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On the Littlewood conjecture 
in fields of power series 

Boris Adamczewski and Yann Bugeaudt 

Abstract. 

Let k be an arbitrary field. For any fixed badly approximable 
power series 8 in k((X- 1)), we give an explicit construction of contin­
uum many badly approximable power series <I> for which the pair (8, <I>) 

satisfies the Littlewood conjecture. We further discuss the Littlewood 
conjecture for pairs of algebraic power series. 

§1. Introduction 

A famous problem in simultaneous Diophantine approximation is 
the Littlewood conjecture [17]. It claims that, for any given pair (a, (3) 
of real numbers, we have 

inf q · llqall · llqfJII = 0, 
q2':1 

(1.1) 

where II · II stands for the distance to the nearest integer. Despite some 
recent remarkable progress [24, 12], this remains an open problem. 

The present Note is devoted to the analogous question in fields of 
power series. Given an arbitrary field k and an indeterminate X, we 
define a norm I · I on the field k( (X -l)) by setting I 0 I = 0 and, for any 
non-zero power series F = F(X) = :Lt:O-m fhX-h with f -m =f. 0, by 
setting IFI = 2m. We let I IF II stand for the norm of the fractional part 
ofF, that is, of the part of the series which comprises only the negative 
powers of X. In analogy with (1.1), we ask whether we have 

inf lql · llq8ll·llq<I>II = o 
qEk[X]\{0} 
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for any given 8 and <I> in k((X- 1 )). A negative answer to this question 
has been obtained by Davenport and Lewis [11] (see also [3,6,9,10,13] for 
explicit counter-examples) when the field k is infinite. As far as we are 
aware, the problem is still unsolved when k is a finite field (the papers 
by Armitage [2], dealing with finite fields of characteristic greater than 
or equal to 5, are erroneous, as kindly pointed out to us by Bernard de 
Mathan). 

A first natural question regarding this problem can be stated as 
follows: 

Question 1. Given a badly approximable power series 8, does there 
exist a power series <I> such that the pair ( 8, <I>) satisfies non-trivially the 
Littlewood conjecture? 

First, we need to explain what is meant by non-trivially and why 
we restrict our attention to badly approximable power series, that is, to 
power series from the set 

Bad= {e E k((X- 1)): inf lql·llq8ll > o}. 
qEk[X]\{0} 

Obviously, (1.2) holds as soon as 8 or <I> does not belong to Bad. This is 
also the case when 1, 8 and <I> are linearly dependent over k[X]. Hence, 
by non-trivially, we simply mean that both of these cases are excluded. 

In the present paper, we answer positively Question 1 by using the 
constructive approach developed in [ 1]. Our method rests on the basic 
theory of continued fractions and works without any restriction on the 
field k. Actually, our result is much more precise and motivates the in­
vestigation of a stronger question, introduced and discussed in Section 2. 
Section 3 is concerned with the Littlewood conjecture for pairs of alge­
braic power series. When k is a finite field, we provide several examples 
of such pairs for which (1.2) holds. In particular, we show that there 
exist infinitely many pairs of quartic power series in F 3 ( (X- 1)) that sat­
isfy non-trivially the Littlewood conjecture. It seems that no such pair 
was previously known. The proofs are postponed to Sections 5 and 6, 
after some preliminaries on continued fractions gathered in Section 4. 

§2. Main results 

The real analogue of Question 1 was answered positively by Polling­
ton and Velani [24] by using metric theory of Diophantine approxima­
tion, as a consequence of a much stronger statement. Some years later, 
Einsiedler, Katok and Lindenstrauss [12] proved the outstanding result 
that the set of pairs of real numbers for which the Littlewood conjecture 
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does not hold has Hausdorff dimension zero. Obviously, this implies 
a positive answer to Question 1. However, it is unclear that either of 
these methods could be transposed in the power series case. Further­
more, both methods are not constructive, in the sense that they do not 
yield explicit examples of pairs of real numbers satisfying (1.1). 

A new, explicit and elementary approach to solve the real analogue 
of Question 1 is developed in [1]. It heavily rests on the theory of 
continued fractions and it can be quite naturally adapted to the function 
field case. Actually, our Theorem 1 answers a strong form of Question 1. 

