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Some oscillation results for second order linear delay 
dynamic equations 

Lynn Erbe and Allan Peterson 

Abstract. 

We obtain some oscillation theorems for linear delay dynamic equa­
tions on a time scale. We illustrate the results by a number of examples. 

§1. Preliminary results 

Consider the second order linear delay dynamic equation 

n 

(1) L[x](t) := (r(t)x~(t))~ + L qi(t)xh(t)) = 0. 
i=l 

We will be interested in obtaining oscillation theorems for (1) by com­
paring the solutions to a related equation without delay of the form 

n 

(2) (r(t)x~)~ + L Qi(t)x"' = 0, 
i=l 

for which many oscillation results are known. We recall that a solution 
of (1) or (2) is nonoscillatory if it is eventually of one sign. If a solution 
changes sign infinitely often it is said to be oscillatory. 

Let 'TI' be a time scale (nonempty closed subset of the reals ffi.) which 
is unbounded above. We assume that the coefficient functions qi(t) ;:::: 0, 
i = 1, 2, · · · , n, and r(t) > 0 are rd-continuous on the time scale interval 
[a,oo)T := [a,oo) n 'TI', (i.e., r,qi E Crd([a,oo)1r). Furthermore, we will 
assume that L~=l qi(t) =/=- 0 (for all large t). We will also assume that 
the delay functions Ti : [a, oo)T ----+ 'TI' are rd-continuous, Ti(t) :::; t, and 
Ti(t) ----+ oo as t----+ oo, i = 1, 2, · · · , n. For details concerning calculus on 
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time scales and other pertinent definitions, we refer to the books [3], [4], 
and [11]. Stability and oscillation questions for certain first order delay 
dynamic equations have been considered in [1] for example. 

We start with several auxiliary lemmas which are crucial in the proof 
of the main results. The first lemma is usually referred to as the Riccati 
technique. Denote 

z2 

S[z] = r(t) + J.L(t)z · 

Lemma 1 ([12], [6]). The equation 

(3) Lrq[x] := (r(t)x~)~ + q(t)xu = 0 

is nonoscillatory if and only if there is a function z satisfying the Riccati 
dynamic inequality 

(4) z~(t) + q(t) + S[z](t) S:: 0 

with r(t) + J.L(t)z(t) > 0 for large t. 

That is, if x(t) is a solution of (3) that is of one sign for all large 

t E [a, ooh, then z(t) := r(t~(~(t) satisfies (4) with r(t) + J.L(t)z(t) > 0 
for large t. Conversely, if z(t) solves (4) with r(t) + J.L(t)z(t) > 0 for large 
t, then (3) has a solution x(t) which is of one sign for all large t. 

We will use this lemma to show that a nonoscillatory solution of (1) 
leads to a solution of the Riccati dynamic inequality ( 4). In order to do 
this, we introduce the auxiliary functions H(t, ti) and 77i(t, h) defined 
by 

i t 1 
H(t, ti) := -( ) ~s, 

tl r s 
l S:: i S:: n. 

We may then establish the following result. 

Lemma 2. Let x(t) be a solution of (1) which satisfies 

x(t) > 0, x~(t) > 0, (r(t)x~(t))~ S:: 0 

for all t 2': Ti ( t) 2': T 2': a. Then for each 1 S:: i S:: n we have 
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Proof. Fort 2': Ti(t) > T 2': a we have 

1a(t) 

x(O"(t))- x(Ti(t)) = x~(s)~s 
T;(t) 

1a(t) 1 
-( )r(s)x~(s)~s 

r;(t) r s 

1a(t) ~s 
< r(Ti(t))x~(Ti(t)) -( ) 

r;(t) r s 

which yields 

x"(t)::::; x(Ti(t)) + r(Ti(t))x~(Ti(t))H(O"(t), Ti(t)). 

Dividing both sides of this inequalilty by xh(t)) we get 

(5) 

Also, we have 

and so 

x(Ti(t)) > x(T) + r(Ti(t))x~(Ti(t))H(Ti(t), T) 

> r( Ti(t))x~( Ti(t))Hh(t), T). 

Therefore, we have 

(6) 
rh(t))x~(Ti(t)) 1 

x(Ti(t)) < H(Ti(t), T) · 

Hence, from (5) and (6) we have 

x" (t) 
x(Ti(t)) 

< 1 + H(O"(t), Ti(t)) 
Hh(t),T) 

H(O"(t), T) 1 
H(Ti(t),T) rJi(t,T)" 

This gives us the desired result 

x(Ti(t)) > x"(t)ryi(t, T). 
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Lemma 3. Assume qi(t) 2: 0, 1 ::::; i ::::; n, and I;~=l qi(t) =/'- 0 for 
large t. Let x be a solution of (1) with x(t) > 0, t E [to, =hand assume 
further that 

100 i':lt 
to r(t) = =· 

Then there exists a T E [to,= )1r such that 

x(t) > 0, x"'-(t) > 0, and (r(t)x"'-(t))"'-::::; 0 

fortE [T, =h· 
Proof We can suppose that t 1 2: t0 is such that x(t) > 0, x(Ti(t)) > 

0, t 2: t 1 , for all1::::; i::::; n. Then we have 

n 

(r(t)x"'-(t))"'- =- L qi(t)xh(t))::::; 0, t E [t1, =h, 
i=l 

and so r(t)x"'-(t) is decreasing fortE [t1, =h· Therefore, if x"'-(t2 )::::; 0 
for some t 2 E [t1 , = )T, then it follows that 

r(t)x"'-(t)::::; 0, t E [t2, =h· 

If x"'-(t3 ) < 0 for some t 3 2: t 2 , then an integration gives 

x(t)- x(t3) 

< r(t3)x"'(t3) lt !:l( s) 
t3 r s 

----+ -=, as t----+ =, 
which gives us a contradiction. Hence, x"'-(t) = 0 fortE [t2 ,=)1r and 
this means x(t) =constant fortE [t2 , =h· But, then 

n 

(r(t)x"'-(t))"'- = 0 =- Lqi(t)x(Ti(t)) =/'- 0, 
i=l 

which is a contradiction. Hence, it follows that 

Q.E.D. 



