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The diaphony of a class of infinite sequences

Yukio Ohkubo

Abstract.

Let a be an irrational number with diophantine approximation
properties and let £(z) be a logarithmic-like function. We study the di-
aphony F'y of the sequence (an+£(n)),>1. As an example of our result,
we show that if a has the bounded partial quotients of the continued
fraction expansion and § is non-zero real, then the sequence (xn)n21 =
(a[(n+1)/2]+(-1)"*!Blog([(n+1)/2]))n>1 satisfies N~ 17 < Fy(zn) <
N-% for any 0 < ¢ < 1/4. In our proof, Atkinson’s saddle-point lemma
is very usefull.

¢1l. Introduction

The fractional part {z} of a real number z is defined by {z} = z—|[z],
where [z] denotes the integral part of x. Let (z,)n>1 be an infinite
sequence of real numbers. For an interval I C [0,1), let A(J,N,z,)
be the number of terms z,, 1 < n < N, for which {z,} € I. The
sequence (Zy,)n>1 is called uniformly distributed mod 1 if for any interval
I C[0,1), limy_o N"YA(I,N,z,) = |I|, where |I| denotes the length
of I.

The discrepancy Dy (z,) of the sequence (z,)n>1 is defined by

Dv(en) = sup ALy

I1Clo,1)

(see [8] and [2]).
The diaphony Fn(z,) of the sequence (z,)n>1 was defined by Zin-
terhof [13] as

2\ 1/2

1 N
N Z e(hzy)

n=1

1
Fy(zn)=(2) 5
h=1

Received November 4, 2005.
2000 Mathematics Subject Classification. Primary 11K38.



308 Y. Ohkubo

where e(6) = €27,
It is known that for any real sequence (x,)n>1

37125 Dy (zn)%? < Fn(xn) < 11Y2Dy(z)"?

(see [10], [8], and [2]).

The sequence (2 )n>1 is uniformly distributed mod 1 if and only if
lim, o Dn(z,) = 0, or, equivalently, limy, oo FN(z5,) = 0 (see [8]).

In [11], [3], and[4], we studied the discrepancy of the sequence
(an + f(n))n>1 for the irrational number a with diophantine approxi-
mation properties and for the logarithmic-like function f(z). We gave
the upper bounds and the lower bounds for the discrepancy, and showed
that there exists the gap between the uppler bound and lower bound for
the discrepancy. For example, if a has the bounded partial quotients of
the continued fraction expansion and 3 is non-zero real number, then
the sequence (an + Blogn),>1 satisfies

log N

2
3

1
NI < Dy(an + Blogn) <«
4

In this paper, we study estimates for the diaphony of similar se-
quences. For example, if o has the bounded partial quotients of the
continued fraction expansion and 3 is non-zero real, then the sequence
(Tn)n>1 = (af(n +1)/2) + (—=1)" T Blog([(n + 1)/2]))n>1 satisfies

< Fy(z,) <

2
3

Nite
for any 0 < € < 1/4. This result is deduced from Theorem 4.

§2. Results

We need some estimates for exponential sums. The following for-
mulas are sharper than that in Theorem 1.1 of [4].

Theorem 1. Suppose that £(z) is a function of complex variable z
that satisfies the following conditions:
(i) £(z) is real and differentiable for x > 0,
(ii) there exists an integer mg such that 1 < ng < N
and £"(x) < 0 for > ng,
(iil) limg 00 /() = 0,
(iv) £(2) is analytic for x >0, |z — z| < x/2,
(V) 1€'(z)] < £'(z) and |£"(2)| > ¢'(z)/x for Re z =
z >0,
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(vi) for any 6 >0, |¢"(x)|Y/?+® < 0'(x) < |0 (x)|}/?

forx > ng, |z —z| <z/2,

(vii) there exists p < 0 such that £'(2x) < 2°¢'(x) for

T > ng. '
Let a be an irrational number. For a positive integer h let us define cp
by £'(cp) = (k — ah)/h , where k = [ah] + 1.
If he'(ng) > 1 and ng < ¢cp, < N, then for any e >0

