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An action of a Lie algebra on the homology groups
of moduli spaces of stable sheaves

Kota Yoshioka

Abstract.

We construct an action of a Lie algebra on the homology groups
of moduli spaces of stable sheaves on K3 surfaces under some techni-
cal conditions. This is a generalization of Nakajima’s construction of
slz-action on the homology groups [N6]. In particular, for an A, D, E-
type configulation of (—2)-curves, we shall give a collection of moduli
spaces such that the associated Lie algebra acts on their homology
groups.

§0. Introduction

Let X be a smooth projective surface defined over C and H an
ample divisor on X. Assume that X is a K3 surface. Let My (v) be the
moduli space of H-stable sheaves E with the Mukai vector v(E) = v (cf.
(1.5)). In [Y2], we studied a special kind of Fourier-Mukai transform
called (—2)-reflection. For this purpose, we introduced the Brill-Noether
locus on the moduli space and studied its properties. Similar results are
obtained by Markman [Mr]. We fix a vector bundle G on X. A stable
sheaf Fjy is said to be exceptional, if Extl(Eo, Eg) = 0. Then v(Ep) is a
(—2)-vector, that is, (v(Ep)?) = —2. We assume that the twisted degree
degs(Ep) := deg(GY ® Ey) = 0. Let v € H*(X,Z) be a Mukai vector
such that

(0.1) deg.(E) = min{degs(E’) > 0|E’ € K(X)}
for E € Mp(v). Let
Mu(0)gy,n = {E € Myg(v)|dim Hom(Ey, E) = n}
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be the Brill-Noether locus with respect to Ey. Under the condition (0.1),
we showed that Mg (v)g, » is a Grassmannian bundle over a smooth
manifold such that the relative cotangent bundle is isomorphic to the
normal bundle Ny (v) Bo,n/Mu (v)- Similar Grassmannian structure ap-
pears in Nakajima’s quiver varieties [N2]. By usnig this structure, he
constructed a Lie algebra action on the (Borel-Moore) homology groups
of quiver varieties. Based on our description of the Brill-Noether lo-
cus, recently Nakajima [N6] constructed an slz-action on the homology
groups of moduli spaces @,, H. (Mg (v),C), where v runs a suitable set
of Mukai vectors satisfing minimality condition (0.1).

In this note, under the same condition, we shall generalize Naka-
jima’s result. Thus we shall construct a Lie algebra action on the ho-
mology groups of moduli spaces of stable sheaves (Theorem 2.1): For a
collection of exceptional sheaves F;, i = 1,2,...,s which satisfy some
technical conditions, we shall construct operators h;, e;, fi;, i =1,2,...,8
and show that they satisfy the commutation relations for Chevalley gen-
erators. In particular, we show that [e;, f;] = h; and [e;, f;] =0, @ # j.
Since the first relation is proved by Nakajima, we only need to show
the second one. For this purpose, we introduce the notion of universal
extension (resp. division) with respect to E;, i = 1,2,...,3 (see, sect.
1.3). This is our main idea and the other arguments are included in
Nakajima’s papers. Since the action is defined by algebraic correspon-
dences, we also have an action on the rational Chow groups. In Section
3, we give some examples of the actions of Lie algebras.

Replacing Fg by a purely 1-dimensional exceptional sheaf and the
minimality condition by x(E) = 1, our construction also works for mod-
uli spaces of purely 1-dimensional stable sheaves. In particular, we shall
construct an action of the affine Lie algebra associated to a singular
fiber of an elliptic surface. On an elliptic surface, purely 1-dimensional
sheaves are related to torsion free sheaves of relative degree 0 via the rel-
ative Fourier—Mukai transform. Moreover purely 1-dimensional sheaves
are related to the enumerative geometry of curves on X (cf. [YZ]).
Thus the moduli spaces of purely 1-dimensional stable sheaves are im-
portant objects to study. For a rational elliptic surface X, it is ob-
served in [MNWYV] that the Euler characteristics of the moduli spaces
are W(E,gl))-invariant, where W(Eél)) is the Weyl group associated to
the Eél)—lattice Kx C H%*(X,Z). An explanation is given in terms of the
monodromy action, that is, we use the invariance of the homology groups
of the moduli spaces under the deformation of X. Our construction of
the Lie algebra gives another explanation of this invariance. These are
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treated in Section 4. In Section 5, we give a remark on the case of G-
equivariant sheaves. We also treat the moduli of stable perverse coherent
sheaves on a resolution of a rational double point. Many examples of the
action of affine Lie algebra seem to be related by suitable Fourier—Mukai
transforms. We shall study the relations elsewhere.

§1. Moduli of stable sheaves of minimal degree

Notation.

Let X be a smooth projective surface. Let Coh(X) be the category
of coherent sheaves on X and K(X) the Grothendieck group of X. In
this paper, we use the Borel-Moore homology groups. For an algebraic
set M, H.(M,C) denotes the Borel-Moore homology group of M. If M
is compact, then H.{M,C) coincides with the usual singular homology
group of M.

Let D(X) = D®(Coh(X)) be the bounded derived category of
Coh(X). For complexes E;F € D(X), we set

Ext'(E,F) := Hompx) (E, F[i]).

We usually denote Ext®(E,F) by Hom(E,F). For a morphism ¢ : E —
F, [E — F] denotes the mapping cone of a representative of ¢. If
HY([E — F]) = 0 for all i, then we write E = F. We usually denote
Ext'([E; — Eg],F) (resp. Ext'(F,[E; — Es])) by Ext'(E; — Ey,F)
(resp. Ext!(F,E; — Ey)).

Let H be an ample divisor on X and G an element of K(X) with
rk G > 0. For a coherent sheaf E on X, we set degg(F) := deg(GY Q F)
and xg(E) := x(GY Q E).

1.1. Technical lemmas

In this subsection, we introduce some technical conditions (1.1),
(1.2), (1.3) and under these conditions we give some technical lemmas.
These will play important roles for our construction of the action.

Definition 1.1. A purely 1-dimensional sheaf F is u-stable, if the
scheme-theoretic support Div(E) of E is reduced and irreducible.

We fix an ample divisor H on X. Let G be an element of K (X) with
tk G > 0. In this note, we treat y-semi-stable sheaves F (with respect
to H) such that

(1.1) degg(F) = min{deg,(E') > 0| E' € K(X)}.

This is a fairly strong condition for £, but such E behave very well.
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Lemma 1.1. Let G be an element of K(X) with tkG > 0 and
E;, i =1,2,...,s8 be (mutually different) u-stable vector bundles with
deg;(E;) = 0. Let E be a p-semi-stable sheaf satisfying (1.1).

(1) Then E is u-stable.

(2)  Every non-trivial extension

0—FE —-F—-FE—Q0

defines a p-stable sheaf.
(3) Let V; be subspaces of Hom(E;, E), i = 1,2,...,s. Then
¢ :P;_, V;®E; — E is injective or surjective in codimension
1. Moreover,
(3-1) if¢p:€D;_, Vi ®E; — E is injective, then the cokernel is
1-stable,
(3-2) if¢:P;_,Vi®E; — E is surjective in codimension 1,
then ker ¢ is u-stable. In particular

D(E) := Ext' (P Vi ® Ei — E, Ox)

=1
is p-stable.

Since degy(E)/rk(E) = rk(G)(deg(E)/ 1k E — deg(G)/ 1k G), the
p-stability can be defined by using the G-twisted slope degq(F)/ rk(E).
By using the following lemmas, the proof of [Y2, Lem. 2.1] implies our
lemma. So we only give a proof of (1), (3). We first note the following
easy lemmas.

Lemma 1.2. A purely 1-dimensional sheaf E with (1.1) is p-stable.

Lemma 1.3. Let r,d,z be positive integers. Let y be an integer
such thaty € dZ. If 0 < y/x < d/r, theny > d and x > r.

Proof of Lemma 1.1 (1), (8). Let E’ be a subsheaf of £ with
degg(E)/rkE = degg(E')/rkE’. Then 1 > degy(E)/degn(E') =
rkE/rk E’ > 1. Hence rk E' = rk E and degg(E') = degq(E), which
implies that F is p-stable. Thus (1) holds. We shall prove (3). We first
assume that rk £ > 0. By the p-stability of E, we have

_ degg(im) _ degg(E)
rk(im¢) — rkE

By Lemma 1.3, we have

(i) degg(im@) =0 or
(ii) degg(im¢)/rk(im¢) = deg,(E)/rk E.
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In the first case, degg(ker¢) = 0. Assume that ker¢ # 0. Let F
be a p-stable locally free subsheaf of ker ¢ with degs(F) = 0. Then
there is a non-zero homomorphism F' — FE;, which is isomorphic. Hence
Hom(E;, ker ¢) # 0, which is a contradiction. Therefore ker ¢ = 0. We
shall show that £’ := coker ¢ is u-stable. We note that E’ does not have
a 0-dimensional subsheaf and degg(E’) = degg(E). We first assume
that tk E' > 0. If F’ is not u-stable, then (1) implies that E’ is not p-
semi-stable. Then there is a quotient £/ — F with deg,(F)/rkF <
degn(E')/rkE'. By Lemma 1.3, dego(F) < 0, which implies that
deg(F)/rk F < degs(E)/rkE. This is a contradiction. Therefore
E’ is p-stable. If tk B’ = 0, then E’ is of pure dimension 1. Then
Lemma 1.2 implies that E’ is p-stable.

We next treat the second case. In this case, ¢ is surjective in codi-
mension 1. We shall show that ker ¢ is p-stable. Assume that there is a
locally free subsheaf F of ker ¢ with

degg(F) _ degglkerg) — degg(E)
rk F rk(ker¢)  rk(ker¢)’

Then we get that degg(F) < 0. If degy(F) = 0, then Hom(F, E;) # 0
for an i. Since E; and F are u-stable sheaves with the same slope, non-
trivial homomorphism F' — F; is isomorphic in codimension 1. Since
F is locally free, we conclude that F = F;. Then Hom(E;, F) # 0,
which is a contradiction. Hence degg(F) < 0, which means that 0 <
—degs(F)/rtk F < degg(E)/ rk(ker ¢), Then Lemma 1.3 implies that
—deg(F) > degg(FE) and rk F > rk(ker ¢), which is a contradiction.
Therefore ker ¢ is p-stable.

If rk E = 0, then since E is p-stable, we get ¢ = 0 or ¢ is surjective
in codimension 1. Then by the same arguments as above, we see that
ker ¢ is u-stable. Q.E.D.

Besides the condition for y-semi-stable sheaves (1.1), we also intro-
duce similar conditions and lemmas for Gieseker (twisted) semi-stabilities.

Definition 1.2. Let G be an element of K(X) with tkG > 0. A
torsion free sheaf F is G-twisted stable, if

xe(F(nH)) _ xc(E(nH))
rk F' rtk E
for all proper subsheaves F'(# 0) of E.

,m>0

As in the proof of Lemma 1.1, we also have the following assertions.

Lemma 1.4. Let G be an element of K(X) with tkG > 0 and
E;, i=1,2,...,s, be (mutually different) G-twisted stable sheaves with
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degs(E;) = xa(E;) = 0. Let E be a G-twisted stable torsion free sheaf
with deg(E) =0 and

(1.2) xc(E) = min{xg(E’) > 0| E’ € Coh(X),degs(E’) = 0}

or E=Cp, P e X with (1.2).
(1)  Then every non-trivial extension

0—-F —F—FE—>0

defines a G-twisted stable sheaf.
(2) LetV; be a subspace of Hom(E;, E). Then ¢ : @;_, Vi® E; —
E is injective or surjective. Moreover,
(2-1) if ¢: D, Vi ® E; — E is injective, then the cokernel is
a G-twisted stable torsion free sheaf or Cp, P € X,
(2-2) if ¢: P, Vi ® E; — E is surjective, then ker¢ is G-
twisted stable.
Lemma 1.5. Let G be an element of K(X) with tkG > 0 and
E;,i=1,2,...,s, be (mutually different) G-twisted stable sheaves with

dego(E;) = xag(E;) = 0. Let E be a G-twisted stable torsion free sheaf
with deg(E) =0 and

(1.3)  xc(E) =max{xc(E') < 0| E' € Coh(X),degs(E') = 0}.
(1) Then every non-trivial extension
0O—-F—>F—FE —0

defines a G-twisted stable sheaf.
(2) LetV; be a subspace of Hom(E, E;). Then¢: E — @;_, V,V®
E; is injective or surjective. Moreover,
(2-1) if¢: E— @;_,V,Y @ E; is injective, then the cokernel
is a G-twisted stable torsion free sheaf or Cp, P € X
(2-2) ifo: E - @, VY ® E; is surjective, then ker¢ is
G-twisted stable.

1.2. Basic properties of stable sheaves of minimal degree

Assume that Kx is numerically trivial. We define a bilinear form
< ’ > on H*(X7Q) = @?:OHQl(XvQ) by

(1.4) (z,y) 12/ Ty AY1 —To ANYy2 — T2 AYo
X

where z; € H*(X,Q) (resp. y; € H*(X,Q)) is the 2i-th component of
x (resp. y).
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For an object E € D(X), we define the Mukai vector of E by
v(E) = Y (~1)’u(H'(E))

1.5 :
(1.5) = Z(_nich(ﬂi(ﬁ))\/tdx € H*(X,Q),

where td x is the todd class of X. We have a map v : D(X) — H*(X, Q).
We call an element of v(D(X)) a Mukai vector. For E,F € D(X), we
define the Riemann—Roch number by

X(E,F) :=Y "(~1)" dim Ext*(E, F).

i
Then the Riemann—Roch theorem says the following.

Proposition 1.6.

X(E,F) = —(u(E), v(F)).

By a similar way, we also define the rank rkE and other invariants.
We fix an element G € K(X) with rkG > 0. For an object E € D(X)
such that degg(E) satisfies (1.1), we define a stability condition.

Definition 1.3. Let E € D(X) be an object such that degy(E)
satisfies (1.1). Then E is stable, if

(1.6) Hi(E(%(CP) =0,i% —1,0

for all P € X and one of the following conditions holds:

(i) HYE)=0,i+#0and H°(E) is a stable sheaf.

(i) HYE)=0,i# —1,0, HY(E)" := Homo, (H (E),Ox) is a
stable sheaf and HO(E) is a 0-dimensional sheaf.

Remark 1.1. (1) The condition (1.6) implies that there is
a complex C_; — Cy of locally free sheaves which is quasi-
isomorphic to E. In particular, if H~}(E) = 0, then H°(E)
does not contain a 0-dimensional subsheaf.

(2) I rkE < 0, then HY(D(E)) = 0, i # 1 and HY(D(E)) is a
stable sheaf, where D(E) := RHom(E, Ox) is the dual of E.
Since we want to treat two cases simultaniously, we use E
instead of using D(IE).

Lemma 1.7. Let E be an object of D(X).
(1) degg(E) satisfies (1.1) if and only if deggv (D(E)[1]) satisfies
(1.1).
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(2) E s stable if and only if D(E)[1] is stable.

Proof. (1) Since deggv (D(E)[1]) = degg(E), we get (1).

