 
However, if we think of these observables in terms of the target space 
we should say that ak(ea) is the dim(X)- deg(ea)-descendent of some 
local BRST invariant observable Ok: 

(2) ( ) 1 A ,.-,(dim(X)-deg(ea)) 
O"k ea ~ ea I\ Vk • 

X 
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The gravitational descendents of the top cohomology class of X therefore 
correspond to the zero-observables Oko) of the target space theory, and as 
such they are the simplest to study. This is why we shall use as the start­
ing point the so-called stationary sector of the theory [23], where only 
the couplings of these observables are turned on. The observables which 
are the hardest ones to study are the descendents of the puncture, i.e. 
unit operator. These correspond to the dim(X)-observables constructed 
out of Ok and in the standard paradigm of the topological field theory 
correspond to the deformations of the space-time Lagrangian. 

When the topological theory is a twisted version of the supersym­
metric field theory, these deformations correspond to the F-terms of the 
supersymmetric theory. In two dimensions they are the superpotential 
deformations, in four dimensions they are the prepotential deformations. 
Whatever is their interpretation, the· target space theory has more ob­
servables. Indeed, the product of two local observables Ok and Oz and 
higher order products cannot be expressed, in general, as linear combi­
nations of Ok. In analogy with the gauge theory which we shall make 
much more precise, the observables (')k correspond to the single trace 
operators, while the products Ok1 Ok2 ••• Okv, for p > 1, correspond to 
the multi-trace operators. Thus the full space of deformations of the 
target space theory will involve couplings Tj;'v, where a label the co­
homology of X, v label the gravitational descendents in the sense of 
the topological gravity on X (in the problem studied in this paper, X 
is a two dimensional manifold and v is a non-negative integer), and 
k = (k1 ~ k2 ~ k3 ~ ... ~ kp) is a partition labelling the multi-trace 
operators. We call the space of all these couplings the Very large phase 
space. We shall write an expression for the partition function of the 
topological string on the Very large phase space in genus zero (target 
space). The problem of finding the special coordinates on the Very large 
phase space, which is in a sense equivalent to the problem of construct­
ing the full quantum gravity dressed string theory partition function, is 
beyond the scope of the present paper. Nevertheless the formulation of 
the problem for the general target space X is more important then the 
possible solution of the problem we can anticipate from the gauge theory 
analogy for X=~. a Riemann surface. 

The partition function Zx In this paper we study the case where 
X is a Riemann surface of genus h. The partition function Zx of the 
A-model on a Riemann surface X is a function of an infinite set of 
couplings, t = (t~) where a= 1, ... , dimH*(X) = 2h + 2 and n E Z~o­
We introduce some additive basis e 0 of the cohomology of X, e 0 E 
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H*(X, C). We have: 

Zx(t; fi, q) = 

(3) 00 fi2g-2 (3 n r n 

exp L L n! q IT t~ii J-) 1\ ev7 ( eai) 1\ '1/Jfi 
g,n;(3=0 k c; i=l Mg,n(X,(3) i=l 

' 

where we used the standard notations [13] for the moduli space M 9 ,n(X, (3) 
of degree (3 genus g stable maps to X with n punctures, the evaluation 
maps: 

(4) evi: M 9 ,n(X,(3) ______,X 

defined as: 

(5) 

where ( C, x1, ... , Xn; ¢) is the stable map with then punctures X1, ... , Xn· 

Finally, in (3) we have the first Chern classes of the tangent lines '1/Ji = 

c1 (Txi C) at the i'th marked point. Following [8] it is convenient to think 
of the partition function Zx as of the functional on the space of posi­
tive loops valued in H*(X). Thus, let us introduce the H*(X)-valued 
function: 

(6) 

of a formal variable z. In addition we introduce another function, related 
to t(z), the Legendre transform of the antiderivative a- 1(z- t(z)), 

(7) 

where z(x) E H*(X) solves: 

(8) x=z(x)-t(z(x)) 

and is given by the following formal power series in tk 's: 

(9) z(x) = x + f ~ [tn(x)](n-l) = x + t(x) + t(x) · t'(x) + .... 
n. 

n=l 

Note that even though x E C = H 0 (X), z(x) E H*(X) is an inhomoge­
neous cohomology class. 
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We shall present our results in two forms: the mathematical and the 
physical. The mathematical formula is explicit but is not fully transpar­
ent. The physical formula is conceptually more appealing but it requires 
some preparations so we shall present it afterwards. 

The mathematical formula represents Zx(t) as a sum over parti­
tions >. (the basic notions of the theory of partitions are recalled in the 
main body of the paper). Given a partition>.= (>.i)i;::l, let f>...(x) denote 
its profile: 

00 

(10) 
f>..(x) = lxl + L:) lx -li(>.i- i + 1)1-lx -li(>.i- i)l 

i=l 

+ lx -/i(-i)l-lx -/i(-i + 1)1). 