Y e(hlan +£(n))) = h=21e" (ch)| " %e(6n)

no<n<N

) <k—‘1a—h) ) (@%T) +0 (h1/2 1og(e'(n0)h)) :

where 0y, = hé(cp) + (ah — k)ep, — 1/8.
Let us define ¢j, by £'(c},) = (ah — k'}/h , where k' = [ah].
If h/(ng) > 1 and ng < ¢j, < N, then for any e >0

> elhlon —£(n)) = h~V2|L" (c;)| 7 2e(67)
no<n<N
1 h~1l/2+e )
- e /2 /
+0 (ah - k,> +0 ((ah — k/)1+s) +0 (h log (£ (ng)h)) ,
where 0, = —h(c),) + (ah — k')cj, +1/8.
If ht'(ng) > 1 and either N < ¢, or N < ¢}, then

3 e(hlantt(n) =0 (h1/2 1og(e'(n0)h)) .

no<n<N

Theorem 2. Suppose that the irrational number o has the bounded
partial quotients of the continued fraction expansion, that £(z) is a func-
tion satisfying the conditions (i)—(vii) of Theorem 1, and that Nt <
U'(NYy<1. Then

1
Ne(N)3'

By the same reasoning as in the proof of Theorem 2, we obtain the
following theorem.

Fy{ant{(n)) <

Theorem 3. Suppose that the irrational o is of type n , that £(2)
is a function satisfying the conditons (i)—(vii) of Theorem 1, and that

N-#5 < '(N) < 1. Then for anye >0
1

Fy(an +£(n)) € —————F——.
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Theorem 4. Suppose that the irrational number o has the bounded
partial quotients of the continued fraction expansion, and that ¢(z) sat-
isfies the conditons (i)—(vii) of Theorem 1. Let z, = a[(n + 1)/2] +
(=1)"*([(n +1)/2]), n=1,2,.... Then for any0<e<1/4
(1) ! L Fn(z,) € !

Ne(Nj2)yi e N S NNy

83. Lemmas

We use the following saddle-point lemma of Atkinson [1].

Lemma 1 ([1, Lemma 1]). Let f(z), ©{(z) be the two functions of
the complex variable z and [a,b] a real interval such that
(i) for a < x < b, the function f(z) is real and
f"(x)y <0
(ii) for a certain positive differentiable function u(z),
defined on a <z < b, f(z) and p(z) are analytic for
a<z<b, |z—z| < plx),
(iii) there exist positive functions F(z), ®(z) defined
on [a,b] such that

p(z) < (), f(2) < Fx)u'(z), (f"(2))7! < p*(@)F(2)

fora<z <b, |z—z| < pulx).
Let r be any real number, and if f'(z) +r has a zero in [a,b] denote
it xo. Let the values of f(x), ¢(x), and so on, at a, xo, and b be
characterized by the suffizes a, 0, and b respectively. Then

(z (@) +ra)de = oo|f51) 7 e(fo +rao — 1/8)

b
+0 /<I> z) exp carwr)—GF(m)](dx+¢du(x)|>)

If f'(x) +r has no zero for a < x < b, then the terms involving o are
to be omitted.

The following lemma was given by Hardy and Littlewood (see [6]
and [7]). The lower bounds was stated without proof by them. Proofs
for the lower bounds can be found in Haber and Osgood [5].
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Lemma 2. If o is an irrational number, and the partial quotients
of the continued fraction expansion are bounded by a fixed number M,
then

K
CiKlogK <Y |nal™! < C;K log K
n=1
and fort > 1
K
CsK' <) |Inall™ < C4K*,
n=1

where ||z|| denotes the distance between x and the nearest integer and
the C'’s depend only on M and on t. The left-hand inequalities holds
without any hypothesis on the partial quotients of a.

§4. Proof of Theorem 1

We consider >, ...y e(h(an +£(n))). In the same way, the results
for 37, ,<n e(h(an — £(n))) is obtained.