Theorem 1. Let cp be a positive, non-increasing function defined on 
the set of positive integers and with cp(1) = 1 and limd .... +oo cp(d) = 0. 
Given 8 in Bad, there is an uncountable subset B'P(8) of Bad such 
that, for any ci> in B'P ( 8), the power series 1, 8, ci> are linearly inde­
pendent over k[X] and there exist polynomials q in k[X] with arbitrarily 
large degree and satisfying 

(2.1) 

In particular, if 

lim lqlcp(lql) = +oo, 
degq .... +oo 

the Littlewood conjecture holds non-trivially for the pair (8, ci>) for any 
ci> in B'P ( 8). Furthermore, the set B'P ( 8) can be effectively constructed. 

Although the proof closely follows that of Theorem 1 from [1], we 
give it with full detail. Actually, some steps are even slightly easier than 
in the real case. 

Observe that, for any given 8 and ci> in Bad, there exists a positive 
constant c( 8, ci>) such that 

holds for any non-zero polynomial q in k[X]. In view of this and of 
Theorem 1, we propose the following problem in which we ask whether 
the above inequality is best possible. 

Question 2. Given a power series 8 in Bad, does there exist a power 
series ci> such that the pair ( 8, ci>) satisfies non-trivially the Littlewood 
conjecture and such that we moreover have 

liminf lql 2 · llq8ll · llqci>II < +oo? 
degq .... +oo 

(2.2) 
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The restriction 'non-trivially' in the statement of Question 2 is 
needed, since (2.2) clearly holds when the power series 1, 8, ci> are 
linearly dependent over k[X]. There are, however, non-trivial examples 
for which (2.2) holds. Indeed, if the continued fraction expansion of a 
power series 8 begins with infinitely many palindromes and if ci> = 1/8, 
then (2.2) is true for the pair (8, ci>). This can be seen by working out 
in the power series case the arguments from Section 4 of [1]. 

Theorem 2. Let 8 be an element of the field k( (X- 1)) whose con­
tinued fraction expansion begins with infinitely many palindromes. Then, 
the Littlewood conjecture is true for the pair ( 8, 8-1) and, furthermore, 
we have 

Moreover, if k has characteristic zero, then 8 is transcendental over 
k(X). 

We can weaken the assumption that the continued fraction expan­
sion of 8 begins with infinitely many palindromes to get additional ex­
amples of pairs ( 8, 8-1) that satisfy the Littlewood conjecture. Before 
stating our next result, we need to introduce some notation. It is conve­
nient to use the terminology from combinatorics on words. We identify 
any finite or infinite word W = w1 w2 ... on the alphabet k[X] \ k with 
the sequence of partial quotients w1, w2 , ... Further, if U = u1 ... Um 

and V = v1 v2 ... are words on k[X] \ k, with V finite or infinite, 
and if uo is in k[X], then [u0 , U, V] stands for the continued fraction 
[uo, u1, ... , um, v1, v2, ... ]. The mirror image of any finite word W = 
w1 ... Wm is denoted by W := Wm ... w1. Recall that a palindrome is a 
finite word W such that W = W. Furthermore, we let IWI stand for the 
number of letters composing W (here, we clearly have IWI = m). There 
should not be any confusion between IWI and the norm IFI of the power 
series F. 

Theorem 3. Let 8 be in Bad such that 181 =/= 1. Let (Pn/qn)n>1 
denote the sequence of its convergents. Assume that there exist a positive 
real number x, a sequence of finite words (Uk)k?. 1, and a sequence of 
palindromes (Vk)k?. 1 such that, for every k ::2: 1, the continued fraction 
expansion of 8 is equal to [Uk, Vk, .. . ] and IVkHI > IVkl ::2: xiUkl· Set 
further 

If we have 

M I. degqe 
= 1msup --

£->+oo £ 
and I. . f deg qe 

m= 1m1n --· 

M 
X> 3 ·- -1, 

m 

£->+oo £ 

(2.3) 
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then the Littlewood conjecture is true for the pair (e,e- 1). Moreover, 
if k has characteristic zero, then 8 is transcendental over k(X). 

From now on, we make use of the following notation: if C is a positive 
integer, then W[£] stands for the word obtained by concatenation of C 
copies of the word W. 

