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Flop invariance of the topological vertex

Satoshi Minabe

§1. Introduction

This is a summary of [6] which is a joint work with Yukiko Konishi.
A toric Calabi-Yau (CY) threefold is a non-singular toric threefold with
trivial canonical bundle! . The topological vertex is an algorithm which
enables us to write down an explicit formula for the generating function
of all genus Gromov—Witten (GW) invariants of toric CY threefolds. The
formula takes a combinatorial form and is written in terms of skew-Schur
functions. This method was developed in [1] based on the geometric
transitions and the duality to the Chern—Simons theory. A mathematical
theory (including a rigorous definition of GW invariants for toric CY
threefolds) has been developed later in [8].

It was discovered [2, 13] that there is a kind of analytic continua-
tion process on Kédhler cones which links string theories on birationally
equivalent CY manifolds. Motivated by these works, the transformation
property of GW invariants of projective CY threefolds under flops was
studied in [7] (see also [9]). In [6], the same problem was studied for
general toric CY threefolds using the topological vertex. Some special
cases were studied earlier in [5].

Now we state our main result. Let X be a toric CY threefold and
Ny s(X) € Q be the GW invariant of X with the genus g > 0 and the
degree 3 € Ho(X,Z)>
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Warieties which satisfy both the toric condition and the CY condition are
necessary non-compact. They are even not quasi-projective in general.

2Tt is defined by the virtual counting of stable maps into X from the genus
g curves and the prescribed homology class 3 of the images. See [8] for a precise
definition of GW invariants of toric CY threefolds.
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Theorem 1.1 ([6]). Let X and Xt be toric CY threefolds which
are birationally equivalent under the flop ¢ : X --» X with respect to
a(—1,-1)-curve C C X, i.e. a torus invariant (hence smooth rational)
curve whose normal bundle is isomorphic to Opi(—1) & Op:(—1). For
B € Hy(X,Z) which is not a multiple of [C]?, we have

Ngg(X) = Ngg.(a(X) .

The above theorem boils down to a combinatorial identity on skew-
Schur functions by virtue of the topological vertex, together with a local
analysis of fans of toric CY threefolds. In the following, we outline the
proof of Theorem 1.1. For details, we refer to [6].

§2. Topological vertex

2.1. Notations

Let p be a partition, i.e. a non-increasing sequence of positive in-
tegers p = (p1 > p2 > +-+ > py(uy > 0). The number I(u) is called the
length of p and |p| := pq + -+ - + ) is called the weight of . Define
the integer () by

i(p)

(1) k(p) = |uf + Zui(ﬂi — 2i),

which is an even number. It has the following important property:

(2) w(p') = —&(n) ,

where ! denotes the conjugate partition, i.e. the partition obtained by
the transposition of the Young diagram of p. We denote by P the set of
partitions.

3For a multiple of flopping curve class [C], we have
Ng.aie)(X) = Ny gio+)(X1) = Ny aip1](Op1 (-1) @ Opa (1)) ,
where C* is the flopped curve. Here we regard the total space of the rank 2

vector bundle Op1(—1) & Op1(—1) — P! as a toric CY threefold (a local toric
curve).
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2.2. Topological vertex
Definition 2.1 ([12]). Let A, A2, A3 € P. Define the topological
vertex Cx, az,2s(q) € Q(g?) to be

L. t
(3) 92" 55, (6°) D s, 7u( @2 )50 u(42277)
nerP

where s,,/,,(¢#1?) (resp. s,(¢”)) is the skew-Schur function (cf. [10])
with the specialization of variables:

Sufo(@i = " 7FE)  (resp. su(zs = ¢ F9)) .