Suppose that he'(ng) > 1 and ng < ¢, < N. Let k = [ah] + 1. We
write

> e(h(an +£(n)))

1<n<N
= Z e(h(an + £(n))) + Z e(h(an +£(n))) + E
1<n<ng no<n<2ch

(2) =0(1)+S+E,
where S = 37 o, e(h(an + £(n))), and E = 7, ye(h(an +
(1)) = Xy <n<ae, e(h(an + £(n))).

From (ii) and (iii), it follows that

k- ah

0< EI(QCh) < é’(ch) = <1/h,

so that
0< hf’(QCh) <1.

To S, we apply Lemma 4.7 of [12] with f(z) = haz + hé(x), a = no,
b=2ch, A= ah+ ht'(2c), B=ah+ ht'(ng), and n = ht'(2cp). Since
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k—1<A-n=ah<kand (B+n)—(4A—-mn)>ht'(ng) > 1, we have

S = /2% e(hl(z) + (ah — k)z)dz

0

ZCh ’
-+ / + (ah —v)z)dx
k+1<y<ah+hé’(no o
26;
+ / + (ah — v)z)dx
ah+h€’ (no)<v<L
(3) + O(log(¢'(no)h +2)),

where L = B + 1 = ah + hl'(ng) + he'(2¢cp). Let

20;
S; = / + (ah — v)z)dz,
k+1<u<ah+h€’ (no) V™0

2¢ch,
Sy = / + (ah — v)z)dz.
ah+he’ no)<u<L
We define b, by ¢/(b,) = (v — ah)/h for ah < v < ah + ht'(ng). We
note that the zero b, of he'(z) + ah — v satisfies ng < b, < ¢;. To
ff:" e(hf(z) + (ah — v)z)dz, applying Lemma 1 with a = ng, b = 2b,,
f(z) = M(2), r = ah — v, u(z) = z/2, p(z) = ®(z) =1, F(z) =
Lhat'(z), we find that for ah < v < ah + ht'(ng),

2b,
/ e(hl(z) + (ah — v)z)dx

0

=h21e"(b,)] 72 (hE(b,) + (ah — v)b, — 1/8)

+0 (/njbu exp (—g—(ah — V) — %hzf’(w)) dz)

10 (h_3/2b;1/2£’(b,,)_3/2>

<|h€’(no) ~1f-ah - u|> +0 (fh@’(Qbu) i ah = u|) :

For ah < v < ah + h#'(ng), we obtain

(4) +0

(5) /:bu exp <%(ah —V)x — %hxf’(x)) dz <

0

v—oah’
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From (vii), It follows that |h¢'(2b,) + ah—v|™! < (1-2°)"}(v —ah)~ L.
Let £ > 0 be fixed. We define § by € = 25/(1 4 26). Since [£”(z)]/?1? «
¢'(x) for x > ng by (vi), from (v) we derive that b, > £/(b,)/|¢"(b,)| >
gl(by)l—lf% _ E'(b,/)_1+25 and so h—3/2b;1/2£l(bu)—3/2 < h—1/2+5(y _
ah)~17¢. Hence from (4) and (5), it follows that for ah < v < ah +
h€'(ng) — 2, (note that this range is void if h¢'(ng) < 2)

2b,
/ e(hl(z) + (ah — v)z)dx

0

=h=1 216" (b,)| /%€ (he(b,) + (ah — v)b, — 1/8)

For ah+ he'(ng) — 2 < v < ah+ ht'(ng), we obtain the formula (6) with
the last term replaced by O(h=1/2).

In order to estimate f;bc:" e(hl(z) + (ah — v)zx)dz for ah < v <
ah 4+ hf'(ng), we also use Lemma 1. We note that b, ¢ [2b,,2cs].
Since h#'(2¢p) + ah — v < he'(2b,) + ah — v < h2°4'(b,) + ah — v =
(2 — 1)(v — ah) < 0, we have

2¢n
/ e(hl(z) + (ah — v)z)dx
2b,,

2C},,

< / exp (——C—(l/ —ah)z — ghmf’(m)) dx

2b,, 2 2

+|he'(2b,) + ah — vt + |h'(2ch) + ah — v| !
1

v—ah’