Theorem 4. Let 8 = [ao,a1,a2, ... ] be in Bad. Let (Pn/qn)n>l 
denote the sequence of its convergents. Assume that there exist a finite 
word V, a sequence of finite words (Uk)k21, an increasing sequence of 
positive integers (nk)k 21 and a positive real number x such that, for every 
k 2:1, the continuedfraction expansion of8 is equal to [Uk,V[nkl, ... ] 
and IV[nk]l 2: xiUkl· Let <P be the quadratic power series defined by 

Set further 

If we have 

<P := [V, V, V, .. . ]. 

M = lim sup deg ac and m = lim inf deg a c. 
C-->+oo R-->+oo 

M 
x>-, 

m 
(2.4) 

then the pair ( 8, <P) satisfies the Littlewood conjecture. Moreover, if k 
has characteristic zero, then 8 is transcendental over k(X). 

The last assertion of Theorems 2, 3 and 4 follows from the analogue 
of the Schmidt Subspace Theorem in fields of power series over a field 
of characteristic zero, worked out by Ratliff [25]. It is well-known that 
the analogue of the Roth theorem (and, a fortiori, the analogue of the 
Schmidt Subspace Theorem) does not hold for fields of power series over 
a finite field. For k = F P' a celebrated example given by Mahler [18] is 
recalled in Section 3. 

Theorems 2, 3 and 4 will be used in the next section to provide new 
examples of pairs of algebraic power series satisfying the Littlewood 
conjecture. 

§3. On the Littlewood conjecture for pairs of algebraic power 
series 

It is of particular interest to determine whether the Littlewood con­
jecture holds for pairs of algebraic real numbers. To the best of our 
knowledge, only two results are known in this direction. First, if (a, (3) 
is a pair of real numbers lying in a same quadratic field, then 1, a and 
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(3 are linearly dependent over Q and the Littlewood conjecture is thus 
easily satisfied. This was for instance remarked in [7]. The other result is 
due to Cassels and Swinnerton-Dyer [8] who proved that the Littlewood 
conjecture is satisfied for pairs of real numbers lying in a same cubic 
field. However, it is generally believed that no algebraic number of de­
gree greater than or equal to 3 is badly approximable. At present, no 
pair of algebraic numbers is known to satisfy non-trivially the Littlewood 
conjecture. 

In this Section, we discuss whether the (function field analogue of 
the) Littlewood conjecture holds for pairs of algebraic power series de­
fined over a finite field k. Our knowledge is slightly better than in the 
real case, especially thanks to works of Baum and Sweet [4] and of de 
Mathan [19,20,21,22] that we recall below. 

First, we observe that, as in the real case, (1.2) holds when 8 and 
<I> are in a same quadratic extension of k[X], since 1, 8 and <I> are then 
linearly dependent over k[X]. We further observe that the existence of 
the Frobenius automorphism (that is, the p-th power map) yield many 
examples of well-approximated algebraic power series. For instance, for 
any prime number p, the power series 8p = [0, X, XP, XP 2

, XP 3
, •• • ] is 

a root in F p((x- 1 )) of the polynomial ZP+l +X z- 1, and 8p is well­
approximated by rational functions. Indeed, there exist infinitely many 
rational functions Pn/qn such that 

Clearly, for any (algebraic or transcendental) power series <I> in F p((X- 1) ), 

the Littlewood conjecture holds for the pair (8p, <I>). 
On the other hand, there are several results on pairs of algebraic 

functions that satisfy non-trivially the Littlewood conjecture. De Mathan 
[21] established that (1.2) holds for any pair ( 8, <I>) of quadratic elements 
when k is any finite field of characteristic 2 (see also [19,20] for results 
when k is any finite field). Furthermore, he proved in [22] the analogue 
of the Cassels and Swinnerton-Dyer theorem when k is a finite field. 
We stress that, when k is finite, there do exist, unlike in the real case, 
algebraic power series in Bad that are of degree greater than or equal 
to 3 over k(X). The first example was given by Baum and Sweet [4] 
who proved that, fork= F 2 , the unique 8 in F 2 ((X- 1)) which satisfies 
X83 + 8 +X = 0 is in Bad. Thus, it follows from [22] that the pair 
of algebraic power series (8, 8-1) satifies non-trivially the Littlewood 
conjecture. 
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Further examples of badly approximable algebraic power series were 
subsequently found by several authors. It turns out that many of these 
examples contain some symmetric patterns in their continued fraction 
expansion. In the sequel of this Section, this property is used in order to 
apply Theorems 2, 3 and 4 to provide new examples of pairs of algebraic 
power series satisfying non-trivially the Littlewood conjecture. These 
examples also illustrate the well-known fact that there is no analogue to 
the Schmidt Subspace Theorem for power series over finite fields. 