(2) Obviously (1.6) for E is equivalent to that for D(E)[1]. If rkE #
0, then (i) for E is equivalent to (ii) for D(E)[1] and (ii) for E is equivalent
to (i) for D{E)[1]. If rkE = 0, then (i) for E is equivalent to (i) for
D(E)[1] and (ii) does not occur. Therefore E is stable if and only if
D(E)[1] is stable. Q.E.D.

Definition 1.4. For a Mukai vector v € H*(X, Q) with the property
(1.1), lIet Mg (v) be the moduli space of (quasi-isomorphism classes of)
stable complexes E with v(E) = v.

If rkv < 0, then by Remark 1.1, Mg (v) has a scheme structure. The
Zariski tangent space of My (v) at E is Ext'(E,E) and the obstruction
for the infinitesimal liftings belongs to the kernel of the trace map

tr : Ext?(E,E) — H*(X, Ox).
In this paper, we require the following condition.

Condition 1. The trace map
tr : Ext*(E,E) — H*(X, Ox)

is isomorphic.
By Lemma 1.1 and Condition 1, we get the following assertions.

Lemma 1.8. Assume that v € H*(X,Q) satisfies (1.1).

(i) If Mu(v) # 0, then dim My (v) = (v?) +1+p,. In particular,
if there is a stable complexr E with v(E) = v, then (v(E)?) >
—(pg+1).

(i) Assume that X is a K8 surface. Then there is a stable complex
E with v(E) = v if and only if (v?) > —2.

Fot the proof of (ii), we also use [Y2, Thm. 0.2].
Let S := {E, Es, ..., E,} be a finite set of p-stable vector bundles
such that deg(E;) =0, 1 < i < n. We require the following condition.

Condition 2.
Ext'(E;,E;) =0, B;@ Kx 2 E;, E; € S.

Let S be a subcategory of Coh(X) consisting of semi-stable sheaves
F whose Jordan-Hélder grading is @), E™.

Lemma 1.9. Hom(E, F) = 0 and Hom(F[1],E) =0 for F € S.
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Proof. We use the spectral sequence

EPt= P ExtP(H7(x), HY (xx))
9'+q9"=q
= EPf1 = Ext?T?(x, %x).

Since HY(E) = 0, i # —1,0, Hom(E, F) = Hom(H°(E), F). If rkE >
0, then HO(E) is a stable sheaf of positive G-twisted degree. Hence
Hom(H*(E), F) = 0. If tkE < 0, then H(E) is a 0-dimension sheaf.
Hence Hom(H°(E), F) = 0. Therefore the first claim holds. Since
Hom(F[1],E) = Hom(F, H'(E)), we also get the second claim. ~Q.E.D.

1.3. A universal division and a universal extension

Definition 1.5. Let E be a stable complex in Definition 1.3. An
exact triangle B
F—-E—-E-—> F[1]

is a universal division of E with respect to {F1, Es,...,E,},if F €S
and E is a stable complex such that Hom(E;,E) =0, 1 <i < n.

For an exact triangle
F -E—E — F'[1]
with I/ € S, we have an exact sequence
Hom(F'[1],E) — Hom(E/, E) — Hom(E, E) — Hom(F’, E).
By our assumption and Lemma 1.9, Hom(E’ ,]E) — HomQE,IE) is an

isomorphism. Hence we have a unique morphism E' — E in D(X)
which induces a commutative diagram of exact triangles (in D(X)):

F' E- E/ (1]
N
F E E F[1].

In particular, a universal division of E is unique (up to isomorphism in
D(X)). Since Hom(E, E) & C and Hom(F,E) = 0, we get

(1.7) Hom(E, E) = C.

Since E;®K x = F;, we see that Hom(FRKY, E) = Hom(FRK%[1], E) =
0. Hence we also get that

(1.8)  Hom(E,E® Kx) = Hom(E,E® Kx) & H(X, Kx).
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Definition 1.6. Let E be a stable complex in Definition 1.3. An
exact triangle
F—E—E— F[i

is a universal extension of E with respect to {FE1, Fa;...,En}, if F €S
and E is a stable complex such that Extl(E, E)=0,1<i<n.

For an exact triangle
F - E —-E— F'[1]
with F’ € S, we have an exact séquence
Hom(E, F’') — Hom(E, E') — Hom(E, E) — Ext*(E, F").

By our assumption and Lemma 1.9, Hom(E,E/ ) — Hom(]ﬁ, E) is an

~

isomorphism. Hence we have a unique morphism E — E’ which induces
a commutative diagram of exact triangles

F E' E F'[1]
T T
F E E F[1].

In particular, a universal extension of E is unique. For a universal ex-
tension, we also see that

Hom(ﬁ,]E) =C,

1.9 ~ ~
(1.9) Hom(E,E ® Kx) = Hom(E,E® Kx) = H'(X, Kx).

1.3.1. Condition for the existence

Lemma 1.10. (i) If the matriz (—x(Ei, E;); =) is negative
definite, then a universal extension and a universal division
exist for E.

(ii) Assume that the matriz (—x(Es, E;)7;=;) is negative semi-
definite of affine type. Let 6 := 3, a;w(E;) satisfy (6,v(E;)) =
0 for all E; € S. If (v(E), 8) # 0, then a universal extension
or a universal division ezist for E.

Proof.

Claim 1.1. For a non-zero morphism ¢ : E,, — E, E®) := [Epn, —
E] is also stable.
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Proof of Claim 1.1: For a non-zero morphism ¢ : E,, — E, we have
an exact sequence

Hom(E,, , E[-1]) — Hom(E,,,E® [—1]) ~Cc% Hom(E,,,E).

By Lemma 1.9, Hom(E,,,, E[-1]) = 0. Hence we get Hom(E,,,,E()[~1])
= 0. We note that E() satisfies (1.6) and we have the following exact
sequence

0 —— HY(E) —— HYED) ——
E,, —— H°E) —— H°EY) —— 0.

Then we get 0 = Hom(E,,,EM[-1]) = Hom(E,,, H~Y{(EM)).
If H-Y(E) = 0, then E,, — H°(E) is a non-zero homomorphism. By
Lemma 1.1, E®) is stable. Assume that H~*(E) # 0. Then D(E)[1] =
HY(D(E)) is a stable sheaf (cf. Remark 1.1). Hence D(EM)[1] =
HY(D(EM)) and we have an exact sequence

0 — EY, — HY(DEWY)) — H(D(E)) — 0.
Since degqv (D(E)[1]) = degg(E) and
Hom(H'(D(EWM)), Ey,) = Hom(DEM)[1], E),)
=Hom(E,,,EV[-1]) =0,

Lemma 1.1 implies that H'(D(E(M)) is a stable sheaf. Therefore E() is
a stable complex. Thus the claim holds.

If there is a non-zero morphism E,, — EM), then we set E?) :=
[Epn, — EM]. Then by applying the Octahedral axiom to E — E() —
E®)| we have an exact triangle

F? 5 E—E® - F21),
where F? fits in an exact sequence
0— En, = F?— Ep, —0.
Continueing this procedure, we get a sequence of stable complexes
E=E® ED ... E®, ...,
where E(®) fits in an exact triangle

F* - E —E® - F°[1],
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F* € S. Since v(E®)) = v(E®) — 3. v(Ey,), if S generate a negative
definite lattice or (5, v(E)) > 0, then (v(E(®))2) < —(1+ p,) for some s.
By Lemma 1.8, this is impossible. Hence Hom(Ei,IE(s)) =0,1<i<n
for some s.

For a non-zero morphism 1 : E — Ep[1], we set ECV[1] := [E —
Eno[1]]- Then EC-D fits in an exact triangle:

E,, —ECY S E— B, [1].

Claim 1.2. E-D is a stable complex.

Proof of Claim 1.2: For a non-zero morphism ¢ : E — E, [1], we
have an exact sequence

' Hom(E[1], En, [1]) — Hom(EV[1], Eny[1]) — € 5 Hom(E, Ey,[1]).

By Lemma 1.9, Hom(E[1], Ey,[1]) = 0, and hence Hom(E(~[1], Ep,[1])
= 0. By our assumption, E(-1) satisfies (1.6) and H*(E(~V), i = —1,0
fits in the exact sequence

0 —— HYEY) —— HYE) ——
E,, —— HYE-Y) —— HYE) —— 0.
If H=1(E) = 0, then since
Hom(H°(E(-Y), E,.,) = Hom(E(V[1], E,,,[1]) = 0,

Lemma 1.1 (2) implies that HO(E(~1) is stable. Assume that H~!(E) #
0. If H~Y(E) — E,, is a zero map, then since H°(E) is 0-dimensional
and E,, is locally free, we get Ext'(H°(E), E,,) = 0. Hence the second
line splits, which is a contradiction. Thus £ : H~}(E) — E,, is non
trivial. Then by applying Lemma 1.1 (3) to ¢V : EY, — H Y(E)Y,
we see that (1) £V is injective except finite subset of X and coker(¢V)
is p-stable torsion free sheaf, or (2) &Y is injective except a divisor of
X and coker(¢Y) is p-stable purely 1-dimensional sheaf, or (3) ¢V is
surjective in codimension 1 and ker ¢V is a u-stable sheaf. In the case of
(1), H(E(-Y) is 0-dimensional and H~*(E(-1) is a p-stable sheaf. If
the case (2) occur, then HO(E(~1) is a y-stable 1-dimensional sheaf and
HY(EY) = 0. In the last case, HO(E(-V) is a p-stable torsion free
sheaf and H~'(E(-1) = 0. Therefore E(-1) is a stable complex and we
complete the proof of the claim.

If there is a non-zero homomorphism E(-D — E,_,[1], we set
EC2[1] := [E-Y — E,_,[1]]. Continueing this procedure, we get a
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sequence of stable complexes
LECED L ECD RO,

Since v(E(Y) = v(E®) + 5. v(En,), if S generate a negative definite
lattice or (6,v(E)) < 0, then we see that Hom(E;,EC9) =0,1<i<n
for some —t. Therefore Lemma 1.10 holds. Q.E.D.

Lemma 1.11. Assume that S satisfies the condition of (i) or (ii)
in Lemma 1.10. If there is an exact triangle

F>E—-E — F[1]
such that E,E' are stable complezes and F € S, then we have
Hom(E,E') = C, Hom(E,E' ® Kx) = H°(X, Kx).

Proof. We only show the first assertion. We assume that there
is a universal division E of E’. By applying the Octahedral axiom to
E — E — E, we have an exact triangle

F' - E —E— F'[1],
where F/ € S. By the exact sequence
Hom(E, F’") — Hom(E, E') — Hom(E,E) = C

and Lemma 1.9, we get our claim. If there is a universal extension @,
we also see that Hom(E, E’) = C. Q.E.D.

1.4. Coherent systems
We set

BE) (v) == {(E,U)|E € Mg (v),U C Hom(E;,E), dimU = n}.

g:) (v) is the moduli space of coherent systems. For the construc-

tion of ‘,Bg:) (v), see Section 7.1. The Zariski tangent space of ‘Bg? (v) at
(E,U) is

coker(¢ : End(U ® E;) — Ext'(U @ E; — E,E))

and the obstruction for the infinitesimal deformation belongs to the ker-
nel of

7 : Ext®*(U ® E; — E,E) — Ext?(E,E) & H2(X, 0x).
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For brevity, we usually denote coker ¢ by Ext"(U® E; — E,E)/End(U®
E;). We also use similar conventions later.

By Lemma 1.11 and the Serre duality, ker 7 = 0. Thus ‘}3%? (v) is a
smooth scheme with

dim P (v) = dim Ext' (U © E; — E,E)/ End(U @ E;)
= (v — nv;,v) —n® + (1 +py)
1
= §(dimMH(v) +dim My (v — nv;)).
For (E,U) € ‘B(")( ), E and [U ® E; — E] are stable. Hence we have
morphisms 7 : ‘B( )(v) — Mg (v) and @ : ‘,B(”)( ) — Mg (v —nv;).

Remark 1.2. If t7kE < 0, then B’ := H}(D(E)) € My(~v") and
Hom(E;,E) = Hom(E', E}[1]). Hence

P& (v) = {(E',U)|E' € Mg(~v"),U C Ext!(E;, E'),dimU = n}.

Remark 1.3. We set F := [U ® E; — E|. Since Hom(E[1], E;[1]) =
Hom(E; ® U, E;[1]) = 0, by the exact triangle

UQE, -E—-F—-U®E;[],
we have an exact sequence
0 — U — Hom(F, E;[1]) — Hom(E, E;[1]) — 0.

Thus we have

Fe Mg(v-—nv;),dimU =n
UV C Hom(F, Ei[1])

(1.10) ™ (v) = {(]F, UY)

We set F; :=UQ®F,; and F := [F; — E|. Then we have the following
exact and commutative diagram:
(1.11)
HOI’H(F@', Fl)

|

Hom(F,F) —— Ext'(F,F;) —— Ext!(F,E) —— Ext'(F,F)

I ! | |

Hom(E,F) —— Ext'(E,F;) —— Ext'(E,E) —— Ext*(E,F).
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By Lemma 1.11, we see that Ext'(E, F;) — Ext'(E, E) is injective, which
implies that
Ext'(F; — E,E)/ End(F;) — Ext*(F; — E, F; — E) ® Ext!(E, E)

is injective. Therefore 7 x w : mgfz)(v) — Mg (v) x Mg{v — ny;) is a
closed immersion.

Definition 1.7.

My()g; n = {E € My(v)|dim Hom(E;,E) = n}.

Then T, (‘,B(EZ) (v)) = Ukon My (V) B, k-

§2. An action of a Lie algebra

We define a lattice

L(S) := (Zm(&),-( , >>.

Let g be the Lie algebra associated to L(S), that is, the Cartan matrix of
gis (—(v(E;),v(E;))7=1)- In the same way as in [N2] and [N6], we shall
construct an action of g on @, H.(Mg(v),C), where v runs a suitable
set of Mukai vectors with (1.1).

The fundamental class of ‘,]355? defines an operator fﬁ?’:

H.(My(v—-nv),C) — H.(My(v),C)
z Do (p5(2) N [PY (V)

where pi, ps are the first and the second projections of My (v ~ nv;) x

My (v). We also define the operator ef,:b):

H*(MH(’U),(C) nd H*(MH(U—TLUi),(C)
z (1) Opy (p3(2) N B ()

where r(v) = (dim Mg (v — v;) — dim Mg (v)) = —(v;,v) — 1. We set
€y, 1= e%) and f,, == fé}). We also set

hosi | H. (M (v),©) = iy V) ida, (Mg (0),€) -

Theorem 2.1. For a fized element G € K(X) with tkG > 0, we
consider Mukai vectors v satisfying (1.1). Assume that Condition 1 holds
for any element E € My(v). Assume that S satsifies Condition 2 and
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the assumptions in (i) or (it) of Lemma 1.10. Then ey, fv;, hv, satisfy
the following relations:

(2.1) [Py > €0;] = — (i, v5) €0,

(2.2) [h'Uz‘7f'Uj] = (vi’vj>fvj

(2.3) [ev;s fo;] = i P,

(24) ad(ey,) T (e,,) = ad(fo,) T (£,,) = 0, i £,

where ad means the adjoint action ad(z)(y) := [z, y] = zy — yz.