(7) <

By (6) and (7), for ah < v < ah + h€'(ng) — 2 we have

2ch
/ e(hl(z) + (ah — v)z)dz

0

=h V210" (b,)| "2 (he(b,) + (ah — v)b, ~ 1/8)

8 +0 <y—1ah) +0 <%) +0 (hé’(no) —lf-ah - 1/) ’

and we obtain the formula (8) with the last term replaced by O(h~1/2)
for ah+ht'(ng)—2 < v < ah+ht'(ng). Since |[¢”(b,)|"1/? < Z’(bl,)‘1 =
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—h_ by (v), from (8) we deduce that

v—ah

Sy =h~1/2 > 10" (b,)| Y %e(he(b,) + (ah — V)b, +1/8)
k+1<v<ah+ht' (no)

1
+0 Z V—ah)

k+1<v<ah+ht (ng)

1
+0 Z ' hﬂ’(no)—}—ah—u)

k4+1<v<ah+he (ng)—2

o Z p-1/2+e O(h-12)
+ & —amie | TOGT
k+1<v<ah+he (no) (k — ah)
1
<h1/? 3 ——— +log(¢/(no)h) + O (h—1/2)

k+1<v<ah+he (no)

(9) =0 (h1/2 1og(e'(n0)h)) :

Next, we estimate S2. Since 0 < L — ah — #/(ng)h = h'(2¢ch) <
he'(cp) = k — ah < 1, Sy is the sum of at most 1 term. If there exists
v such that ah + ¢/(ng)h < v < L, then ¢/(b,) = ”—_hﬂﬁ > {'(ng). Since
0 (z) is decreasing, b, < ng, and so the zero b, of hf'(z) + (ah — v) is
not in [ng, 2¢]. Applying Lemma 1, we have

2ch
S :/ e(hé(x) + (ah — v)x)dx

0

2cy, C
<</ exp (——2—(ah —v)x — Ch) dz

0

+ |h€" (ng)|~Y2 + |h€' (2c1) + ah — v| ™!

< _1 PR
1
(10) <<Wn0) +h V2 « B2

From (3), (9) and (10), it follows that

S =h=Y210" (cp)| 7V 2e (ht(ch) + (ah — K)ep, — 1/8)

11) +0 (k_jaﬁ) +0 <(—k’l__—:%+—) +0 (h1/2 1og(e’(n0)h)) :
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Lastly we estimate the term E. Suppose that 2c;, < N. Applying
Lemma 4.7 of [12}, we obtain

E= )" e(hlan+£(n)))

2cp<n<N

N
- ¥ / e(hé(z) + (ah — v)z)dz + O(log(B — A +2)),
2

A-n<v<B+n Y *4Ch

where A = ha + h&'(N), B = ha + h€'(2¢y), and n = he'(N)/2 < 1/2.
Since (B+n)—(A—n) = h#'(2c,) < h'(cn) < 1, the number of terms in
the sum is at most one. Since A—n = ah+ht'(N)/2 < ah+(k—ah)/2 <
kand k-1 < A — n, if there exists the term, then v = k. Since
g'(z) = he'(z) + (ah — k) has no zero in [2¢p, N] and [h¢'(N) +ah —k| >
|he'(2¢p) + ah — k| = —h'(2¢h) — ah + k > (1 — 2°)(k — ah), applying
Lemma 1 with f(z) = hé(z), r = ah — k, p(z) = /2, p(x) = ®(z) =1,

F(z) = hat'(z), we have

N
/ e(hl(z) + (ah — k)z)dz
2

Ch.

N C
<</ exp (——(k - ah)x) dr
2cp, 2
+ |h€'(2ch) + (ah — k)| 7! + [RE'(N) + (ah — k)| 7*

P
k—oah’
Hence
(12) o2
T T \k-ah/)’
On the other hand, if ¢;, < N < 2¢p, then
E=- Z e(h(an +£(n)) = — Z e(h(an + £(n)).
N<n<2ec N+1/2<n<2cy

Similarly, we have the same estimate as (12). Combining this with (11),
we get the conclusion.