2.3. An identity
Take four partitions A1, A2, Az, A4 € P. Introduce:

/ ZO(anO) 47 + Z(T(‘L BL)
4) Zl(q, == ZJ'(q, e Eas il
() Zo(a, Qo) Z(~1,-1y(¢, Qo) 0 (¢:6) Z(-1,-1)(q,QF)
where
Zo(g,Q0) = Y (—=Q0)Cx, 2zt (@) Crg 20,s(4)
HEP
Z(_)i_(qa Qg‘) = Z(_Qg)‘M[CAl7Mtv)\4(q)cz\3“u7>\2 )
neP

and Z(_1,-1)(¢, Q) = [Tre1(1 — Q¢¥)**. These are formal power scries
in Qo (resp. Q)
Theorem 2.2. Under the identification Qg' = le, we have

Z(_)H(q’ QSF) =
(_QO)—(IMl+l>\2I+|>\3|+[>\4l)q%(K(M)-H(Az)'i"i()\s)"ﬁ()w))Z(’)(q, Qo).

§3. Toric CY threefolds and partition functions

3.1. Toric CY threefolds

Let X be a toric CY threefold and ¥ be its fan. See [4, 11] for basic
facts about toric varieties. We assume that ¥ is finite and satisfies the
following conditions :

4Z(g1,~1)(q, Qo) is the partition function (cf.§3) of the local toric curve
Op1 (—1) ® Op1(—1) — P'. See [3, Theorem 3].
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(i) the primitive generator & of every 1-cone satisfies & - @ = 1
where @ = (0,0, 1), '
(i) all maximal cones are three dimensional and
(iii) || N {z = 1} is connected, where |X| = Uo c R3 is the
o€X
support of ¥ and z is the third coordinate of R3.
The condition (i) is the CY condition. An important example is a so-
called local toric surface which is the total space of the canonical bundle
K of a non-singular complete toric surface S.

3.2. Toric graphs
Let 3;(X) be the set of i-cones in 3. Denote by £5(X) the set of 2-
cones which lie in the interior of |X|. We consider the following directed
graph I'x (called a toric graph) with labels on edges of a certain type.
The vertex set is
V(I'x) =Vs(I'x) Ui (I'x),

where
V3(Tx) = {volo € 3(X)}, Vi(Tx) = {v-|7 € (X)) \ Ty(X)}.

The edge set is
ETx)=E5(T'x)UFE(Tx),

where
E3(Tx) = {e;|T € T3(X)}, E1(Tx) = {es|T € B2(X) \ (X))}

An edge e, € E3(I'x) joins vy, Ve € Va(I') if and only if 7 = o No’ (see
Figure 1) and an edge e, € E1(I") joins v, € V3(I'x) and v, € Vi(T'x) if
and only if ¢ is a unique 3-cone such that 7 is a face of o. This defines
a finite planner graph. Note that V3(I'x) # @ by the condition (ii) on
Y. A vertex in V3(I'x) is trivalent and a vertex in V4 (I'x) is univalent.
A graph I'x is connected by the condition (iii) on X. The direction of
edges can be taken arbitrarily. The label n : E3(I'x) — Z, called the
framing, is given as follows:
_ D,,.C. —D,,.C,

n(er) = 2 )

where 7 € ¥} and p1,p2 € X1 are as shown in Figure 1. Here C, and
D,, are the torus invariant curve and divisor on X corresponding to
7 and p; respectively. Note that C; is a (—1,—1)-curve if and only if
n(e-) =0.
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Vo

Vg

Fig. 1. Fan (section at z = 1) and toric graph

(X(e), X&), X("))  (R(e)*, X(e"), X())  (X(e)®, X(e):, X(e"))  (X(e)*, X(e")*, X(e')")
Fig. 2. X

3.3. Partition functions

Let P(Tx) := {X : E3(I') — P}. Take the set of formal variables
Q= (Qe)echs(ry) associated to E3(I'x). B

We define the partition function Zx(q, Q) of X to be

X € n, MTL € X €
(5) Z H (—1)N@(net1) , Z5=on(e) QA H Cs. (q) ,

XeP(Tx) e€E3(T'x) veVa(Tx)

which is a formal power series in Q Here CXU (¢) is the topological vertex
defined in (3) and X, € P3 is defined in Figure 2 for v € V3(I'x). We set
Xe) = 0 for e € E(T'x) \ E3(I'x), where 0 is the empty partition. We
remark that Zx (g, @) does not depend on the directions of edges since

the framing changes the sign if one gives the opposite direction to an
edge e € F5(I'x) and it is compensated by (2) and the summation.