Since {(v & nv;)?) < —(1 + p,) for n > 0, e,, and f,, are locally
nilpotent. Therefore we get an integral representation of g.

2.1. Proof of Theorem 2.1

The proof is similar to [N2] and [N6]. We first note that the Serre
relations (2.4) follows from the other relations and ((v+nv;)?) < —(1+
pg) for n > 0: Let L be the subspace of

Hom(®rezHy(Mp (v + kv;)), ®rezHy (Mu (v + vj + kv;)))

generated by ad(ey;)"(ev,;), » > 0. Then sly generated by ey, fu,, ho,
acts on L. Since ((v & nv;)?) < —(1 + py) for n > 0, L is of finite
dimension. By the theory of the sls-representation, we get

ad(evi)l'i‘('vi,’vj) (evj) =0.

The proof of the other relation is the same.

Hence we only need to show relations (2.1), (2.2) and (2.3). The
proofs of (2.1), (2.2) are easy. We shall prove (2.3). For this purpose,
we shall study the convolution products:

pize (Pl [wBE )] Np3s [B570)])
13+ (QE [‘ng)(v - nivi)] Ngss [w(%gi-i)(” - nwz‘))]) :

where n;,n; € Z>o, p;; and ¢;; are the projections to the products of
the i-th and the j-th factors in

(2.5)

My (v —niv;) X Mu(v) x Mg(v —njv;),
MH(U — nivi) X MH(’U — NV — njvj) X MH(’U - njvj)
respectively, and w is the exchange of the factor. The both products

have degree 3(dim My (v — n;v;) + dim Mg (v — njv;)).
(I) We first study the case where i # j.
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Lemma 2.2. We have an isomophism over Mg {v—mn;v;) X Mg(v—
njvj):
(2:6) P (WIBE) @) Nz (B (v) —

. P12 \WiPg, P23
012 (B (0 = niv)) 0 gz (BT (0 = nyvy)).

Proof. We set F; := U; ® E; and F; = U; ® E;. Let Eq be an

element of My (v —njv;). For F; — E; and [F; — Eq] — Fj;[1], we set
EQ Z[[Fz — El] — Fj[l}][—l] (S MH(U - ni'ui),
E :=[E; — F;[1]}[-1] € Myu(v).

Applying the Octahedral axiom to E; — [F; — E;] — Fj;[1], we have a
commutative diagram of exact triangles:

Py = F;
| |
Ffj— E —— E, — Fj[1

en | | | ll

Fll] =—— FE[1].
Hence E, 2 [F; — E|, E; & [F; — E| and [F; — E{| & [F; & F; — E].
Conversely for E := [E; — Fj[1]][-1] and E, := [F; — E], we get the

commutative diagram of exact triangles (2.7). Since the correspondence
is functorial, we have a desired isomorphism

i (@BE (v)) N33 (PEY (v) —
g (B (v — navi)) N a3 (@B (v — ngoy))).
Q.E.D.

Lemma 2.3. (i)

PR WS () Nz (P52 (1) — Ma(v —nivi) x My (v —nguy)

18 injective.



420 K. Yoshioka
(ii)
—tmng)e, -1 (ma)go oo
G2 By, (v —nivs)) N ggg (WBg," (v — n5v5)))
— MH(’U — nivi) X MH(U - njvj)
1s injective.

Proof. We shall prove (i). The proof of (ii) is similar. Assume that
we have isomorphisms in the derived category:

[Fy — E] = [F - ET,
[F> — E] = [F, - ET,

where E,E' € My (v) and F; = U;QE;, i = 1,2. We shall show that there
is an isomorphism ¢ : E — E’ which is compatible with the morphisms
F,—>E, F, - E (i=1,2). Applying Hom(E', ) to the exact triangles

F1 e E —_— [Fl —r E] Ea— Fl[].]
P — [FQ-‘)]E] —_— [Fl@FQ—-)E] E— Fl[].],
we get a commutative diagram

Hom(E' , Fi) ——  Hom(E',E) ——

H !

Hom(E', F}) — Hom(E,F; - E) ——
Hom(E,F, = E) —— Ext'(E,F)

Hom(E', Fy @ F, —» E) —— Ext!(F/, F}).
Since Hom(E', Fy) = 0, Lemma 1.11 implies that
HOHI(E,, Fy — ]E) — HOHI(]EI, ek — E)

is an isomorphism. Hence Hom(E',E) — Hom(E', F; — E) = C is also
an isomorphism. We also have an isomorphism

Hom(E,E') —» Hom(E, F; — E').
Then the claim easily follow from these isomorphisms. Hence

P (@ BED () NP3 (PG (v) = Mar (v — navi) x My(v — njv;)
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is injective. Q.E.D.

Lemma 2.4. Ifi # j, then p5 (w(mgi)(v))) and p2_31(‘13£j)(v)) in-

(ry)
E

tersect transversely and g7 (P 7 (v—niv;)) and a3t (w( g:,") (v—n;v;)))

intersect transversely.

Proof. We set F; := U; @ E; and F; := U; ® E;. We shall show
that the map of the tangent spaces

Ext'(F;, — E,E)/ End(F;) ® Ext!(F; — E,E)/ End(F;)

28) — Ext!(E, E)

is surjective and
(2.9) Ext'(F, @ F; — E, F; — E)/ End(F;)
@ Ext'(F; ® F; — E, F; — E)/ End(F})
— Ext"(F, @ F; - E,F, ® F; — E)

is surjective.
We shall only prove (2.8). By (1.11) and Lemma 1.11, it is sufficient
to show that the natural homomorphism

Ext'(F; — E,E) — Ext'(E,E) — Ext'(F},E)

is surjective. Since Ext*(F, @ F; — E,E) = Ext*(F; — E,E) =
H?(X,0x), the exact triangle

F; — [F; — E] — [F; & F; — E] — Fj[1]
implies that this homomorphism is surjective. Q.E.D.

By Lemmas 2.2, 2.3, 2.4, we obtain that

pra. (i [w(BE )] N3 [$57 ()] )

(210) =q13« (fﬁz [mgj)(v — nivi)] N33 [w‘l?%’i")(v - nivi)]) )

Hence we get
[e§r), f) =0, i # j.

In particular, (2.3) holds for ¢ # j.
(II) We next treat the case where ¢ = j. This case was treated by
Nakajima [N6]. For convenience of the reader, we write a self-contained
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proof. We assume that n; = 1. Ifi = 5, then py5 (w(‘,Bgi))) and p5y (‘.ng) )
intersect transversely outside pi3 (Ary, (v—vs))> and gi5 (‘Bg} (v—wv;)) and

v (w‘,Bgi) (v—v;)) intersect transversely outside i3 (Apzy (v—vs))- Then
we see that

pise (plz [w(BE) )] Np3s [BE) (0)])
=(13+ (qi‘z [‘BS} (v~ ’vz')] N g3 [wmfé,? (v— vz')])
outside Apry, (y—v;)- Thus
pis. (piz [w(B) )] 19 [$5)0)])
=qia« (a7 [P (0 —v0)] N3 [wPE (0 = 0] ) + Arr(o-u

for some integer ¢. In order to compute ¢, we may restrict to a suitable
open neighbourhood of the generic point of Apzy(y—v;). We set w :=
v - V.

(II-1) Assume that —(v;, w) > 0. We set

(2.11)

(2.12

MH(w)I :——_MH(w)Ei,“'<U€yw>7
Mp(w —v;) =Mp(w —v;) \ 7(Bg, "D (w —v;)).

Then ‘,Bgi) (w) := 7Y (Mpg(w)") is a projective bundle over My (w)" and

‘,Bgi) (w)' = Mp(w—wv;) is a closed immersion. We have a fiber product
diagram:

B (w)y —— a5 (W(BG) (w)")

| |

a2 (PG (W)) —— Mu(w) x Mu(w —v;) x Mag(w)'.

By the excess intersection theory, we get that
« 1 " 1
ais [‘B%? (w)'] N gz3 [“’(‘43533 (’“’)/)] = Ctop (N () /gy (w—vi) )

We take E € My (w) with Ext!(FE;,E) = 0. We set V := Hom(E;, E).
Let P :=P(VV) be the fiber of 7. Then

q13x« (‘ﬁz [’43%3 (w)’] N ¢33 [w(%%} (w)l)])

- ( /P ctop(Nyp( (w)'/MH(w_vi)f)) AMy (w)'-
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We have a family of non-trivial homomorphisms:
O]p(—l) Ei — O]p X E.

We set
€= [O]p(—l) X Ei — O]p X ]E]

We have an exact sequence

Ext, (£,0p RE) —— Ext,,(£,E) —— Ext},(£,0p(—-1) R E;)
Ext},(£,0p RE) —— Ext? (£,€).

The restriction of the normal bundle (ngi) (w)! /M (w_vi),)“p is

Ext?2, (€, Op(—1) ¥ E;) = Homy, (Op(—1) K E;, £)V.
By the exact triangle
Op(-1)RE;, - OpKE — £ — Op(—1) K E;[1],
we get an exact sequence
0— Op -V ®0p(l) - Homy, (Op(—1) X E;,E) — 0.
Hence Homy, (Op(—1) K E;, )V = Qf. Therefore

/]PCtop(ng? (w)’/MH(w—'vi)’) = (—1)dlmp(dlmp+1) = (_1)—(vi,w) <’U,;,’w>.
Since ‘,Bgi) (v)" does not meet My (v) x My (w)',
* * 1
ps- (v [w(BE) )] Np3s [ B5 )] ) =0
on My (w) x Mg(w)’. Hence we see that

(2.13) [ews, fuil|He (My (w),€) = (Vis W) 1 g, (M (w),€) = P |H. (M (w),C)-

(II-2) Assume that (v;, w) > 0. We set Mg (v) = Mu(v) \ﬂ(iﬁgi))
and My (w) := Mp(w)g, 0. For E € My (v)', we set V := Ext'(E, E;).
We have a family of exact triangles:

O]p gEi — & — O]p(—l) XE — O]p Ez[l]

The restriction of the normal bundle (Nq3§33 (w)! /M (U),)up is

Ext,, (Op R E;, £') = Ext, (£, Op R E;)".
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We have an exact sequence

0 — Op = Hom,,, (Op W E;, Op R E;) —
Ext, (Op(—1) RE, Op K E;) — Ext,, (£, 0p K E;) — 0.

Hence Ethlij(O]p E;, &) = Qp. Therefore

/IP’ ©top(Nog® (w1t ) = (—D)FF(dim P + 1) = —(=1)~ 0% vy, w).

By using this equality, we see that (2.13) also holds.

2.2. The case where the twisted degree is zero
Let G be an element of K(X).

Definition 2.1. Let E € D(X) be an object such that degg(E) =0
and

xc(E) = min{xg(E’) > O0|E’ € Coh(X),degs(E’) =0}.

E is G-twisted stable, if

(i) HYE)=0,i+#0and H(E) is G-twisted stable, or
(i) HYE)=0,i# —1 and H™1(E) is G-twisted stable.
Let M (v) be the moduli space of G-twisted stable complex E with
v(E) = v.

Remark 2.1. If (ii) holds, then
x(H™YE)) = max{xq(E’) < 0|E’ € Coh(X),degs(E’) = 0}.

Let E;,1 = 1,...,n be a collection of G-twisted stable vector bundles
with deg(E;) = xg(FB;) = 0 and (v(E;)?) = —2. Assume that E;
satisfies Condition 2. By using Lemmas 1.4 and 1.5, we also obtain the
same assertions as in Lemma 1.10. Hence we also get an action of the
Lie algebra associated to F;,i =1,...,n.

§3. Examples

3.1. Stable sheaves on a K3 surface

3.1.1. Ezample 1. Let X be a K3 surface and H an ample divisor
on X. Let G be a p-semi-stable vector bundle with respect to H such
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that (v(G)?) = 0. Assume that G = @], EP*, where E; is a G-twisted
stable vector bundle such that

deg(E;)  deg(G)

KE;  1kG '’
3.1 i
-1 xe(B) _ xa(0) _,
rk E; kG '

By [O-Y, Thm. 0.1], v(Ep),v(Er),...,v(E,) generate a lattice of affine
type. We may assume that ag = 1. We set

! := min{degs(E) > 0|F € Coh(X)}.

We set v; := v(E;), ¢ = 0,1,...,n. Let g be the affine Lie algebra
associated with v;, 1 = 0,1,...,n and g the finite Lie algebra associated
with v;, i = 1,...,n. Let h be the Cartan subalgebra of §. For a root
a, g, denotes the root space of a. 8 := > | a;v; denotes the highest
root of g. Then g has the following standard expression:

9=C[t,t7'|®F® Cca Cd.
The Chevalley generator of g is
(32) evz‘:l@E’UM fvi: 1®—é"vi’ hvz:1®ﬁ’01 157’§n’

(3.3) Evo =tQ€_p, fo,= ' e €9, hy, =— Z a;hy, + ¢,
i=1
and d, where &, € §,, hv, € b and (3.2) are the Chevalley generator of

g. Hence we get
n
c= Zaihvi.
i=0

The action of d on H,(Mg(v),C) is defined as follows: We take w €
H*(X,Q) such that (w,v(E;)) =6;0,1=0,1,...,n and set
A\, (My (v),0) = (W, v) g, (Mg @),C) -
Then we have the desired properties:
[d, ev;] = 0s,0€0,,
[d, fu.] = —6i,0fv;-

Proposition 3.1. Assume that E; are p-stable for all i. Then we
have an action of g on @, oy He(Mu(v),C) such that the center c acts
as a scalar multiplication (v,v(QG)), where

V= {v e H*(X,Z)|degg(v) = 1}.
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We shall give an example of Proposition 3.1. Let C = (~a; ;)7 ;¢
be a Cartan matrix of affine type and § := (ag,a1,...,0n), @i € Z>o
the primitive vector with §C = 0. Let (X, H) be a polarized K3 surface
such that

(i) Pic(X) = D Z&, (&,&) = —ai,; + 2ra and
(i) H=>"1 ,a:&, where r,a € Zso.
For an existence of (X, H), see [O-Y, sect. 3]. We set v; := r+ & + ap,
where r € HY(X,Z) = Z, & € NS(X), p € HYX,Z) and [, p = 1.
Then
() ((Ui7vj>)2j=0 =—-C,
(i) deg(vi) = (&, H) =2ra(}> 1, ai) and
(ili) v:= )", a;v; is a primitive isotropic Mukai vector.

Lemma 3.2. There is a vector bundle E; with v(E;) = v; which is

-stable with respect to H.

Proof. Since (v?) = —2, Proposition 7.1 in appendix implies that

there is a semi-stable sheaf F; with v(E;) = v;. For a coherent sheaf
F, we set ¢\ (F) := >, x:&. Then deg(F) = (3, z;)2ra(},; a;). Since
rk E; = r and deg E; = 2ra(}_, a;) for all 4, if

deg(F)  deg(E;)
'k F 'k E, 2“(21:“1)’

then rk F' = (3, z;)r > rk E;. Therefore E; is p-stable. Q.E.D.
We set G := @, EP*. Then (i), (ii) and (iii) imply that (3.1) holds.
We set w = (r(d_, x;) — 1) + >, xi& + bp, 2;,b € Z. Then

deg(w) = min{deg;(E) > 0|E € Coh(X)},

where G € Mp(v). Hence applying Proposition 3.1, we have an action
of g on @, e He(Mp(w),C), where
z;,b € Z} .