In the case N < cp, the conclusion is obtained in the same way as
estimate of S;.
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§5. Proof of Theorem 2

We consider Fy(an + ¢(n)). In the same way, the estimate for
Fn(an — £(n)) is obtained. Put z, = an + £(n). We write

e(hzn) = >+ > + >

n=1 ISh<l(no)™"  pr(ng)-1<h<&(N)~F  £/(N)~F <h<t/(N)-1
+ > o+ >
O(N)-1<h<AL'(N)-1  AL/(N)-i<h
=51+ S22+ S3+ S4 + S5,

N

say, A > 1 will be suitably determined. We get the trivial estimate
(13) S1=0().

Let h > ¢'(ng)~!, and let k = [ah] + 1. Since (k —ah)/h = £/(cp) €
|€" (c,)|'/2, Theorem 1 with & = 1/2 implies that

N p1/2 1 o
(14) > e(han) < —r TEPEE + hY? log(£ (ng)h).

n=1

Since « has the bounded partial quotients of the continued fraction ex-
pansion if and only if « is of constant type, h~! < ||ah| for all integers
h (see [9]). Hence h™! < k — ah, and so kh_lgh > (k_alh)g/z. Therefore
from (14)

(15)
§N h B W log(€(no)h) < Lo B2 Log(¢ (o)
n < 4 .
n:le( T ) < k‘ — ()lh Og( (n0) ) o ||Oéh|| Og( (nO) )

From (15), we derive

1
Sy = > s

2

N
Ze(hxn)

¢(no)-1<h<e/(N)" % n=1
1 (A2, 2
— hY/2 1og (¢
< 2 @ (nozhn+ o8(¢ (”")h)>
¢ (ng)-1<h<e(N)~3
1 log2 (#'(no)h)
16 - og (£ {no)n)
(16) < > RlahlE " 2. B

&(no) "I <hS(N)"3 ¢ (no)-1<h<e/(N)~§
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Since Z?:l lajl| =2 < h? by Lemma 2, applying Abel’s summation for-
mula, we get

Z 2

: hll
£ (no)~1<h<€'(N)"3

Hence from (1
(17)

If h/(k — ah) < 1/0/(

N
Z (hxy)
h=1

N),

On the other hand, if 1/¢/(N

Theorem 1 implies

> etha

So < O'(N)™5 +1og?(¢/(N)~

(v~

! Z 1+ 2(N)

Rlah? <

2 4
3 3

¢ (N)~

< O(N)73,

6) it follows that

2 2
3 3,

) < L(N)”

then by (15)

+ hY2log(¢' (no)h)

7 (N) log(¢'(ng)h).

) < h/(k — ah), then N < ¢p, and so

< hY/?log £'(ng)h.

h=1
Hence
N B-1/2
Ze (hzp)| € ——= + hl/zlogf'(no)h
¢(N)
h=1
Therefore
1| & ?
S3 = Z 7z Ze (hzy)
¢(N)~ 3 <h<tr(N) n=1
1 1
— hl A h
¢(N)" 3 <h<@'(N)-1
¢(N)~% +log® .
(18) K (N)7"% +log (f'(N))
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We have

(19) S5 = Z —12—

AL(N)-1<h

2
N? N2¢(N

ST
Ae'(N)~1<h

N
Z e(hxy)

n=1

We put A = N2¢/(N)3. Since N™5 < ¢/(N) by the assumption, A > 1
is satisfied. Hence by (19) we have

N

> e(han)

n=1

2
< O(N)~3.

(20) Ss= Y %

N2 ()R <h

If £/(N)~! < h, then ¢'(cy) = 5522 < ¢/(N), or ¢4, > N, and so
Theorem 1 yields

N
3~ e(han) < h/?log (¢ (no)h).
n=1
Therefore
1| & ’
S4 = Z ﬁ Z e(hfn)
n=1

£(N)-1<h<N2e/(N)§
1 2
(21) <« > - log?(¢'(no)h) < log®(N2£'(N)3).
o(N)-1<h<N22/(N)3
From (13), (17), (18) , (20) and (21), it follows that
(22)

1
272

h=1

2

3 < O(N)™ 3% +log? < 7 (1N)> + log? (NQE’(N)%) )