3.4. Partition functions and GW invariants
Now we explain how to obtain GW invariants Ny g(X) of X from
the partition function Zx (g, Q).
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Fig. 3. Fans (sections at z = 1): £ (left), ¥y (middle) and
YT (right). The generators &,...,ds of p1,...,p4
satisfy the relation &; + s = gy + dy.

Theorem 3.1 ([1, 8]). The GW invariants Ny g(X) are obtained
form Zx(q, Q) as follows.

®  Tmeowte T e
g>0 J:(de)eEE3(FX)’

d|C1=(s]
where [C] = ([Ce])ee Bs(rx)s Ce C X is the rational curve corresponding
to e, diC] := Peemy(ry) delCel, and Fi(q) is given by
log Zx(0, @)= Y, Ffod?,

J:(de)eGEg(FX)

where Q% = He€E3(Fx) Q.

Remark 3.2. Precisely speaking, the partition function obtained in
(8] has the expression almost same as (5) except that C5 (q) is replaced
by va (¢). Here Wi, a,.,(q) is a rational function in ¢ similar to
O 20,05 (q) but has a slightly different expression. It is conjectured that
Wi dens (@) = Chyxns () [8, Conjecture 8.3]. In the above theorem,
we use O, ;2 (g) assuming that the conjecture is true. The conjecture
is true if at least one A; is empty.

§4. Transformations of partition functions

4.1. Flop invariance

We study the transformation property of the partition function of
toric CY threefolds under a flop.
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X Xt
2-cone T0,T1y.--5T4 T TS_,Tl,...,T4 T
curve | Cy,Ch,...,Cy c. |Ccf.cf...,cf  Cf
edge €0,€1,.--,€4 €7 OT € ear,e}L,...,eI e, ore
variable | Qg, @1,-..,Q4 Q. QT,Qf,...,Qf Qe
Table 1

4.1.1. Flop. Let X be a toric CY threefold and let X be its fan.
Assume that X contains at least one (—1,—1)-curve Cy. Denote the
corresponding 2-cone by 7. Near 79, the fan looks like the left diagram
in Figure 3. We set

%o = (Z\ {r0,01,02}) U{oo}, EF =(Z\{n,01,00}) U{rg", 07,05}

where 79, 01, 03, 00, 7'5“ of, a;r are cones shown in Figure 3. Let X be the
singular toric variety associated with the fan 3¢ and X+ be the toric CY
threefold associated with the fan . We denote by Cg the (—1,—1)-
curve on X corresponding to 7;". Then associated to the evident maps
Y — ¥g and &t — Xy, there are the following birational maps:

X -2, X+t

N\ o
Xo .

The maps f and fT are small contractions whose exceptional sets are

Co, Cff respectively. The birational map ¢ = (f*)~'o f is called the flop

with respect to Cy. Note that ¢ is an isomorphism in codimension one.

Under the flop ¢ : X --» X, the curve classes transform as follows.
o $«[Col = —[C{],  .lCi] = [C]] +[Cq,
6:[C.] = [C)] for T € SLX)\ {70,...,Ta}.

For the notations, see Table 1.

4.1.2. Transformation of partition function. We associate the same
formal variables @ = (Q.) to edges in E3(I'x)\{eo, .. .,es} and those in
E3;(T'x+)\{eg,...,ef} and write the partition functions of X and X+

as ZX(‘L @a QO) Qla Q2) Q3a Q4) and ZX+ (q’ Qy Q3—7 QT? Q;—a Q;v QI) re-

spectively. It is immediate to check that
ZX(q: Ga Q07 07 07 Oa 0) - Z(—l,—l)(Qa QO)a
0,

(8)
ZX+(q) Q3_70,07070) = Z(—l,—l)(Q7 Q(—)*_)
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We set