W::{w:invi—l—i—bp

3.1.2. Example 2. Let G be a vector bundle such that tk G = (H?)
and ¢1(G) = H. For a Mukai vector v := (1 + (D,H)) — D + ap,
D e NS(X), a € Z, we get

degG(v) :(HaH)(—DvH) - (1 + (D’H))(_Hv H)
=min{deg,(E’) > 0|E’ € Coh(X)}.
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Let C1,Cs,...,Cy, be irreducible (—2)-curves on X. We set v; :=
(Ci, H) — C;.

Lemma 3.3. There is a stable vector bundle E; with v(E;) = v;.
Moreover if H = nH" and (C;, H') < 2(n—1)(H'?), then E; is pu-stable.

Proof. By Proposition 7.1, there is a semi-stable sheaf E; with
v(E;) = v;. We shall show that E; is stable. Let @;:1 E;; be the
Jordan—-Hélder grading of E; with respect to the Gieseker stability. We
set v(E; ;) = r; — D;j + ajp, rj € Z, D; € NS(X), a; € Z. Then
(Dj,H)/r; = 1 and a;/r; = 0. Hence (D;,H) > 0 and {(v(E; ;)?) =
(D3) > —2, which implies that D; is effective. By our assumption on
C;, s = 1. Thus E; is stable. Assume that H = nH' and (C;, H') <
2(n — 1)(H'?). Let @;_, Ei; be the Jordan-Holder grading of E; with
respect to the p-stability. We set v(E; ;) := r; — D; + a;p. Then
r; = (Dj,H) = n(D;,H'), and hence (D;,H') > 0. By the sta-
bility of E;j, (v(Eij)?) = (D?) — 2rja; > —2. By the Hodge in-
dex theorem, (D;, H')? > (D?)(H’z). If a; > 0, then we see that
(Ci,H') > (D, H) > 2(n—1)(H'?). Therefore aj < 0. Since ), a; =0,
a; = 0 for all 5. Since F; is stable, s = 1. Thus E; is py-stable. Q.E.D.

Proposition 3.4. Assume that there are p-stable sheaves E; with
v(E;) = v;. Then we have an action of the Lie algebra g associated to
Ci,i=1,2,...,n on @,y H (Mg (v),C), where

Vi={v=01+(D,H)) — D+ ap|D € Pic(X),a € Z}.

We shall give an example. Let 7 : X — P! be an elliptic K3 surface
with a section Cy. Let Ci,...,C, be smooth (—2)-curves on fibers of
w. We set v; = (C;,H) — Ci, i = 0,1,...,n. Then ((v;,v,)s;) =
((C4,C4)i,5). We assume that (C;,C;) < 1. Hence we get an action of
the Lie algebra generated by C;,0 < i < n on @,y He(Mpg(v),C),
where

V= {v=(1+(D,H)) - D+ap|D € NS(X),a € Z}.

3.1.3. Example 3. We give examples of Subsection 2.2. Let G =
D, E2% be a G-twisted semi-stable sheaf with isotropic Mukai vector
and E;, i = 0,1,...,n, G-twisted stable vector bundles with (3.1). We
set v; := v(E;). Then we see that

{xc(w)|lw € v(D(X)),degg(w) =0}
={xa(w)lw = Z x;v; + yp}

=Z{v(G), p)-
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Hence we have an action of g on @,y H«(M§(w), C), where

W.={w= invi + plz; € Z}.

We give another example of the action. Let 7w : X — P! be the elliptic
K3 surface in Example 2. Let G be an element of K(X) with v(G) =
(H, f)—f. Weset vp := (H,Co+D)—(Co+ D). Then degg(v) = 0 and
xa (V) = —(14+(D, f)). We assume that E; are G-twisted stable {or more
strongly u-stable). Let g’ be the Lie algebra generated by Ci,...,Ch.
By the remarks in Subsection 2.2, we can construct an action of g’ on
@D pep Hi(MG(vp),C), where

D :={D € NS(X)| D is an effective divisor with (D, f) = 0}.

3.2. Stable sheaves on an Enriques surface

Let X be an Enriques surface and w : ¥ — X be the covering
K3 surface of X. Assume that X contains a smooth (—2) curve C.
Let C' be a connected component of 7=1(C). Let H' be an ample
divisor on Y and set H := w.(H'). Then H is an ample divisor on X
with (H,C) = 2(H',C"). We take a semi-stable sheaf E’ on Y with
v(E")y = (H',C') - C'. E'is a rigid vector bundle. If H' is sufficiently
ample, then Lemma, 3.3 implies that E’ is p-stable.

Proposition 3.5. We set E := w.(E’). Then E is a p-stable vector

bundle with the Mukai vector (H,C) — C which satisfies E® Kx =2 E
and

Hom(E,E)=C
Ext'(E,E) =0
Ext®(E,E) =C.

If there is a configuration of (—2)-curves, then as in the K3 surface
case, we have an action of the Lie algebra associated to (—2)-curves on
@Uev H,.(Mg(v),C), where

Vi={v=_01+(D,H))+ D+ ap|D e NS(X),a - 1/2 € Z}.

§4. Actions associated to purely 1-dimensional exceptional
sheaves

4.1. Purely 1-dimensional sheaves

In this section, we shall consider Lie algebra actions associated to
purely 1-dimensional exceptional sheaves such as line bundles on (—2)-
curves. Unfortunately we cannot construct the action for the moduli
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spaces of stable torsion free sheaves in general. Instead, we can con-
struct it for the moduli spaces of purely 1-dimensional sheaves. In some
cases, the moduli spaces of stable torsion free sheaves are deformation
equivalent to moduli spaces of purely 1-dimensional sheaves. In this
sense, we have an action for the moduli spaces of stable torsion free
sheaves. This will be explained in 4.3. We also explain a partial result
on the moduli spaces of stable torsion free sheaves in 4.4.

Let (X, H) be a pair of a smooth projective surface X and an ample
divisor H on X.

Definition 4.1. [Y4] Let G be an element of K(X) with rkG > 0.
A purely 1-dimensional sheaf E is G-twisted stable, if

xa(F) < xc(E)
(a(F),H) ~(a(E),H)

for all proper subsheaves F'(# 0) of E.
We have the following result whose proof is similar to Lemma 1.1.

Lemma 4.1. Let G be an element of K(X) with rkG > 0 and
E;,1=1,2,...,s, be purely 1-dimensional G-twisted stable sheaves with
Xc(E;) =0. Let E be a purely 1-dimensional G-twisted stable sheaf with

(4.1)  xe(E) =min{xg(E') > 0|E’ € Coh(X),rk E' = 0}

or E = Cp, P € X with the condition (4.1).
(1)  Then every non-trivial extension

0O—-F —-F—FE—0

_ defines a G-twisted stable sheaf.
(2) LetV; be a subspace of Hom(E;, E). Then ¢ : @;_, ViQE; —
E is injective or surjective. Moreover,

(2-1) if ¢ : @, , Vi ® E; — E is injective, then the cokernel
15 a G-twisted stable purely 1-dimensional sheaf or Cp,
Pe X,

(2-2) if¢: @i, Vi ® Ei — E is surjective, then ker ¢ is G-
twisted stable.

Lemma 4.2. Let G be an element of K(X) with tkG > 0 and
E;,,1=1,2,...,s, be purely 1-dimensional G-twisted stable sheaves with
xc(E;) = 0. Let E be a purely 1-dimensional G-twisted stable sheaf with

(4.2) xc(E) = max{xc(E') < 0|E’ € Coh(X),rk E' = 0}.



430 K. Yoshioka

(1) Then every non-trivial extension
0—-F—F—>F —0

defines a G-twisted stable sheaf.
(2) LetV; be a subspace of Hom(E, E;). Then¢: E — @;_, VV®
E; is injective or surjective. Moreover,
(2-1) if¢p: E— @D, V;Y ® E; is injective, then the cokernel
is a G-twisted stable purely 1-dimensional sheaf or Cp,
PeX,
(2-2) if ¢ : E — EBz_ VY ® E; is surjective, then ker¢ 18
- G-twisted stable.

Remark 4.1. We set
d := min{x¢(E’) > 0|E’ € Coh(X),rk E' = 0}.

For a purely 1-dimensional sheaf F with xg(E) = d, E is G-twisted
stable if and only if x(F) < 0 for all proper subsheaves F' of E. Thus
the G-twisted stability does not depend on the choice of H.

Definition 4.2. For a complex E with rk(E) = 0, we set
v(E) := (c1(E), x(E)) € H*(X,Z) x Z.
We define a pairing of v; := (&;,0;) € H>(X,Z) X Z, i = 1,2 by
(v1,v2) := (§1,&2) € Z.
Then the Riemann—Roch theorem says that
X(E, F) = —(v(E), v(F))
for E,F € D(X) with rk(E) = rk(F) = 0. We set p := v(Cp) = (0,1).

Definition 4.3. Let E € D(X) be an object such that rk(E) =
and

xc(E) = min{xg(E) > 0|E' € D(X), tk(E) = 0}.
E is G-twisted stable, if
(i) H'E)=0,i#0and H°(E) is G-twisted stable, or
(i) HYE)=0,i# —1and H™}(E) is G-twisted stable.

Let M§(v) be the moduli space of G-twisted stable complexes E with
v(E) =v.
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Let E;, ¢ = 1,2,...,n be G-twisted stable purely 1-dimensional
sheaves such that xg(E;) =0, F; ® Kx & F; and (v(E;)?) = —2. We
set v; := v(E;). Let g be the Lie algebra associated to E;, i =1,...,n.
By using Lemma 4.1, 4.2, we get the following similar results to the
results in Section 2.

Proposition 4.3. For anyE € M§(v+Y; zivi), z; € Z, we assume
that
xc(E) = min{xe(E') > 0|E' € D(X),rkE’ = 0}

and E satisfies Condition 1. Then we have an action of g on
D,z H(ME (v + 3, zv5), C).

Let C be an irreducible (—2)-curve on X. If G = Ox, then O¢(~1)
is a stable sheaf with x(Oc(—1)) = 0. Then we can apply Proposition
4.3.

Lemma 4.4. Let X be a 9 point blow-up of P2 and assume that
| = Kx| contains a reducible curve Y = 2?:0 a;C;, where C; are smooth
(—2)-curves. Then every G-twisted stable purely 1-dimensional sheaf E
with (c1(E), Kx) < 0 satsifies Condition 1.

Proof. Assume that there is a non-zero map ¢ : E — E(Kx) =
E(-Y). By the homomorphism Ox(-Y) — Ox, we have a homo-
morphism F(—Y) — E, which is isomorphic on Supp(E)\Y # 0. If
E — E(-Y) — E is a zero map, then F := ¢(E)(—Kx) satisfies
Supp(F(Kx)) CY and

xc(E) <xc;(F(Kx))
(a(E),H) = (a(F),H)’

On the other hand, since F is a proper subsheaf of E, we have

xa(F) xa(E)
(ci(F),H) =~ (c(E),H)

Since (C;,Kx) = 0, we get (¢;(F),Kx) = 0. This means that
xc(F(Kx)) = xc(F). Then we get

xc(E) < xc(E)
(ci(E),H) = (ai(E),H)

This is a contradiction. Therefore E — E(—Y) — E is a non-zero
map. Then by using the stability of E and (Div(E),Y) > 0, we get a
contradiction. Hence we conclude that Hom(E, E(Kx)) =0. Q.E.D.
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Corollary 4.5. Under the assumption in Lemma 4.4, we have an
action of the affine Lie ulgebra associated to Ci;, 0 < i < n on
@Dpep H«(Mu((D,1)),C), where

D = {D € NS(X)|(D, Kx) < 0}.

Proposition 4.6. Let C;, i = 0,1,...,n be a configuration of
smooth (—2)-curves of ADE or affine type such that Kx is trivial in
a neighbouhood of U;C; and (C;,C;) <1 fori# j. Let D := Z?:o b;Cs,
b; > 0 be an effective divisor such that (D?) = —2 and m an integer.
Then there is a G-twisted stable sheaf E with (c1(E),x(E)) = (D, m)
for a general (H,G).

Proof. If n = 0, then D = Cjy and obviously the claim holds.
Hence we may assume n > 0 and U;C; is connected. We set v; :=
v(Oc,(—1)). We first show that Mg (p+>_, bv;) # 0. Assume that there
is a stable sheaf E such that Supp(FE) C U;C;. Since Kx is trivial in a
neighbourhood of U;C;, Ext*(E, E) = Hom(E, E ® Kx)¥ = C. Hence
we see that (c;(FE)2?) > —2 and the equality holds when Ext'(E, E) = 0.
In particular My (p+ >, bsv;) is smooth. Let R, be the (—2)-reflection
defined by v; and W the Weyl group generated by R,,, 1 =0,1,...,n.
Then by the action of W, we have an isomorphism Mg(p + >, biv;) —
Mg (p + vj) for some j. Obviously My(p + v;) = {Oc¢;}. Therefore
Mp(p+ 32, bivi) # 0.

We shall treat the general cases. Since Kx is trivial in a neighbou-
hood of U;C;, by using [Y4, Prop. 2.7], we see that the non-emptyness
of M§(v) does not depend on the choice of a general (H,G). There is
a divisor C such that (C,D) = 1. Indeed we take an element w € W
such that w(D) = C; for some i. Then 1 = (C},C;) = (w(C;), D) for a
j. Let E be a stable sheaf with (¢;(E), x(E)) = (D,1). Then E(nC) is
a Ox(nC)-twisted stable sheaf with x(E(nC)) =1 + n. Therefore our

claim holds for general cases.
Q.E.D.

Ezxample 4.1. Let Y be a germ of a rational double point and =« :
X — Y the minimal resolution. Let H be a m-ample divisor on X. Let
Ci, 1 =1,2,...,n be irreducible components of the exceptional divisor.
We set v; := v(O¢,{—1)). Let g be the Lie algebra associated to C;.
We note that Kx & Ox. For a coherent sheaf E on X with a compact
support, we can define the stability with respect to H. For a stable sheaf
E with v(E) = p+3_, niv;, dimExt' (B, E) = ((p+3_; nivi)?)+2. Hence
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we get
2, if v = p,
O, if <(Zz nivi)Q) = —2.

If v = p, then all stable sheaves are of the form Cp, P € X. Hence
My (p) has a coarse moduli space which is isomorphic to X. Hence
Mp(p) is smooth. If ((3°, n;v;)?) = —2, then the proof of Proposition
4.6 implies that Mp(p + >, nsv;) is not empty and consists of a sta-
ble sheaf on the exceptional divisors. Then we have an action of g on
D, ez He(Mu(p+3_,; niv;),C). Indeed the submodule consisting of the
middle degree homology groups is isomorphic to g. For the structure of
My (p + 3, nv;), we get the following: Let D = . n;C; be an ef-
fective divisor with (D?) = —2. Then Mu(p+ Y., nv;) = {Op} and
My (p— 2 nivi) = {Op(D)}.