We keep on using the terminology from combinatorics on words. For 
sake of readability we sometimes write commas to separate the letters 
of the words we consider. 

3.1. A first example of a badly approximable quartic in 
F3((X- 1)) 

Mills and Robbins [23] established that the polynomial 

X(X + 2)Z4 - (X3 + 2X2 + 2X + 2)Z3 + Z- X- 1 

has a root 8 in F 3 ((X- 1 )) whose continued fraction expansion is ex­
pressed as follows. For every positive integer n, set 

Hn = X[3"-2l,X +c:,2X +c:,(2X)[3"-2l,2X +c:,X +c:, 

where c: = 2 if n is odd and c: = 1 otherwise. Then, the continued 
fraction expansion of the quartic power series 8 is given by 

8 = [X,2X + 2,X + 1,H1,H2,H3, ... ]. 

It turns out that the continued fraction expansion of 8 contains 
some symmetric patterns that we can use to apply Theorem 3. This 
gives rise to the following result. 

Theorem 5. The pair (8, 8-1) satisfies the Littlewood conjecture. 
In particular, there exists a pair of quartic power series in F3 ((X- 1)) 

satisfying non-trivially the Littlewood conjecture. 

To our knowledge, this is the first known example of a pair of al­
gebraic power series of degree greater than 3 for which the Littlewood 
conjecture is non-trivially satisfied. 

Proof. For every integer n 2: 2, set 

and 
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Since xW'-2l is a prefix of Hn+l, the continued fraction expansion of 8 
is equal to [Un, Vn, .. . ]. Furthermore, Vn is a palindrome and the length 
of Hn (resp. of Un, of Vn) is equal to 2 · 3n (resp. to 3n, to 3n+1- 2). 
In particular, we have IVnl > 2.51Unl for every n ~ 2, and, since all the 
partial quotients of 8 are linear, the assumption (2.3) is satisfied. We 
apply Theorem 3 to complete the proof. D 

3.2. An infinite family of badly approximable quartics in 
F3((X- 1)) 

We now consider the infinite family of badly approximable quartics 
in F 3 ((X-1)) introduced by Lasjaunias in [15]. Let k be a non-negative 
integer. For any non-negative integer n, set 

Un = (k + 2)3n - 2, 

and define the finite word Hn(X) on F3[X] \ F3 by 

Hn(X) :=(X+ 1)X[u,J(x + 1). 

Then, consider the power series 

8(k) := [0, Ho(X), H1( -X), H2(X), ... , Hn(( -1)n X)), ... ]. (3.1) 

This definition obviously implies that 8(k) is badly approximable by 
rational functions, since all of its partial quotients are linear. Lasjaunias 
[15] established that 8(k) is a quartic power series. More precisely, if 
(Pn ( k) / Qn ( k) )n~o denotes the sequence of convergents to 8 ( k), he proved 
that 

The description of the continued fraction expansion of 8(k) given in 
(3.1) makes transparent the occurrences of some palindromic patterns. 
This can be used to apply Theorem 3 and yields the following result. 

Theorem 6. For any non-negative integer k, the pair (8(k), 8(k)- 1 ) 

satisfies the Littlewood conjecture. In particular, there exist infinitely 
many pairs of quartic power series in F 3 ((X-1)) satisfying non-trivially 
the Littlewood conjecture. 

Proof For any even positive integer n, set 

Un := Ho(X)Hl( -X)H2(X) ... Hn-2(X)( -X+ 1) 

and 
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Observe that the continued fraction expansion of 8(k) is equal to [0, 
Un, Vn, .. . ] and that 

IUnl = ( k; 2) 3n-1 - ~ and IVnl = 5(k + 2)3n-1 - 2. 