Define S>.(t) as: 

S>.(t) = 2
1/i l dx ff(x) L Ft(x) + 

(11) ;/i l dx ff(x) L e(X) · flt(x) + 

~ j 1
2 

dx1dx2 ff(xl)ff(x2) L e(X) · Gt(xl, x2) 

where e(X) = c1(TX) is the Euler class of X, 

x(X) = L e(X) = 2 - 2h , 

and the functions flt and Gt are the particular solutions to the finite 
difference equations: 

(12) 
flt(x + !n)- flt(x- !n) = 

x +to 1 1 1 
( ) 

00 { l } 
(x+to)log z(x) -~IT f 2 m ttz (x), 

(the right hand side is a formal power series in x) 

(13) 
Gt(xl + !n,x2 + !n)- Gt(xl- !n,x2 + !n) 

- Gt(xl - !n, x2 + !n) + Gt(xl - !n, x2 - !n) 

_ 1 (z(xl)- z(x2)) 
- og li ' 



232 N. Nekrasov 

which we specify in [21]. The mathematical formula is: 

Zx (t; fi, q) = l:C -q)l>-lexp ( S.>.~t)) . 
.A 

(14) 

We derive it in [21] using the Virasoro constraints proven in [24]. 
The physical formula: A model version identifies Zx(t) with the 

partition function of a two dimensional gauge theory on X. The gauge 
theory in question is a twisted N = 2 super-Yang-Mills theory with the 
gauge group G, to be specified momentarily, perturbed by all single-trace 
operators, commuting with the scalar supercharge Q. More precisely, 
Zx is equal to the generating function of the correlators of all 2, 1, and 
0-observables (we remind the relevant notions in the main body of the 
paper), constructed out of the single-trace operators 

(15) 

that is: 

(16) 

Zx(t; fi, q) = 

( exp _ L [~ ~\k-l+de~ea t'k ea !\ Ok~~degea)l ) 

to2h+2 = t6h+2 -log (q) + x(X)log (h) 

ii=d-1 

and the other times ?;: = t'k. The gauge group G consists of certain 
unitary transformations of a Hilbert space 'H. Its definition will be 
given in the main paper [21]. 

The physical formula: B model version represents Zx(t) as a par­
tition function of a Landau-Ginzburg theory with the worldsheet X. 
The N = 2 supersymmetric Landau-Ginzburg theory without topolog­
ical gravity is determined by the following data: a target space, which 
is a complex manifold U, a holomorphic function W, and a top degree 
holomorphic form f2 on U. The target space U is an infinite-dimensional 
disconnected space. Its connected components U.>. are labelled by par­
titions A. Each component is isomorphic to c=, the space of finite 
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sequences of complex numbers. The superpotential is given by the reg­
ularized infinite sum 

The top degree form is given by the formal product: 

(17) 

where 
00 00 

1 + :~:::Citi =IT (1 + tzi)· 
i=1 i=1 

Of course the infinite-dimensionality of various ingredients involved means 
that this is not the conventional B model. However the theory provides 
a regularization of the infinite products and sums above. · 

Very large phase space extension In the worldsheet formulation the 
Very large phase space observables are non-local. In the language of 
topological string, the insertion of the observable Oo,o, ... ,o(x1, ... , Xk)[a], 

where Xi E C, [a] E H*(X) corresponds to the condition that the points 
Xt, ... , Xk of the worldsheet are mapped to the same point f E X sitting 
in a cycle representing [a]. 

Note that the non-local string theories describing multi-trace defor­
mations of gauge theories were recently studied in the context of the 
AdS/CFT correspondence [1]. 

On the very large phase space the function W becomes a generic 
symmetric function of Zi 's which is formally close to the function 
""00 ( \ • 1) 1 2. L..,.i=1 Ai - z + 2 Zi - 2zi. 

00 

W>. = 2)>..i-i+~)zi-~P2+w(p1,P2, ... ) 

(18) 
i=1 

while the holomorphic top form is given by (17). The three point func­
tion on a sphere is given by the regularized version of Grothendieck 
residue: 

(19) Ca(3-y = L L 
>. p;>.:dW>.(P:>-)=0 

<I> a (p>,)<I> (3(P>.)<I>-y(p>.) 
Hessn(W>.) 
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where a, /3, "'(are partitions, Pa,,a,1 are some formal power seria in Pk 's, 
generalizing Schur functions, 

and Hessn(W>.) is the regularized determinant, defined as a ratio of the 
determinant of the derivative map Det (dW>.) : detT--+ detT* and 0 2 

viewed as an element of det®2T*, where T is the tangent space TP>- U at 
the critical point P>- of W.>,. 

The couplings T;:; in (18) are most likely not the flat (or special) 
coordinates on the Very large phase space. The flat coordinates T;:; are 

obtained from T;:; by a formal diffeomorphism. To find them is the first 
step in understanding the target space quantum gravity. 

So far we were discussing the standard topological string on X. The 
target space turns out to be a topological field theory. In two dimensions 
such a theory is a relatively simple construction. 

All one needs to determine is a commutative associative algebra A, 
and a functional 0 :A---> C. 

In our case the algebra is just the algebra of symmetric functions. 
Indeed, we discussed so far the generators of this algebra, Ok, k = 
0, 1, 2, .... We should be able to multiply Ok 's. In this way we shall get 
arbitrary polynomials of Ok 's. We may allow a formal power series in the 
generators Ok 's with the assumption that such a series is well-defined 
once we substitute 

(20) Ok(>.) = Coeffuk+l f>uz(.A;-i+~) 
i=l 

for an arbitrary partition >.. 
We computed the functional for the large phase space: 

(21) (0) = L e-r(.A,t1lo(>.). 

.A 

We should consider the algebra A together with its space of deforma­
tions. The latter is the space of the couplings T;:;. 

The two dimensional topological field theory can be coupled to the 
topological gravity. This is the target space gravity. 

We can describe its observables directly in target space. We can also 
discuss its worldsheet definition. The latter is potentially interesting for 
more realistic quantum gravity theories. 
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The target space definition is the following. Consider the moduli 
space Mx of complex structures on X. The topological string am­
plitudes are independent of the choice of the complex structure on X. 
However, one can generalize them, so that they would define closed 
differential forms on Mx. Moreover, we can consider non-compact Rie­
mann surfaces X, i.e. curves with punctures. 

Michael B. Green has proposed in [9] to study the two dimensional 
string backgrounds as the theories of worldsheets for yet another string 
theories. Our approach gives a concrete realization of that proposal. 
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