Proof of the claim: We note that x(Op) = —(D?)/2 = 1. If there
is a quotient Op — Op,, then since (D’2) < 0, we have x(Op/) =
—(D"®)/2 > 1. Therefore Op is stable. We note that Op(D) is the
derived dual of Op. By using this fact, we can easily see the stability of
Op(D).

Ezample 4.2. Let C be a germ of a curve at P and 7 : X — C
an elliptic surface with a section o. Let H be a 7 ample divisor on X.
Assume that w~!(P) is reducible and consists of smooth (—2)-curves
Ci,i=0,1,...,n: 771(P) = 3" ;,a,C;. We may assume that ap = 1
and (o,Cp) = 1. We set v; := v(O¢,(—1)). Then we see that Mg (p +
>~ niv;) is smooth with

dim Ext*(E, E) = {

dimMH(p+ ani) = <(Z nivi)2> + 2

and My (p+3", nivs) =2 X, if (32, niv;)?) = 0. We also have an action of
affine Lie algebra g associated to v; on @D, ¢z H«(Mu(p+ 3, nivi), C).
Indeed, if (C;,C;) < 1 for all ¢ # j, then the result obviously holds. If
(Ci, C;) = 2, then we can directly check the commutation relation (2.3).
We set § := 'U(Oﬂ.—l(p)) = Z?:O a;v;. If Zz nv; = moé, m € Z, then
under an identification Mg (p +md) = X, we have an isomorphism

HQ(MH(p + mé),(C) = (C[(T] D éC[CZ]

Let
g=Clt,t7'|®g® Ccd Cd
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be the standard expression of the affine Lie algebra, where c is the center
of g. Then we have an exact sequence of g-modules:

0= Clt,t ™M@ — P Hmia(Mu(p+>_ nivi),C) - C[t,t™'] — 0,
ni, €L )

where H,iq(x) is the middle degree homology group of x and C[t,t7!]
is the g/[g, g] = Cd-module.

4.2. Moduli of stable sheaves on elliptic surfaces

We first collect some basic facts on the moduli spaces of stable
sheaves on elliptic surfaces X. If Kx is not numerically trivial, then
we do not have a good invariant of a torsion free sheaf E which is a
suitable generalization of the Mukai vector. In these cases, we shall
use ¥(E) := (tk(E),c1(E), x(E)) € H*(X,Z) as an invariant of E. If
rk E = 0, then v(E) = (0,c1(E), x(E)) is the same as the Mukai vector
v(E) defined in Definition 4.2. We denote the moduli space of G-twisted
stable sheaves E on X with y(E) = (r,€,x) by M§(r,£,x). We also
denote the moduli of G-twisted semi-stable sheaves by ]\_lg(r, £,%)-

Let 7 : X — C be an elliptic surface. Let f be a smooth fiber and
L a nef and big divisor on X. Since (L, f) > 0, replacing L by L+ nf,
n > 0, we may assume that (L,C’) > 0 unless C’ is a (—2)-curve in a
fiber of w. Let G be a locally free sheaf on X such that rkG = r and
(c1(@), f) = d with ged(r,d) = 1. We first study the stability condition,
when the polarization is sufficiently close to f.

Lemma 4.7. For (§,x) € NS(X) x Z with rx — (c1(G),€) > 0, we
take (n,e) € ZxNS(X)®Q such that n>> 0 and ¢ is an ample Q-divisor
with |e| € 1. Let E be a purely 1-dimensional sheaf with v(E) = (£,%).-

(i) E is G-twisted stable with respect to L +nf + ¢ if and only if
for any proper subsheaf F' of E, one of the following holds

(2)
xa(B) _ xa(F)
@ELD ~ @), fy

(b)

xa(E) xc(F) xc(E) xa(F)

@®.) ~ @®,) @E,D ~ (@F) L)
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(c)
xo(B) _ xe(F) _xe(E) _ _xc(F)
(ci(E), f)  (al),f) (a(B),L) (a(F),L)
xa(E) _ xalF)
(Cl(E)ae) (Cl(F),E)

(il) Moreover if we assume that L + nf is ample and
ged((e1(E), f), (c1(E), L), xa(E)) = 1, then there is no prop-
erly G-twisted semi-stable sheaf F with respect to L+nf. In
particular, F is G-twisted stable with respect to L+ nf if and

only if E is G(n)-twisted stable with respect to L +nf + &,
where n,€’ are sufficiently small Q-divisors.

Remark 4.2. If (¢;(E), f) = 0 or (e1(F), f) = 0 in the condition
(a), we regard the inequality as (¢1 (F), f)xg(E)—(c1(E), F)xc(F) > 0.
Similar conventions are used for the conditions {b) and {c).

Proof. We note that xg(E) = rx — (c1(G),&) > 0. If

xa(E)(er(F), f) — xe(F)(a1(E), f) <0,
then we see that
X6(B)(cu(F), L+nf +¢) - xa(F)(e1(E), L +nf +¢)
<n(xe(E)(ci(F), f) — xa(F)(c1(E), f)) + xc(E)(c1(E), L +£).

If xa(E)(c1(F), f) — xa(F){(c1(E), f) > 0 and xg(F) >0, then

xc(E)(cr(F),L+nf+e)—xa(I)(c(E),L+nf +e¢)
>n(x6(E)(er(F). ) = xa(F)er(B), )
+ 28 (@B). N (). L+ &) = (), (B L +9)
>n(xe(E)(@(F), ) - xe(F)(@1(B), 1) - xe(B)er(E), L+ ).

By using these inequalities, we can show claim (i). Moreover, if L +nf
is ample, then the equalities

xa(E)(e1(F), ) = xa(F)(e(E), f) =0,
xG(E)(c1(F), L) = xa(F)(ei(E), L) =0
imply that (Cl(F),f) = (Cl(F),L) = X(;(F) = 0 or (C1(E/F),f) =

(i(E/F),L) = xg(E/F) = 0. By the ampleness of L 4+ nf, we get
F =0or E/F = 0. Therefore the claim (ii) holds. Q.E.D.
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Remark 4.3. Obviously the choice of n and ¢ depends on (¢, x).
Lemma 4.7 says that we have the moduli space of coherent sheaves
satisfying conditions (a), (b), or (c).

Under some conditions, we can interpret Lemma, 4.7 in the following
way.

Lemma 4.8. Let E be a purely 1-dimensional sheaf with xg(E) > 0
and (c1(E), f) > 0.
(1) Assume that ged(xa(E), (ci(E), f)) = 1. Then E satisfies
(a), (b) or (c) in Lemma 4.7 if and only if the following three
conditions hold:
(i) FE does not have a non-trivial subsheaf F with (c1(F), f) =
0 and xq(F) > 0.
(i) E does not have a non-trivial quotient F with (c1(F), f) =
0 and xg(F) <0.
(iii) For any subsheaf F of E,

(c1(F), fixa(E) = (e1(E), f)xea(F).

(2) Assume that ged(xa(E), (c1(E), ), (c1(E),L)) = 1. Then E
satisfies (a), (b) or (c) in Lemma 4.7 if and only if the fol-
lowing three conditions hold:

(i) E does not have a non-trivial subsheaf F with (c1(F), f) =
(c1(F),L) =0 and xg(F) > 0.
(ii) E does not have a non-trivial quotient F with (¢1(F), f) =
(e1(F),L) =0 and xa(F) < 0.
(iif)  For any subsheaf F of E,

(c1(F), L+ nf)xc(E) > (c1(E), L +nf)xc(F),n > 0.

Proof. We only prove (1)., Assume that FE satisfies (a), (b) or
(c). Let F' be a non-trivial subsheaf of E with (ci(F), f) = 0. Then
0 = (a(F), Nxc(E) < (ci(E), fxg(F) implies (i). Let ¢ : B — F
be a non-trivial quotient of E with (¢i(F'), f) = 0. Since (¢1(E), f) =
(c1(ker @), f), we get xa(E) > x(ker ¢). Thus xg(F) > 0. If the equality
holds, then xg(E) = x(ker ¢). In this case, (b) or (¢) imply that ker ¢ =
E, which is a contradiction. Therefore (ii) also holds. Since (iii) also
holds, E satisfies (i), (ii) and (iii).

Conversely we assume that F satisfies (i), (ii) and (iii). Let F be a
subsheaf of F. If (a) does not hold, then (iii) and ged(xa(E), (c1(E), f))
= 1 imply that (xg(F), (c1(F), f)) = (xc(E), (c1(E), f)) or (0,0). For
the first case, E/F satisfies xg(E/F) = 0 and (¢1(E/F), f) = 0. By
(i), E/F = 0. For the second case, (b) or (c) holds. Q.E.D.
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Lemma 4.9. Let m: X — C be an elliptic surface and f a fiber of
w. If (D, f) =1, then E € My(0,D, 1) satisfies Condition 1.

For the proof, see [Y4, Prop. 3.18]. Let n7(p) = Y1, a;C; be
a singular fiber of 7 such that (C;,C;) < 1. We may assume that
(Co,0) =ag=1.

Lemma 4.10. There is o G-twisted stable sheaf Ey with c1(Ep) =
(r=1)f + Co and xg(Ep) = 0.

Proof. By Proposition 4.6, there is a G(e)-twisted stable sheaf Fy
with ¢1(Ep) = (r — 1)f + Co and xg(Eo) = 0, where ¢ € NS(X)® Q
is sufficiently small. Then Ey is G-twisted semi-stable. Assume that
Ey is S-equivalent to €, F;, where F; are G-twisted stable sheaves
with x¢(F;) = 0. Since Supp(F;) does not contain o, (c1(F;),0) > 0.
Since xq(F;) = rx(F;) — d(o,c1(F;)), there is an integer ip such that
(0,¢1(Fi)) = r and (0,c1(F;)) = 0 for i # i9. Thus Supp(F;), i # i
do not contain Cp, which implies that (c1(F;),Co) > 0, i # i9. Then
we see that (c1(Fj,)?) < (c1(Eo)?) + ((Zin, €1(Fi))?) < —2. This is a
contradiction. Therefore Fy is G-twisted stable. Q.E.D.

Lemma 4.11. Let Eg be the G-twisted stable sheaf with c1(Ep) =
(r —1)f + Co and xg(Eo) = 0. We set E; := O¢,(—1), i > 0. Let
E be a properly G-twisted semi-stable sheaf with yv(E) = (0,rf,d) and
Supp(E) = Ul (C;. Then E is S-equivalent to @, ES%.

Proof. Assume that E is S-equivalent to EBJ. F;, where F}; are G-
twisted stable sheaves with xc(F;) = 0. If (v(F})?) = 0, then c1(F}) =
rif, rj € Zsg. Since ged(r,d) = 1, we see that xg(F;) # 0, which is
a contradiction. Thus (v(F})?) = —2 for all j. Then we can choose an
integer i such that x(E;, Fj) = —(c1(Fj),C;) > 0, which implies that
Hom(E;, Fj) # 0 or Hom(Fj, E;) # 0. By the stability of E; and F}, we
see that E; = F. Therefore E is S-equivalent to @, EY%. Then we see
that b; = a;, which implies the claim. Q.E.D.

We take a sufficiently small Q-divisor 7 such that (o,7) = (f,n) =0
and xg(n)(E;) < 0 for i > 0. Then in the same way as in [O-Y], we
see that YV := Mg(n) (0,7f,d) is a resolution ofM_g(O, rf,d) at @,; ES*
and the exceptional divisors are

Cl:={E e Y|Ext}(E,E;) #0} =P i>0

and (C}, C}) = (Ci, Cy).
Let g (resp. @) be the affine Lie algebra associated to-F;, i > 0
(resp. the finite Lie algebra associated to E;, i > 1).
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Proposition 4.12. Let w : X — C be an elliptic surface with a
section o.. Assume that (1)1 =1, or (2) X is rational or of type K3.
We set L := o + (1 — (02))f. Let G be a locally free sheaf on X such
that tkG = r and ¢1(G) = do with ged(r,d) = 1. Then g acts on
D pwyev H(ME, 740,10 + D, k),C), where

D is an effective divisor on fibers with
(lo+D)*+p,+1>0, k€ Z,

xc =1k — (c1(G),lo + D) > 0,
ged(l, (D, 0),xe) =1

V=< (D,k)

Moreover we also have an action of g, if ged(l, xg) = 1.

Proof. We first note that Condition 1 holds, under (1) or (2) by the
proof of [Y4, Prop. 3.18] and Lemma 4.4. We also note that (¢i(F) £
ca1(E;),0) = (c1(E),0) for ¢ > 0. In our case, (4.1) does not hold, but
if ged(xa(E), (c1(E), f), (c1(E),0)) = 1, then by using Lemma 4.8, we
see that the statements in Lemma 4.1 still hold, where F; in Lemma
4.1 corresponds to E;,i > 0. Hence we get our claim for g. Moreover
if ged(xa(E), (c1(E), f)) = 1, then we can apply the results in Lemma
4.1 for Ey. Therefore our claim also holds for g. Q.E.D.

Corollary 4.13. Under the same notations as above, the Poincaré
polynomial P(Mf, +,.(0,lo + D, k)) is W(g)-invariant:

P(Mg+nf+e(07 ’I.U(l()' + D)’ k)) = P(Mlcit—nf—l—a(o: lU + D7 k))? w e W(g)a
where W(g) is the Weyl group of g.

Let X be a rational elliptic surface with a singular fiber of type Eél).
As we shall see in Subsection 4.3, M{,, .. (0,lo + D, k) is related to
a moduli space of torsion free sheaves. In [MNWV], [Y1] and [Iq], it is
observed that the Eular characteristic of M, ;. (0,10 + D, k) is Weyl
group invariant. Proposition 4.12 gives an explanation of this invariance.

4.3. Moduli of stable sheaves on rational elliptic surfaces

Let 7 : X — P! be a rational elliptic surface with a section o. Then
there is a family of elliptic surfaces 7 : X — PL over a smooth curve T
such that

(1) Xto ng toeT,
(ii) there is a section o of T with oy, = o and
(iii) for a general point £ € T, X; is a nodal elliptic surface, that
is, all singular fibers are irreducible nodal curves.
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Let T be the open subset of T consisting of nodal elliptic surfaces. Re-
placing T by a suitable covering of T', we may assume that Pic(X/T) =
R2¢.(Z) is a trivial local system, where ¢ : X — T is the projection.
Hence there is a relatively ample Q-divisor H on X'. Moreover, by adding
mo + nf, we may assume that H = nf + mo +¢, € € (Qo + Qf)*,
n > m > |(2)|, where we use the identification R%2¢,Z = H?(X,Z). For
positive integers r, d with ged(r, d) = 1, we take a vector bundle G of rank
r and ¢;(G) = do on X. We set v := (r,&,x) € R*¢.Z. Then we have

a family of moduli spaces of semi-stable sheaves 1 : M?X’H) (7)) =T,
which is smooth on the locus of stable sheaves. For the existence of
stable sheaves, see Appendix 7.3.