9 

Furthermore, Vn is a palindrome. We have IVnl ~ 3IUnl + 3 for n ~ 2, 
and, since all the partial quotients of 8(k) are linear, the assumption 
(2.3) is satisfied. We apply Theorem 3 to complete the proof. o 

3.3. Badly approximable power series in Fp((X-1)) with 
p~5 

Let p ~ 5 be a prime number. For any positive integer k, consider 
the polynomial fk in Fp[X] defined by 

where the sum is over all integers j such that 0 :::; 2j :::; k. Then, Mills 
and Robbins [23] showed that the polynomial of degree p + 1 

has a root eP in Fp((X-1)) with a nice continued fraction expansion. 
Let V( -1) =-X, -X and V(3) = X/3, 3X and, fork~ 1, set 

Lk( -1) = V( -1)((pk-1)/2l and Lk(3) = V(3)((pk-1l12l. 

Mills and Robbins proved that the continued fraction expansion of 8p 
is given by 

8p = [X, Lo(3), -X/3, Lo( -1), X, £1(3), -X/3, L1( -1), X, £2(3), 

-X/3, L2( -1), ... ], 

where L0 (3) and L0( -1) are equal to the empty word. It follows that eP 
is badly approximable by rational functions, all of its partial quotients 
being linear. Moreover, eP is not quadratic since its continued fraction 
expansion is not eventually periodic. 

As a consequence of Theorem 3, we get the following result. 

Theorem 7. For any prime number p ~ 7, the pair (ep, e; 1 ) of 
algebraic power series in F p( (X - 1)) satisfies non-trivially the Littlewood 
conjecture. 
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Moreover, we can apply Theorem 4 to provide pairs of algebraic 
power series of distinct degrees satisfying non-trivially the Littlewood 
conjecture. To the best of our knowledge, no such pair was previously 
known. 

Theorem 8. Let p 2': 5 be a prime number. Let 8P be as above. Let 
<I>p be the quadratic power series in Fp((X-1)) defined by 

<I>p := [3X, X/3, 3X, X/3, 3X, X/3, 3X, ... ]. 

Then the pair (8p, <I>p) satisfies non-trivially the Littlewood conjecture. 

and 

Proof of Theorems 7 and 8. For any even positive integer n, set 

X, -X/3, X, L1(3), -X/3, L1( -1), X, L2(3), -X/3, L2( -1), 

X ... ,Ln-1(-1),X 

Vn := (X/3, 3X)[(p"-3l/2l, X/3. 

Observe that the continued fraction expansion of 8p is equal to [Un, Vn, .. . ] 
and that 

IUnl=1+(2·pn- 1) and IVnl=pn-2. 
p-1 

Furthermore, Vn is a palindrome and IVnl 2': 2.5IUnl holds for p 2': 7 and 
n 2': 2. Since all the partial quotients of 8p are linear, the assumption 
(2.3) is then satisfied. We apply Theorem 3 to complete the proof of 
Theorem 7. 

To get Theorem 8, we observe that Ln(3) is the concatenation of 
(pn -1)/2 copies of the word V(3), and we check that ILn(3)1 2': 1.5IUnl 
holds for p 2': 5 and n 2': 2. Since all the partial quotients of 8p are 
linear, the assumption (2.4) is then satisfied. We then apply Theorem 4 
to complete the proof of Theorem 8. D 

3.4. A normally approximable quartic in F 3 ((X- 1 )) 

We end this Section with another quartic power series in F3 ( (X- 1)) 

found by Mills and Robbins [23]. Unlike the previous examples, this 
quartic is not badly approximable but we will see that it has some in­
teresting Diophantine properties. 

Mills and Robbins pointed out that the polynomial 

Z 4 + Z 2 - xz + 1 

has a unique root 8 in F 3 ((X- 1 )). They observed empirically that 8 has 
a particularly simple continued fraction expansion. Define recursively a 
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sequence (nn)n?O of words on the alphabet F3[X] \F3 by setting no = E, 

the empty word, f2 1 =X, and 

for n 2: 2. (3.2) 

Here, if W = W1W2 ... Wr =WI, w2, ... , Wr with Wi E F3[X] \ F3, then 
W(3l stands for the word obtained by taking the cube of every letter of 
W, that is, W(3l := wr,w~, ... ,w~. Set 

(3.3) 

Buck and Robbins [5] confirmed a conjecture of Mills and Robbins [23] 
asserting that the continued fraction expansion of e is [0, noo] (note that 
their proof was later simplified by Schmidt [26], and that Lasjaunias [14] 
gave an alternative proof). 