Delay dynamic equations 219 

§2. Main results 

We may now apply the previous lemmas to obtain our first oscillation 
result. 

Theorem 4. Assume r(t) > 0 with faoo 1/r(t) At= oo and assume 
that Qi(t) 2: 0, 1 ~ i ~ n, and 2::7=1 qi(t) ¢. 0, for all sufficiently large t. 
If 

(7) 

where, for t E (T, oo h, 
n 

Q(t, T) := L 'f/i(t, T)qi(t), 
i=l 

is oscillatory on (T, oo h for all sufficiently large T, then all solutions of 
(1) are oscillatory. 

Proof. If not, assume that x(t) is a solution of (1) of one sign for 
t 2: h 2: a and without loss of generality let us suppose that x(t) > 0, t E 
[t1, ooh. Then by Lemma 2 and Lemma 3, there exists aTE [h, ooh, 
sufficiently large, such that 

x(t) > 0, x.6.(t) > 0, t E [T, ooh, 

x(ri(t)) 2: 'f/i(t,T)xa(t), Ti(t) E (T,ooh, for all 1 ~ i ~ n, 

and (7) is oscillatory on [a, ooh. Consequently, we have that x(t) > 0 
satisfies x.6.(t) > 0 and (r(t)x.6.).6. + Q(t, T)xa ~ 0, t E (T, ooh. 

If we set z(t) := r(t1(~(t), then z(t) > 0 and 

x(t)(r(t)x.6.(t)).6.- r(t)(x.6.(t))2 

x(t)xa(t) 
1 2 x(t) 

< -Q(t, T)- r(t) z (t) xa(t) 

_ (t T) _ z2 (t) x(t) 
Q ' r(t) x(t) + JL(t)x.6.(t) 

- (t T)- z2(t) 
Q ' r(t) + JL(t)z(t) · 

Therefore, since r(t) + JL(t)z(t) > 0 and z is a solution of 

z.6. + Q(t, T) + S[z](t) ~ 0 
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for large t, we get by Lemma 1 that the linear equation 

(8) (r(t)x"'-)"'- + Q(t, T)x,. = 0 

is nonoscillatory on (T, oo )T. This contradiction proves the result. 
Q.E.D. 

We may establish a number of corollaries by using Theorem 4 and 
known criteria for linear second order dynamic equations ( cf. [2], [5-8], 
[10] and [12-15]). For example, we have the following result. 

Corollary 5. Assume 

roo ~s roo 
Jr r(s) = 00 = Jr Q(s, T)~s. 

Then all solutions of (1) are oscillatory. 

Proof. Corollary 5 follows from the Fite-Wintner-Leighton crite­
rion which says that all solutions of (3) are oscillatory ( cf. [2]) if 

100 1 100 
a r(t) ~t = 00 = a q(t)~t. 

(9) 

For the case r(t) = 1 and a single delay, (1) becomes 

x"'-"'- + q(t)x(T(t)) = 0. 

In this case, ry(t, T) = :m=~, so that 

T(t)- T T(t) 
Q(t, T) = O"(t) _ Tq(t) ~ O"(t) q(t) 

Therefore, if 

100 T(t) 
a O"(t) q(t)~t = 00, 

then all solutions of (9) are oscillatory. 

(10) 

We next consider the dynamic equation 

x"'-"'- + __:]___( ) x( T( t)) = 0. 
tT t 

We have the following. 

as t ____, oo. 

Q.E.D. 

Corollary 6. All solutions of (10) are oscillatory if 1 > i and 
1. p(t) 0 
lmt-->oo -t- = . 



Proof. 

(11) 
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We use the fact that all solutions of 

XAA + __]__Xu = 0 
ta(t) 

221 

'11 t 'f 1 d 1' !!:ffi - 0 ( f are osc1 a ory 1 ry > 4 an Imt-+cxo t - c . 
Theorem 4. 

[12]) along with 
Q.E.D. 

§3. Examples 

In this section we give examples of our main results. 

Example 7. If 1!' is any time scale with limt-+cxo tt~t) 0 (e.g., 
1!' = ~ or 1!' = Z), then all solutions of (11), or more generally 

n 

XAA + L "Y(i )X(Ti(t)) = 0 
i=l tTi t 

are oscillatory provided 

n 1 
ry:=L.::ryi>4. 

i=l 

To see this, we observe that in this case 
n 

i=l 

and 

Ln "Yi (Ti(t)- T) i 
~ as t-+ oo. 

i=l tTi(t) a(t)- T ta(t) 

Therefore, since (11) with ry replaced by i is oscillatory, the result now 
follows from Theorem 4. 

Example 8. If 1!' = qNo, q > 1, then the q-difference equation 

XAA +_]__Xu= 0 
ta(t) 

is oscillatory iff ry > (yq~l)2 {cf. [5], [12]}. Therefore, the delay q­

difference equation (where Ti : 1!' = qNo -+ '][') 

n 

xAA + L "Y(i )xh(t)) = 0 
i=l iTi t 
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is oscillatory provided 

n 1 

"!= ~'Yi > (yq+1)2. 

Additional examples may be readily given. We leave this to the 
interested reader. 
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