From now on, we assume that v = (0, &, x), where { =lo+ kf + D,
I>0,ged(l, (§0),rx—(c1(G),£)) =1and (D, f) = (D,o) = 0. We take
a sufficiently small Q-divisor 1 such that xg () (Oc,(—1)) < 0 for all i >
0. WesetY := M(GX(’"?L)/T(O, ro,d). Then Y, t € T are smooth projective
surfaces isomorphic to X;. Hence YV — T is a smooth morphism. We
have an isomorphism Y x7 Tp & X x1 Tp over Ty (cf. [Y4]). Let H' be a
relatively ample Q-divisor on Y whose restriction to ) X1y corresponds
to a divisor mo+nf+e’ on X x 1Ty, where e/ € (Qo+Qf)* is sufficiently
small. By Lemma 4.7, we have an isomorphism

§: M(.GX'XTTO,HW-—l(TO))/To(’Y) - M(G.ngjﬂ%o,ma—{—nf)/Tg(fY)‘
By our assumption, there is a universal family £ on X x7). We consider
a family of Fourier-Mukai transforms @f\,v_,y :D(X) - D). Ifrx —
(c1(G),€) > 0, then @f\{:y o £ induces a birational map

¢: M(C:‘Y,H)/T(’Y) e M&,H')/T(Wl)

which is an isomorphism over Ty, where G’ := @iv_,[l;,((’)d) and v :=

5 1(9) (see [Y4, Thm. 3.13, Rem. 3.1]). Let Z be the graph of this
birational correspondence. Then the cycle [Z£]:, induces an isomorphism
of the homology groups

H, (M’gto (’Y)aZ) — H, (M'}C{:go (7/)7Z)

via the convolution product. Let E;, i =0,1,...,n be G-twisted stable
sheaves on X in Section 4.2. We set Y := ), and

2

Xig— Vg

v
Sto

Uq ::(I’Xto—’yto (Ez) c K(Y),Z =0,1,...,n.

p = (Cr)e K(Y),ze X
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£y , s
Then Y 7, aiu; = ‘I’;\ezqyto (DI, EP*) =Cy,y € Y. By Proposition
4.12, we get the following:

Proposition 4.14. We have an action of g on the homology groups

P H MG (G + Y niui + kp))),n: € Q,

nik

where 3. nu; € K(Y), H 1is sufficiently close to f, Ixg(Og) + kr >0
and ged(l, rng, kr) = 1. Moreover if ged(l, kr) = 1, then we have an
action of g.

Proof. 'We note that (¢1(},; nius), 0) = nor and xq(10, + kC;) =
kr mod [. Hence the claim holds. Q.E.D.

4.4. Moduli of stable vector bundles on an ADFE-type con-

figuration.

In this subsection, we explain a relation with a paper by Nakajima
[N2]. Let X be a smooth projective surface containing an ADFE-type
configuration of smooth rational curves C;, i = 1,2,...,n, that is, the
intersection matrix ((C;, C;)i ;) is of type ADE. Assume that there is
a nef and big divisor H such that (C;, H) = 0 for all C;.

For £ € NS(X) and d > 0, we set

Bie,) = {z € @], ZCi| (%) +2(§,0) +d 2 0} .

Since @)~ ZC; is negative definite, B¢ q) is a finite set. Let r be
a positive integer such that 2r > (2?) + 2(€,2) + d for all z € Bg g).
Assume that there is an integer xo such that d = (£2)+2rxo—r(Kx, &)+
(r? + Dx(Ox).

Definition 4.4. Let My (r,&é + y,x)*, v € P, ZCi,x € Z be
the moduli space of u-stable sheaves £ with respect to H such that

YE) = (1€ +y,x).

My (r,& +y,x)* is contained in a moduli space of p-stable sheaves
with respect to an ample divisor H’ which is sufficiently close to H. If
ged(r, (£, H)) = 1, then My(r,& + y, x)* is projective. We assume that
Condition 1 holds for all E € My(r, & +y,x)*, vy € @;_, ZC;, x € Z.
Then Mu(r,€ +y,x)*, y € @i, ZCi,x € Z is a smooth scheme of
dimension (y2) + 2(¢,y) +d+ 2r(xo — X) + ¢, ¢ = dim H*(X, Ox), if it
is not empty.

Lemma 4.15. (i) Mpyg(r,&+z,x0)", © € Be,q) consists of
locally free sheaves.
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(11) Hl(Cl,Ew'l) =0 fO’I‘ all E € MH(T,& + x, Xo)“’, S B(E,d)-

Proof. We prove the second claim. The proof of the first one is
similar. If HY(C;, Eic,) # 0, then there is a surjective homomorphism
¢: E— Oc¢,(—1—k), k> 0. By our assumption on F, F :=ker¢ is a
u-stable sheaf with v(F) = v(E) — (0, C;, —k). Then we have

dim My (y(F)) =((z — C))*) + 2(¢§,2 — C;) +d — 2rk + ¢
L2r+4+q—-2rk<gq.
This is impossible. Hence the claim holds. Q.E.D.

Corollary 4.16. Let E be an element of My(r,& + x,Xx0)*, x €
B¢ ,ay. For a subspace V C Hom(E, O¢,(—1)), ¢: E - VY ® O¢,(—1)
s surjective and ker ¢ is a p-stable locally free sheaf with the Chern
character ch(F') = ch(E) — (dim V)(0, C;,0).

We set

E € My(r,é +z,x0)*,dimU =n
UV C Hom(E, O¢,(~1))

"ngi(-l)(r’g +z, XO) = {(E’ UV)

and define operators e;, f;, h;. Then we have the following which is due
to Nakajima [N2, sect. 5].

Proposition 4.17. Let g be a finite Lie algebra generated by Oc,(—1).
Then g acts on @IGB(E o Hs (Mg (r, €+, %0)*), provided that the mod-

uli spaces are non-empty.

Remark 4.4. In order to compare the correspondence in Theorem
2.1, we need to set F := E[1] (cf. (1.10)).

Ezxample 4.3. Let 7 : X — P! be an elliptic K3 surface with a
section 0. Let f be a fiber of 7. Then H := o +tf, t > 0 is a nef
and big divisor on X. Let C;, i = 1,2,...,n be (—2)-curves contracted
by mH. Assume that ged(r, (€, f)) = 1. Then for y € NS(X) with
(y,f)=0and k € Z,

F is a torsion free sheaf with

Mp(r,é +y,x)* = { BE| 7(E) = (r,§ +y, x) such that
E|r-1(p) is stable for a point p € P!

In particular, Mg (r, £+y, x)* is projective and coincides with Mg/ (r, £+
y,Xx) where H' is an ample divisor which is sufficiently close to H.
Therefore My (r,€ + y,x)* is not empty, provided the expected di-
mension is non-negative (cf. [Y2]). We set A := (£, f). Then since
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(€ + uf)?) = (£%) + 2\, we can find xo € Z and p € Z such that
d = ((€ + pnf)?) + 2rxo + (r* + )x(Ox). Thus replacing € by £ + pf,
we can find a desired xo. Therefore all the requirements are satisfied
and we have an action of finite Lie algebra. By Corollary 7.4, a similar
result holds for a rational elliptic case.

Remark 4.5. Let X — C be an elliptic surface in Proposition 4.12.
We use the same notations. Let £ be the universal family on ¥ x X.
Then we have a Fourier-Mukai transform % _,,- : D(X) — D(Y). We
set G' := @5 (O,). Let £ := 0 + D with (f, D) = 0 be an effective
divisor such that (£2) = (¢2). Assume that

2(¢,2) + (2%) < 2r for all z € P ZC:.

=1

For a G-twisted stable sheaf £ € M§(0,&+z, %), E@n*(L) € MG(0,&+
z,x), L € Pic®(C). Since (E®@7*(L)),/(torsion) = (E,/(torsion))® L,
we get (€ + )2 + 1+ p, = dim ME(0,£ + z,x) > dim Pic’(C) = ¢(C).
Since (€ + )2 + 1+ py = (£ + z)? + g(C) + x(Ox) and (£?) = (0?) =
~x(Ox), we get 2(¢,z) + (?) > 0. Assume that £ € M§(0,£ + z,%)
contains the sheaf Ey in Lemma 4.10. By the choice of H, E/E, is
a G-twisted stable sheaf with (£,c1(E/Ep)) + (c1(E/Ep)?) = (£, +
>0 aiCi) + (T + X;500iCi)?) — 2r < 0, which is a contradiction.
Therefore E € M§(0, ¢+ z,%) does not contain Ey. We also see that E
does not contain & (z3xy, ¢ € X. Then we have Hom(&|(z1xy, E) = 0
for all z € X. By the proof of [Y4, Thm. 3.13], (I’%V_,Y induces an
isomorphism M (0,£ +z, x) = MG (r,€,x’), where rx — d(£ +z,0) >
0, (cr(@), f) = (€, f) and ((¢+2)?) = (&) =2rx'—r(Kx, & )+72X(Ox).
Moreover (I)%‘(V_QY(OCi (—1)) = OC’; (kz) for some k’i with XG”V(OC; (kz)) =
0. The action of g generated by ®%_ (O¢, (—1)) is similar to the action
in this section. Indeed if ((C;, Cj);,;) is of type Eg, then there is a divisor
D''= Y% b;C! such that (D', C!) = —(ci(G’),Cl) = r(k; +1). Then
replacing € be £ ® Oy (—D’), we may assume that k; = —1 for all ¢ > 0.

Remark 4.6. Let Y be a projective surface with rational double
points as singularities and H’ an ample Cartier divisor on Y. Assume
that there is a morphism 7 : X — Y which gives the minimal resolution
and H = n~Y(H'). For simplicity, we assume that there is a unique
singular point p € Y. Let Z := 7~ !(p) be the fundamental cycle. For
E € My(r,&+ x,x)*, we have an exact sequence

(4.3) 0—-E —-E—F—0
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such that F is a successive extensions of O¢, (—1) and Hom(E’, O¢, (—1))
=0,7=1,2,...,n. Then we have EIICi & O, (1)%% @ (92:”'. For all C;,
there is an exact sequence '

0—-G— 0z — O¢, — 0,

where G is a successive extensions of O¢, (—1) (cf. Example 4.1). Hence
we see that H'(Z, E|;) = 0. Then we see that Rlm, (E') = 0. Since
R'm,F = 0, we get that m.(E) 2 m.(E’) and R'n.(E) & R'm, (E') = 0.
Therefore we have a morphism

Te: Mpg(r,+z,x)* — Mg(r,&+z,x)*
E — . (E),

where My (r,€+z, x)* is the moduli space of p-stable sheaves on Y. By
this morphism, we have a contraction of the Brill-Noether locus. We can
also show that R'm,(E’Y) = 0 and El'  is generated by global sections.
Thus 7, (E) & m,(E’) is a reflexive sheaf and E’ is a full sheaf. Hence
the local structure of this contraction map is an example of the studies
of Ishii [I1],[I2]. More generally, for each moduli space Mg (r, &, x)*, let
My (r,€,x)* be the open subset consisting of E such that E is locally
free, Condition 1 holds and R, (E) = R'm.(EV) = 0. Then we see that
H'(C;, Ei¢;,) = H'(Ci, Eg,) = 0 for all i and Corollary 4.16 holds. Since
Rim (Oc¢,(—1)) = 0 for all j and Exty, (Oc,(—1),0x) = O¢,(-1),
ker ¢ in Corollary 4.16 belongs to Mg (r,& — (dim V)C;, x)#. Therefore
we also have similar claims for Mg (r, &, x)*.

§5. Equivariant sheaves

In this section, we give a remark for the moduli of equivariant
sheaves. Let G be a finite group acting on X. Let Ey be an irreducible
G-sheaf of dimension 0, i.e. Ey does not have a non-trivial G-subsheaf.
Then Hom(Fy, E)¢ = C.

Lemma 5.1. Let Eg be an irreducible G-sheaf of dimension 0. Let
E be a torsion free (resp. purely 1-dimensional) G-sheaf.
(1) Then every non-trivial extension

0—F—-F—FEy—0

defines a torsion free (resp. purely 1-dimensional) G-sheaf.

(2) LetV be a subspace of Hom(E, Ey). Then ¢ : E — VY ® Ey
is surjective. Moreover, ker ¢ is a torsion free (resp. purely
1-dimensional) G-sheaf.
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Let H be a G-equivariant line bundle on X which is ample.
Definition 5.1. A G-sheaf F is p-stable, if £ is torsion free and
(co(F), H) _ (ex(E), H)
rk F rk E
for all G-subsheaf F' of F with 0 <tk F' <tk E.

For a G-sheaf E on X, v(E) denotes the class of E in K%(X).
For a v € K9(X), My (v)* is the moduli of p-stable G-sheaves E with
v(E) = v. Assume that

Ext?(E, E)¢ — H%(X,0x)“

is an isomorphism for any E € My (v)*. We set

(v(E),v(F)) = =G-x(B,F) = =Y (-1)*dimExt'(E, F)°.
Let E1, Es, ..., Es be a configuration of irreducible G-sheaves of dimen-
sion 0 such that
Ext'(E;, E;))¢ = 0.

Then v(FE;) are (—2)-vectors. We set

W (v) := {(B,UY)|E € My (v)*,U" C Hom(E[1], B;[1]),dim U = n}
and define operators e;, f;, h;. Then we have an action of the Lie algebra
g generated by v(E1),v(Ea),...,v(Es) on @, H*(Mg(v)*,C).

Remark 5.1. Assume that X = P? = C?2 U ¢, with an action of
a Klein group G C SL(C?). Let W be a G-vector space. We consider
the moduli of framed G-sheaves (E,®), where F is a torsion free G-
sheaf on P? and ® : Ey,, — Op,, ® W is a G-isomorphism. This is an
example of Nakajima’s quiver variety and we have an action of affine Lie
algebra associated to G on the homology groups [N2]. In this case,
we set (v(E),v(F)) = —G-x(E,F(—£)) and we use the vanishing
Ext?(E,E — (O, ® W & E;)) = 0 to show the smoothness of ‘Bg).

86. Perverse coherent sheaves on a resolution of rational dou-
ble points

6.1. Perverse coherent sheaves

In this section, we shall give examples of the action of affine Lie
algebras on the moduli of stable perverse coherent sheaves. Let X be a
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smooth projective surface and 7 : X — Y a birational map such that
Rm,(Ox) = Oy. We first recall perverse coherent sheaves introduced
by Bridgeland [B1].

Definition 6.1. [B1] Let Per(X/Y) be the subcategory of D(X)
such that an object F € D(X) belongs to Per(X/Y) if and only if
(i) H(E)=0fori#—1,0,
(ii) m(H Y(E)) =0 and R'w,(H°(E)) =0,
(iii) Hom(H°(E),c) = 0 for all sheaf ¢ on X with R.(c) = 0.
An object E € Per(X/Y) is called perverse coherent sheaf.

Per(X/Y) is an abelian category. For E € Per(X/Y), we get
Hi(m.(E)) =0, i # 0. Thus 7.(E) € Coh(Y). The following is due
to Bridgeland [B1] (cf. [N-Y, Lem. 1.2]).

Lemma 6.1. (1)  For a coherent sheaf F' on'Y, we have an
exact sequence

0 — R'm (L7 'n*(F)) — F — m,*(F) — 0.