; = def. ZX(Qa @7 QOle’ Q?vQS,Q‘l)
Z%(0,Q,Q0,Q1,Q2,Q3,Q4) = Zx(q,G,Qo,O 0,0,0)

def ZX+(QaQ—' Q(-)h Q2:Q3aQ4)
ZX+(Q,O QO,O 0,0,0)

Z;(-\—((L Qv Q3_7 QZ 7Q3 ’QI)

Theorem 4.1. Under the identifications Qo = (QF)™! and Q; =
QS’ Ql , we have

ZX(q7Q QO)Q17Q27Q35Q4) ZX+(q,Q Q07 T7Q;)Q;7QI)

This follows from Theorem 2.2. By (6) and (7), one can translate
the statement in Theorem 4.1 into that in Theorem 1.1.

4.2. An application of Theorem 4.1

4.2.1. Small modification of toric CY threefolds. Let X be a toric
CY threefold and X be its fan. Let o € Y3 be a 3-cone such that one of
its three 2-dimensional faces 7y lies on the boundary of the support of
the fan |X|. Let 3 be the following fan (see Figure 4):

3= (2\ {70,0}) U {pa, 70, 73,74, 61,52},

and let X be the toric C'Y threefold associated with the fan . We call
X a toric CY threefold obtained from X by a small modification. We
compare the partition function of X and that of X. We use the following
notations in Table 2 for the rational curves, edges and formal variables.
Note that the rational curve Cy corresponding to 7y is a (—1, —1)-curve.

X X
2-cone | Ty,Te T Tg, 1,72 T
curve | Cq,Cs C, Co, Cl, Co C’T
edge e1,ea2 e, orjust e eo, el, e2 e, or just e
variable | Q1, Q2 Q. Qo, Q1, Q2 Qe
Table 2

We study the transformation of the partition function under a small
modification. We associate the same formal variables @ = (Q.) to edges
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in E3(T'x)\{e1, e2} and those in E3(T' ;)\ {éo, é1, é2} and write the parti-

tion functions of X and X as Zx(q,Q,Q1,Q2) and Z4 (g, 3, 0o, O, Q2)
It is immediate to check that

9) Z4(4,0,Q0,0,0) = Z(_1,_1)(q, Qo).

Define
ZX(qa Q7 QO7 Q17 Q2)
ZX (q) 0, Q07 07 O)

Z;g(q’ Qa QO? Ql) Q2) =
Proposition 4.2. We have

Zx(q,@,Q1,Q2) = Z%(4,Q,Q5", Q1Q0, Q2Q0)| o0 -

Proof. Consider the toric CY threefold X+ obtained from X by the
flop of Cp. Let Qo, Q;’ and Q2+ be the formal variables correspond to the
flopped curves Cf, C; and G respectively. Let £t be the fan of X+.
A natural inclusion ¥ < 3% induces that of toric varieties X < X+,
Under this map, we identify QF and QF with Q; and Q, respectively.
Then by Theorem 4.1, we have

Z% . (4,@,Q0,Q1,Q2) = Z% (2,3, Q5 ", Q1Qo, Q2Q0).-

On the other hand, we have
lim Z;A(+ ((L Cja Q07 Qb Q2) = ZX((], Q, Q17 QQ)
Qo—0
Q.E.D.

4.2.2. Toric surface and its blowup. Let S be a complete smooth
toric surface and S its blowup at a torus fixed point. The exceptional
curve of p: § — S is denoted by E. Let X = Kg and X = K 4 be local
toric surfaces. Then X is a small modification of X and E is a (—1,-1)-
curve on X added by the small modification.  Applying Proposition 4.2
to this case, we obtain the following

Corollary 4.3. For 8 € Hy(S,Z) satisfying 8.FE =0,
Ng,B(KS') = Ng,p*B(KS) .

Especially, the GW invariants of Ks are obtained from those of K.
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T T*
3 Z__p2 p3 LI
T 3| 92/ T1
70 To
g
p1 P4 Ll py
T4

Fig. 4. Fans (sections at z = 1) : ¥ (left) and 3 (right). The
generators @i, ...,Ws of py,. .., ps satisfy the relation
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