Z e(hzy)
n=1

Since N™5 < £/(N), we obtain ; (N) < N2¢(N)3. Hence from (22), we

obtain
2

o) 1 N
2
Zﬁ > e(hzn)| < €(N)75 +log® N.
h=1 n=1
Therefore
(23)
o N 2\ /2 3/2
1 1 log/ N
Fy(zy, <<— — (hxyn) <
v (;W; ) N T TN
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Since £'(z) < (—£"(x))Y/?, we get e,(/x()ﬁ) > 1, and so #/(N) < 1/N.
Hence ¢/(N) < log™% N, and so #/(N)~% > log¥? N. Combining this

with (23), we have

1

Fy(n) € ——.
i) < Sl

§6. Proof of Theorem 4

The upper bound of (1) is got from Theorem 2.

We write N = 2m or N = 2m + 1. Since a is of constant type,
there exists ¢ > 0 such that ||ah| > c¢/h for all positive integer h. Put
A, = [3/c/0'(m)]. Suppose that 1 < h < A,,. Let k = [ah] + 1 and
let &' = [ah]. We derive ¢'(cp) = ’—“:ho‘—h > thhﬂ > 7% > £'(m), and so
cp, < m. Similarly we have cj, < m. Hence Theorem 1 yields

’

3

N
Ze hxy) =

n=1 7

e(h(aj + £(4) +zeh(aj—€ ))
1 j=1

I

1
We(hﬂ(ch) + (ah — k) —1/8)

TRl + (K ah) + 1)

1 1
O (k—ah) +O(ah—k’)

p-1/2+6 R—1/2+6
+O<%—aMHﬂ>+0(mh—WV”>

(24) L0 (h1/2 log(e’(no)h)) ,

wherem' = mif N =2m, m' " =m+1if N=2m+1, and § will be
determined later. We assume that |ah| = k — ah. Since ah — k' > 1/2,
we have

1 1 hl/2
hl/Q(_gu(C;L))1/2 < hl/QEI(C;_L) T ah— k'
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Hence (24) implies

N
S e(hn) :Wdhz(ch) + (ah — k) —1/8)

n=1
-1/2+8
<o) o ()
(25) +0 (h1/2 1og(£'(n0)h)) .

Let 0 < € < 1/4 be fixed. From the condition (vi), it follows that

h1/2—25

> h7Y20 ()" > B2 () e > L

1
1721 (cn)[ /2 llochl|

where 4 is defined by € = %. Since € < 1/4, we have

h—1/2+6 h—1/2+5 h‘l/2+6 1 h—1/2+26 hl/2—25

(k—ah)t*e — Jlah|*0 k| [lahl® lleh]| lleh]

Hence from (25), we derive

N pl/2-2¢ 12
hzy)| > Ci———— — C ! .
nZIe( )| > Ch oAl 2h = log (€' (ng)h)
Therefore
N 2 h1—4s hl—a 2
(26) e(hzy,)| > Cs —Cy + Cs (hlog”(£'(no)h)) .
2 JahT? ~ 4 any + 5 (o (o))
In the same way, we obtain (26) when |jah| = ah — k’. Hence it
follows that
N?En(z,)?
Am | | N 2
> Cs /o) Ze(hzn)
h=1 | |n=1
.

. 1 —1—e Am 2/
log*(¢'(ng)h)
Tah] ) + Cy (Z - ) .

h=1
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Applying Abel’s summation formula and Lemma 2, we have

Am p-1-4c Aml

h
_ —1-4e _ —1- 45
o = 2 (h+1)77) 2 T

h=1 h=1
_I_A—l 4e
Z ||f>ln||2

(28) >Al-te,
Similarly, we obtain

A

m p—l-¢

29) =0(1).
( 2 Jany =W

Since Zf;"l Ioiz(ih(@—)i) = O(log® A,), from (27), (28), and (29), it
follows that
1-2¢

2
m

(30) Fn(za) > —5—

Using A, > ¢/(N/2)~1/2? with (30), we arrive at

1

FN(CEn) > W.
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