In particular, if F 1s torsion free, then F = w m*(F).

(2) Let E be a coherent sheaf on X. For the natural map ¢ :
m*m.(E) — E, we have (i) Rmw.(ker¢) = 0, (i1) m(im¢) —
n.(E) is isomorphic, (iii) m.(coker ¢) = 0 and (iv) R (E) =
R, (coker ¢).

(3) A coherent sheaf E belongs to Per(X/Y) if and only if ¢ :
m*7.(E} — E is surjective.

(4) For a coherent sheaf F on Y, Ext*(n*(F),c) = 0 for all c €
Coh(X) with Rm.(c) = 0.

6.2. A family of perverse coherent sheaves

Let Y — S be a flat family of surfaces and 7 : X — ) a family of
projective birational maps such that X — S is smooth and Rx.(Ox) =
Oy.

Definition 6.2. Let M, / 5(v) be the moduli stack of perverse co-
herent sheaves E € Per(X;/)s) N Coh(X;), s € S with topological in-

variant v(E) = v or v(E) = v in Section 4.2 such that 7.(F) is torsion
free or purely 1-dimensional.

By Lemma 6.1 and the base change theorem, M?, / 5(v) is an open
substack of the moduli stack of coherent sheaves E on X;,s € S. Let w
be a numerical invariant of 7,(E), E € M% 5(v)s and My, s(w) be the
moduli stack of torsion free sheaves or purely 1-dimensional sheaves F
onYs;,s€S.
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Proposition 6.2. We have a “proper” map f : Mf\g/s(v) — My/s(w)
by sending E to m.(E). More precisely, let T be a scheme of finite type
over S and F a flat family of torsion free or purely 1-dimensional sheaves
on Y xsT. Then Mb g(v) Xpy,5(w) T — T is proper.

Let T" — T be a morphism and € a flat family of coherent sheaves
parametrized by T’ such that & € Per(X:/)y), v(&) = v and 7, (€) =
F o, Or:. Since € is a quotient of 7*(F ®p, Or) in the category of
coherent sheaves with a fixed topological invariant v, M?%, / s(W) X as,, /s(w)
T — T is of finite type.

In order to prove the properness, we use the valuative criterion. Let
R be a discrete valuation ring and K the quotient field of R. Let s be
the closed point of S = Spec(R). Let W C Y := Y be the closed subset
such that 7 is isomorphic over Y \ W.

Lemma 6.3. Let ¢ : £, — &2 be a homomorphism of R-flat families
of coherent sheaves £;, 1 = 1,2 on ). Assume that (£1)s is torsion free
or purely 1-dimensional, and ¢ is an isomorphism on Y \ W. Then ¢
is injective and coker ¢ is R-flat. Moreover if ¢ is isomorphic over K,
then ¢ is an isomorphism.

Proof. Since ¢, is isomorphic on Y \ W and (&), is torsion free
or purely 1-dimensional, ¢ is injective. Hence ¢ is injective and coker ¢
is R-flat. If ¢ is isomorphic over K, then (cokerd) @ g K = 0, which
implies that coker ¢ = 0. Hence ¢ is an isomorphism. Q.E.D.

Corollary 6.4. Let F be a R-flat family of torsion free or purely
1-dimensional sheaves on'Y. Let w*(F) be the R-torsion free quotient of

7*(F). Then F — mo(7*(F)) — s (71'/*(?)) is injective and the cokernel
is R-flat.

By the following proposition, we have Proposition 6.2.

Proposition 6.5. (1) Let & and & be R-flat families of co-
herent sheaves on X such that (i) (€;)s € Per(Xs/Vs), (i)
7« (E1)s 18 torsion free or purely 1-dimensional, and (iii) there
are isomorphisms ¢ : E1 Qr K — EQr K, ¢ : m(&1) —
7« (E2) such that ¢ induces Y over K. Then there is an iso-
morphism ¢ : &1 — & extending ¢ and 1.

(2) Let Ek be a coherent sheaf such that Ex € Per(Xk /Vk), i.e.,
R7.(Ex) = 0 and m*m.(Ex) — Ex 1is surjective. Let F be a
R-flat family of torsion free or purely I-dimensional sheaves
on Y with an isomorphism Vi : 7.(Ex) — F @r K. Then
there is a R-flat family £ of perverse coherent sheaves which
is an extension of Ex with an extension ¥ : m(E) — F of Yk .
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—

Proof. (1) Let 7*(m«(&;)) be the R-flat quotient of 7*(m.(&;)) by
the R-torsions and L; the kernel of 7* (7. (&;)) — &;. Then L; are R-flat.
Since Ly ® g K — & ®p K is a 0-map, Ly is contained in Lo. Hence we
have a homomorphism ¢ : & — & and we get a commutative diagram:

Thus the claim holds.

(2) Let ¢ : 7 (F) — Ex be a homomorphism defined by the composi-
tions ¢ : 7*(F) — n*(F)@rK — 7*(1.(Ek)) — Ex. We set € := im(¢).
Then £ is a R-flat family of coherent sheaves such that R'7.(€) = 0 and
E®r K =E&k. By Lemma 6.3, F — 7, (7*(F)) — m(£) is an isomor-
phism. Q.E.D.

The following definition of the stability is slightly different from
[N-Y, Lem. 2.9].

Definition 6.3. Let H be an ample Cartier divisor on Y. An object
E € Per(X/Y) is stable with respect to H if E is a sheaf and 7. (E) is
stable with respect to H. If 7, (F) is pu-stable, we say that E is y-stable.

Lemma 6.6. Let E € Coh(X) be a perverse coherent sheaf and F
a coherent sheaf such that m.(F) is torsion free. Then Hom(E, F) —
Hom(m.(E), . (F)) is injective. In particular, a stable perverse coherent
sheaf is simple.

Proof. Since n*(m«(E)) — E is surjective, we have an injective
homomorphism Hom(E, F) — Hom(7*(7.(E)), F). Since

Hom(n* (1.(E)), F} 2 Hom(7.(E), 7 (F)),
we get our claim. Q.E.D.

Theorem 6.7. [N-Y, Thm. 2.14] There is a coarse moduli scheme
MP¥(v) of stable perverse coherent sheaves E with the topological invari-
antv. ME(v)* denotes the open subscheme of p-stable perverse coherent
sheaves. More generally, for a family of resolutions m: X — Y — S and
a relatively ample Cartier divisor H on Y, we have o relative moduli
space of stable perverse coherent sheaves M3, /S,H(U), which is quasi-
projective over S.
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Lemma 6.8. (1) Letv := (r&a) € ZxNS(X) x Z be a
topological invariant. Assume that there is a line bundle £ on
X with € = ¢1(L,), s € S. If tr : Ext?(E, E) — H?(X;,0x,)
is injective for all E € M;I\’f/s,u(”)s’ then MQ/S’H(U) — S is
smooth over s € S.

(2) Weset X = X;, Y := Vs and assume that X — Y is a
minimal resolution of rational double points. Let E be a stable
perverse coherent sheaf on X. If

H(Y, Ky) — Hom(r, (E), m,(E) ® Ky)

is surjective, then tr : Ext*(E, E) — H?(X,Ox) is injective.

Proof. (1) is a consequence of a standard deformation theory.

(2) By the Serre duality, it is sufficient to prove that Hom(X, Kx) —
Hom(E, E ® Kx) is surjective. Since Kx = n*(Ky), the claim follows
from Lemma 6.6. Q.E.D.

Proposition 6.9. Let 7 : X — Y be a contraction of (—2)-curves
by a linear system |nH| on X. We set v := (r,§,a). Assume that
~Kx is effective and ged(r, (€, H),a) = 1. Then My (v) is smooth and
projective over C. If there is a polarized deformation ¢ : (X,L) — S of
Xs, = X with a family of Mukai vectors v and a family of dvisors H
such that Hs, = H and M} does not contain (—2) curves for a general
s € S. Then M% (v) is deformation equivalent to My (v).

Proof. Since Rm.(Ox) = Oy, H(X,0Ox(nH)) = 0 for n > 0.
Hence the base change theorem implies that @.(Ox(nH)) is a locally
free sheaf on S and we get a flat family of contractions 7 : X — ) such
that Rm,(Ox) = Oy. We set H,, := nH + L. For a sufficiently large
n, let Mx,g,(v) — S be the relative moduli space of (Hy)s-stable
sheaves on X;. Let Sy be the open subscheme of S such that H, is
ample. Then My g 3, (v) coincides with M¥, /5,1 (v) over So. Hence we
get our claim. Q.E.D.

Corollary 6.10. Let X be a smooth projective surface with a con-
traction # : X — Y of (—2) curves, and let H a divisor which is the
pull-back of an ample divisor on Y.

(1) Assume that X be a rational surface and —Kx is effective. If
ged(r, (€, H),a) = 1, then ME(r, &, a) is deformation equiva-
lent to Myg(r,€,a) and H*(ME(r,€,a)) is identified with
H*(Mpy(r,£,a)) by an algebraic correspondence.

(2) Assumethat X be o K3 surface with p(Y) > 2. Ifged(r, (€, H))
=1, then M%(r,€,a) is deformation equivalent to My(r, €, a)
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and H*(M%(r, €, a)) is identified with H*(Mg(r,&,a)) by an
algebraic correspondence.

Proof. We prove (2). Let N be a primitive sublattice of Pic(X)
spanned by H and £. Replacing & by & + rmn*(n), n € NS(Y), we may
assume that dimg 7. (N ® Q) = 2. Indeed ged(r, (£, H)) = 1 means that
the stability does not change under the change E — E(mD), if D is
the pull-back of a Cartier divisor on Y. Then there is no (—2)-curve in
NNH*. Let R be the set of (—2)-vectors on H+NPic(X). Since R is a
finite set, we can take an ample divisor L such that I € Qu+N®Q for all
u € R. We shall consider a deformation of (X, L, H,£). Then H deforms
to an ample divisor, which implies that we can apply Proposition 6.9 to
get the claim. Q.E.D.

Remark 6.1. If £ is relatively ample, then we can take L = £ +
rmH. Then the same assertion holds if ged(r, (¢, H),a) = 1 and H*NN
does not contain (—2) vectors.

6.3. An action of the affine Lie algebra

From now on, we assume that 7 : X — Y is a minimal resolution
of rational double points. For simplicity, we assume that Y has one
singular point p € Y. Let C1,C4,...,C, be the irreducible components
of the exceptional divisor and Z the fundamental cycle on X.

Lemma 6.11. (1) Let ¢ be a coherent sheaf on X such that
m«(c) = 0. Then there is o filtration

(6.1) OChCFC---CFs=c

such that each Fi/Fy_1 is a subsheaf of O¢,(—1), ¢ > 0. In
particular, if Hom(e, O¢,(—1)) =0 for all i, then ¢ = 0.

(2) IfRm.(c) =0, then c is a semi-stable 1-dimensional sheaf and
gr(c) = @i, Oc,(-1)®.

Proof. (1) Assume that ¢ # 0. Since m.(c) = 0, ¢ is of pure di-
mension 1. Since ((Cj, Cj);,;) is negative definite, x(O¢,;(—1),¢) > 0
for an 4. Then there is a non-zero homomorphism ¢ : O¢,(—1) — c or
¢ :c — O¢,(—1). For the first case, ¢ is injective and . (coker ¢) = 0.
For the second case, m.(ker ¢) = 0 and im(¢) is a subsheaf of O¢,(—1).
Applying the same procedure to coker ¢ or ker ¢, we get the claim.

(2) We first note that x(c) = 0. Let E be a subsheaf of ¢. Then
H°(X,E) = 0, which implies that x(E) < 0. Therefore c is a semi-
stable 1-dimensional sheaf. Obviously O¢,(—1) are stable. We take
a filtration (6.1). Then x(Fk/Fx-1) < 0 and the equality holds if
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Fy/Fx—1 = Oc¢,(—1). Hence Fy/Fy_1 =2 O¢,(—1) for all k. Therefore ¢
is S-equivalent to ®;0¢,(—1)®. Q.E.D.

Corollary 6.12. E € Coh(X) belongs to Per(X/Y) if and only if
Hom(E, O¢,(—1)) = 0 for all i.

Proof. Obviously E €  Per(X/Y) N Coh(X) satisfies
Hom(FE, Oc¢,(—1)) = 0 for all i. We prove the converse direction. We
shall prove that the homomorphism ¢ : 7*(7.(E)) — E is surjective. By
Lemma 6.1 (2), the cokernel of m.(E) — 7. (im ¢) satsifies 7, (coker ¢) =
0. Since Hom(coker ¢, O¢,(—1)) C Hom(E, O¢,(—1)) = 0, by Lemma
6.11 (1), we get coker ¢ = 0. Thus ¢ is surjective. Q.E.D.

Lemma 6.13. Let E be a coherent sheaf belonging to Per(X/Y).
If Hom(Og,(—1),E) =0, i =1,2,....,n and Ext"(Oz,E) =0, then E is
locally free along Z and 7.(E) is reflexive at p.

Proof. Replacing X by an open neighborhood of Z, we may assume
that F is locally free on X'\ Z. Assume that F is not torsion free. Then
for the torsion submodule 7' of E, there is a surjection T' — C,. We
note that there is an exact sequence 0 — ¢ — Oz — C, — 0 such that
¢ € Coh(X) with Rm.(c) = 0. Since Hom(c,T) = 0, Ext'(C,,T) —
Ext*(Oz,T) is injective. Since x(Cz,T) = 0, Ext’(Cy,T) # 0. Thus
Ext*(Oz,T) # 0, which is a contradiction. Therefore E is torsion free.
By the exact sequence

Hom(Ogz, EVY) — Hom(Oz, EVV/E) — Ext' (04, E),

we get Hom(Ogz, EVV/E) = 0. Since Hom(C,, EVV/E) # 0 for a point
z € Supp(EVV/E), EVY/E = 0. Thus E is locally free. Then we get
Rz, (E\z) = 0, which implies that R'm.(E") = 0. Therefore 7, (E) is
a reflexive sheaf. Q.E.D.

Lemma 6.14. (1) (a) Let E be a coherent sheaf on X such
that E € Per(X/Y) and w.(E) is torsion free. For a
subspace U C Hom(Og¢,(—1), E), the evaluation map ¢ :
U ® Oc¢,(—1) — E is injective in Coh(X), coker¢ €
Per(X/Y) and m.(coker ¢) is torsion free.

(b) Let F be a coherent sheaf on X such that F' € Per(X/Y)
and m.(F) is torsion free.  For a subspace V of
Hom(F, Oc,(—1)[1]}, the associated extension in Coh(X)

0-V'®0c,(~-1) - E—F —0

defines E € Per(X/Y) and 7.(E) is torsion free.
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(2) (a) Let E be a coherent sheaf on X such that E € Per(X/Y)
and m.(E) is torsion free. Let U C Hom(Oz[~1], F) be
a subspace. For the associated extension in Coh(X)

0—-EFE—-F—-0z0U—0,

F € Per(X/Y) and 7.(F) is torsion free.

(b) Let F be a coherent sheaf on X such that F € Per(X/Y)
and 7. (F) is torsion free. Let V C Hom(F, Oz) be a sub-
space. Then ¢ : F — Oz @ VV is surjective in Coh(X),
E :=ker¢ € Per(X/Y) and 7.(E) is torsion free.

Proof. (1) (a) Since R, (O¢,(—1)) = 0 and m.(E) is torsion free,
7. (ker ¢) = 0 and Rlm,(ker ¢) & 7, (im ¢) = 0. By Lemma 6.11, we see
that ker ¢ = Og,(—1)®". Since ¢ induces an injective homomorphism
U — Hom(O¢,(—1), E), we have r = 0. Since m.(E) = m.(coker ¢),
R, (coker ¢) = 0 and n*m.(E) — E — coker ¢ is surjective, coker ¢ €
Per(X/Y).

(b) We note that m.(E) & 7, (F) and R'm.(F) = 0. Hence we shall
prove that Hom(E, O¢,(~1)) = 0. If j # 4, then obviously the claim
holds. If j = 4, then we have a non-zero map V¥V ® O¢,;(-1) —» E —
Oc¢,(—1). By our choice of the extension class, this is impossible. Hence
E € Per(X/Y).

(2) (a) Obviously 7*m.(F) — F is surjective and R'm.(F) = 0. If
7« (F) has a torsion, then we have a non-trivial map Oz = 7*(C,) — F.
Then Oz — F — Oz ® U is injective. By our choice of the extension
class, this is impossible. Hence 7, (F') is torsion free.

(b) Since Hom(F,Oz) — Hom(n*m.(F),Oz) = Hom(m.(F),Cp) is
injective, m. (F) — C, ® V'V is surjective. Since 7*(m,(F)) — 7*(Cp) ®
VV is the composition of 7*(m«(F)) — F and F — Oz @ VY, ¢ is
surjective. Since Ext'(Oz, Oc¢,(~1)) = 0 for all j, Hom(E, O¢,(-1)) =
0 for all j. Thus E € Per(X/Y) and 7.(F) is torsion free. Q.E.D.

We set By := Oz, E; := O¢,(—1)[1], i =1,2,...,n and set
= {(B,U)|E € M (v),UY C Hom(E, E;), dimU = m}.
By Lemma 6.14, the Brill-Noether locus with respect to E;,7 = 0,1, ...,n
behaves very well and we have the following.

Proposition 6.15. The affine Lie algebra associated to E;, i =
0,1,...,n acts on @, H.(M%(v)).

Remark 6.2. f: ME(v) — Mg(w) gives the contraction map of
the Brill-Noether locus with respect to E;, t =1,2,...,n.



452 K. Yoshioka

Remark 6.3. Let X be an abelian surface or a K3 surface with
a symplectic G-action. Assume that there is a fixed point. By the
McKay correspondence [BKR], we have an equivalence ® : D%(X)
D()/(7é), where )/(7(/}’ — X/@ is the minimal resolution of X/G. More-
over we can ChOOSi\a/l’l equivalence so that ® induces an equivalence
Coh®(X) — Per((X/G)/(X/@)). By this equivalence, we have an iso-
morphism My (v)* — MPE (w)#, where w is the Mukai vector correspond-
ing to v via ®. By this identification, the actions of the Lie algebras in
Section 5 and Section 6 are the same.

§7. Appendix

7.1. Moduli of coherent systems
In this subsection, we shall explain how to construct the moduli
space of coherent systems ‘Bg? (v). We start with a definition of a flat
family.
Definition 7.1. Let S be aschemeand & : -+ — E_1 — & — -+~
a bounded complex on S x X.
(i) &, is a flat family of stable complexes, if & are coherent
sheaves on S x X which are flat over S and (&,); are sta-
ble complexes for all s € S.
(if) (&, U) is a family of coherent systems, if &, is a flat fam-
ily of stable complexes and U is a locally free subsheaf of
Hom,, (Os K E;, &,) of rank n such that Us — Hom(F;, (E)s)
is injective for all s'€ S. In this case, we have a resolution of
E;
W. : W_2 — W._1 — WO
with a morphism Y X W, — &, as complexes which induces
the inclusion Y — Hom,,, (Og K E;, &,).

For a quasi-isomorphism & — & of families of stable complexes
over S, we take a resolution of FE;

W.ZW_2—>W.]_ ——)WO

such that Ext?(Wj,(Ek)s) = ExtP(W;,(€)s) = 0, p > 0 for j =
0,—1, k € Z and all s € S. Then we see that ExtP(W_q, (Ek)s) =
ExtP(W_2,(&;)s) =0, p > 0 for k € Z and all s € S. By this choice of
W,, we have an isomorphism

Homg (sx xy(Os ¥ W, E,[p]) — .
HomK(SXx)((’)S X W,, 5‘ [p])(g Ext? (0 X E;, gi))
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where K(Z) is the homotopy category of complexes on Z. Hence for a
family of coherent systems (£],U) and a quasi-isomorphism £, — & of
flat families of stable complexes, there is a resolution of E; and a family
of coherent systems (&, ,U) such that we have a homotopy commutative
diagram:

urw, —2— ¢,

| |

URW, —— &..
The choice of ¢ is unique, up to homotopy equivalence. In this case, we
say that (&.,U) is equivalent to (E,,U).

Let ¢ : Qu(v) — Mg (v) be a standard PGL(N)-covering of My (v)
which is an open subscheme of a suitable quot-scheme and satisfies the
following properties:

(i) There is a flat family of stable complexes V, : V_; — Vg on
Qu(v) x X, which is GL(N)-equivariant.

(ii) For a flat family of stable complexes £, parametrized by S, if
we take a suitable open covering S = U,S), then we have
a morphisms fx : Sy — Qu(v) such that &g, is quasi-
isomorphic to f(Vs). In particular (g o fa)is,ns, = (g ©
fu)isxns, and we have a morphism f : § — Mg(v).

We take a locally free resolution of F;

0—-W,o,—-W_1—->Wy—E; —0

such that Ext?(W;, Vk):) =0, p > 0 for j = 0,-1, k = —1,0 and all
t € Qu(v). Then Ext?(W_s,(Vk):) = 0, p > 0 for k£ = —1,0 and all
t € Qu(v). We set

Hn = @ HomeH(v) (OQH(’IJ) X Wj, Vk).
—j+k=n

Hp, n € Z are locally free sheaves on Qg (v). We take a complex
0—Hoy S Ho B, B
associated to R Homy, (O (v) B E4, Ve). Since
ker(v_1)¢ =2 Hom(E;, &[—1]) =0

for all t € Qg(v), -1 is injective as a vector bundle homomorphism.
Hence H|, := cokert_; is a locally free sheaf on Qg (v). For the mor-
phism fx : Sx — Qu(v) and a locally free subsheaf & C Homy, (Og
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E;, &) such that Us — Hom(E;, (£.)s) is injective for all s € S, we have
an inclusion as a vector bundle homomorphism:

Us, — Homy (Os B By, &))s, = ker(f3(Hp) — f3(Ha)) = fX(Ho)-

We take a Grassmann bundle Gr(H{,n) — Qu(v) over Q i (v) parametriz-
ing n-dimensional subspaces U of (H{):, t € Qu(v). Then we have a
lifting fx : Sx — Gr(Hj,n) of fx and an equivalence between (EesUysy)
and (f~§\‘ (Ve),U,s,). Hence ‘,B;Z) (v) is constructed as a closed subscheme
of Gr(Hg,n)/PGL(N).

7.2. The existence of semi-stable sheaves on a K3 surface

Proposition 7.1. Let X be a K3 surface and H an ample divisor
on X. Forv=r+£&+ap, r € L0, € NS(X),a € Z with (v?) > -2,
the moduli space of semi-stable sheaves M g (v) is not empty.

Proof. We may assume that v is primitive. In H*(X,Q), we can

write v as
v=r+(dH +D)+ap,D € H.

Since ve™ =1+ (d+rn)H + D + (a+ (dn +rn?/2)(H?))p, n € Z, we
see that
(veH yerfy — (D?) = (v,v) — (D?).

Hence replacing v by ve™, n >> 0, we may assume that d is sufficiently
larger than (v?) — (DD?). We shall consider the Fourier—-Mukai transform

2 : DX) — D(X)
E — Rp.(i(E)QIa),

where p1,ps : X x X — X are projections and I, is the ideal sheaf of the
diagonal A ¢ XxX. By [Y5, Thm. 3.1], <I>§<A_, x induces an isomorphism
Mpy(r+&+ap) = My(a— & +rp). Moreover [Y5, Cor. 2.14] says that
every p-semi-stable sheaf F' with v(F) = a — £ + rp is semi-stable. For a
sufficiently small e € NS(X) ® Q, [Y3, Thm. 8.1] implies that there is a
stable sheaf F' with respect to H + € with v(F) = a — £+ rp. Then F'is
p-semi-stable with respect to H, which implies that M g (a—£&-+1p) # 0.
Therefore M g (v) # 0. Q.E.D.

7.3. The existence of stable sheaves on a rational elliptic
surface ‘
We shall find the conditions for the existence of stable sheaves on

a rational elliptic surface 7 : X — P! with a section 0. We first note
that a divisor C with (C?) = (C,Kx) = —1 is effective. Indeed since
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(Kx—C, f)=-1,H*(X,0x(C)) = 0. By the Riemann—Roch theorem,
dim H%(X, Ox(C)) > x(Ox(C)) = 1. The following is the result for the
case of rank 0.

Proposition 7.2. Let X be a rational elliptic surface with a section
a. Let D be a divisor with (D?) > 0. Assume that (0, D, x) is primitive.
Then M§(0,D,x) is not empty for a general H and G if and only if
(D,C) >0 for all divisor C with (C?) = (C,Kx) = —1.

Proof. We 'use the notation in Subsection 4.3. Since
M(GX,H) y7(0,D,x) — T is smooth, it is sufficient to prove the claim
for a nodal rational elliptic surface X. Let C be a divisor with (C?) =
(C,Kx) = —1. Since every fiber is irreducible, C' must be a section
of m. If (D,C) < 0, then x(Oc¢(k),E) = —(D,C) > 0 for all sheaves
E with ¢1(E) = D. We set n := max{k|Hom(O¢(k), E) # 0}. Then
Hom(Oc(n), E) # 0 and Hom(E, O¢(n))Y = Ext*(Oc(n + 1), E) # 0.
This means that E is not semi-stable, unless E = O¢(n).

Conversely, we assume that (D,C) > 0 for all sections C with
(C?) = (C,Kx) = —1. Then D is a nef divisor. If (D, f) = 1, then
there is a section 7 of 7 such that D = 7 +nf, n > 0. In this case,
My (0,7+nf,x) = Hilb% # 0 via the relative Fourier~Mukai transform.
Since the non-emptyness does not depend on the choice of G [Y4], we get
our claim. Hence we may assume that (D, f) > 2. We shall show that
there is a reduced and irreducible curve C € |D|. Then a line bundle
on C with x(E) = x belongs to Mg (0, D, x).

(1) If (D?) > 1or (D, f) > 3, then D' := D—Kx is a nef divisor with
(D' 2) > 5. In this case, we shall prove that D = D’ + Kx is base point
free by using Reider’s result [R, Thm. 1]. If D is not base point free, then
there is an effective divisor B such that (a) (B,D’) =1 and (B?) = 0,
or (b) (B,D') =0 and (B?%) = ~1. Since 0 < (D, B) < (D', B) <1, (i)
(f,B)=0and (D,B) <1lor (i) (f,B) =1and (D, B) = 0. In the first
case, B =nf. Since (D, f) > 2, this is impossible. In the second case,
there is a section 7 and B = 7+nf. Then (B?) = 2n—1 # 0. Therefore
D = D' + Kx is base point free.

(2) If (D?) = 0 and (D, f) = 2, then D= 2114 f or D = 11+ 72 with
(11, 72) = 1, where 71, T2 are sections of 7. In the first case, (D, 1) = —1,
which is a contradiction. In the second case, D is connected and D is
base point free.

Applying Bertini’s theorem to both cases (1), (2), we have a reduced
and irreducible curve C € |D|.

QE.D.
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Definition 7.2. We set

(D,C) > 0 for all divisors C
with (C?) = (C,Kx)=-1 |~

C:= {D € Pic(X)

Let W = W(E") be the Weyl group of the sublattice f+ & EM of
Pic(X). W acts on Pic(X) and C is a W-invariant subset of Pic(X).
Let CT C C be the set of nef divisors. If X is nodal, then C* = C.

Theorem 7.3. Let r and d be relatively prime integers with r > 0.

(i) For any D € (o, f)*, there is a stable vector bundle Ep such
that tk(Ep) =1, c1(Ep) = do+D mod Zf and x(Ep, Ep) =
1. Ep is unique up to replacing it with Ep(nf), n € Z. We
set

&(r,d) :={Ep|(D,0) = (D, f) = 0}.

(iiy Let F € K(X) be a primitive class with tk(F) = Ir and
(c1(F), f) =ld. Assume that x(F,F) <0. We take an ample
divisor H which is sufficiently close to f. Then Fis repre-
sented by a stable sheaf if and only if x(Ep,F) < 0 for all
Ep € &(r,d). Moreover F is represented by a p-stable vector
bundle, if Ir > 1.

Proof. We may assume that [r > 0. By the deformation argument
in the proof of Proposition 7.2, we may assume that X is nodal. We
first prove (i). We note that My (0,7f, —d) = X. Let £ be a universal
family on X x X. Since every fiber is irreducible, we have 0 — D =
7= ((o,7) + 1) f, where 7 is a section of 7. Then €|\§(XT is a stable sheaf
with the desired invariant. We next prove (ii). The proof of the necessary
condition is similar to the proof of Proposition 7.2. We shall show that
the condition is sufficient. Let % _  : D(X) — D(X) be the relative
Fourier-Mukai transform defined by the sheaf £. Then ®%_ x(Ep)[1] =
O, where 7 is a section of w such that 7 — o0 = —D mod Zf. Then
tk(®4 _ x (F)[1]) = 0 and ¢1 (9% _, x (F)[1]) € C. Therefore ®5 _ 5 (F)[1]
is represented by a line bundle L on a reduced and irreducible curve.
Then the inverse ® _ (L)[1] is a p-stable sheaf. Q.E.D.

By the proof of the theorem, we also get the following.

Corollary 7.4. If ged(r, (&, f)) = 1 and the expected dimension
is non-negative, then My (r, £, x) is not empty, where H is sufficiently
close to f.
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Let X be a rational elliptic surface with a section o such that there
is a singular fiber 77(0) = 3°°_, a;Ci, 0 € P! of type E{", where C;
are smooth (—2)-curves. We assume that a9 = 1. Let C be a divisor
with (C?) = (C,Kx) = —1. Then C =0 + Z;S:O n,C;, n; > 0. Hence

Ct ={D € Pic(X) |(D,0) > 0,(D,C;) >0,0<i<8}.
Thus D :=ro 4+ nf + &, £ € @5, ZC:; is nef if and only if

n>r,
(§,C;)>0,1<i<8
Z?:l ai(&; C'L) S r.

Let W be the affine Weyl group of Eél). Then Mg (0,D’,x) # 0 if and
only if D’ = w(D) with D € Ct,w € W.
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