The quartic power series 8 does not lie in Bad. Lasjaunias [14, 
Theorem A] proved that 8 is normally approximable (this terminology 
is explained in [16]) in the following sense: there exist infinitely many 
rational functions pjq such that 

while for any positive real number E there are only finitely many rational 
functions p / q such that 

Note that an easy induction based on (3.2) shows that for every 
positive integer n the word nn is a palindrome. By (3.3), we thus get 
that the continued fraction expansion of e -l begins with infinitely many 
palindromes. The following consequence of Theorem 2 and of Theorem 
A from [14] is worth to be pointed out. 

Theorem 9. Let 8 be the unique root in F 3 ((X- 1 )) of the polyno­
mial Z 4 + Z 2 - XZ + 1. Then, 

inf lql 2 · llq8ll · llq8- 1 ll < +oo 
qEk[X]\{0} 

and for any positive real number E we have 

for any q in F3[X] with degq large enough. 
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§4. Preliminaries on continued fraction expansions of power 
series 

It is well-known that the continued fraction algorithm can as well 
be applied to power series. The partial quotients are then elements of 
k[X] of positive degree. We content ourselves to recall some basic facts, 
and we direct the reader to Schmidt's paper [26] and to Chapter 9 of 
Thakur's book [27] for more information. 

Specifically, given a power series F = F(X) in k((X- 1)), which we 
assume not to be a rational function, we define inductively the sequences 
(Fn)n:;::o and (an)n;:::o by Fo = F and Fn+1 = 1/(Fn -an), where Fn -an 
is the fractional part of Fn. 

Plainly, for n 2: 1, the an are polynomials of degree at least one. We 
then have 

1 
F = [ao, a1, a2, ... ] = ao + ----1--

The truncations [ao, a1, a2, ... , an] := Pnfqn, with relatively prime poly­
nomials Pn and qn, are rational functions and are called the convergents 
to F. It is easily seen that 

thus 

Furthermore, we have 

that is, 

n 

degqn = L degaj. 
j=1 

(4.1) 

We stress that F is in Bad if and only if the degrees of the poly­
nomials an are uniformly bounded. We also point out that I · I is an 
ultrametric norm, that is, IF+ Gl ::; max{IFI, IGI} holds for any F and 
Gin k((X- 1 )), with equality if IFI :f. IGI. 

We end this Section by stating three basic lemmas on continued 
fractions in k((X-1)). 
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Lemma 1. Let e = [ao,a1,a2, ... ] be an element ofk((X-1)) and 
let (Pn/qn)n>1 be its convergents. Then, for any n ~ 2, we have 

Proof As in the real case, this easily follows from the recursion 
formula Qn+1 = an+1Qn + Qn-1· D 

Lemma 2. Let e = [ao, a1, az, .. . ] and <I> = [bo, b1, bz, .. . ] be two 
elements ofk( (X- 1 )). Assume that there exists a positive integer n such 
that ai = bi for any i = 0, ... ,n. We then have 1e- <I>I:::; lqnl- 2 , where 
Qn denotes the denominator of the n-th convergent to e. 

Proof Let Pn/Qn be the n-th convergent to e. By assumption, 
Pn/Qn is also the n-th convergent to <I> and we have 

since the norm I · I is ultrametric. D 

Lemma 3. Let M be a positive real number. Let e = [ao, a1, a 2 , ..• ] 

and <I> = [b0 , b1 , b2, .. . ] be two elements of k((X- 1 )) whose partial quo­
tients are of degree at most M. Assume that there exists a positive 
integer n such that ai = bi for any i = 0, ... , n and an+1 =I- bn+1· Then, 
we have 

where Qn denotes the denominator of the n-th convergent to e. 

Proof Set e' = [an+l' an+2, .. . ] and <I>' = [bn+1, bn+2, .. . ]. Since 
an+1 =I- bn+1, we have 

1e'- <I>' I ~ 1. ( 4.3) 

Furthermore, since the degrees of the partial quotients of both e and <I> 
are bounded by Af, we immediately obtain that 

(4.4) 

Let (Pj I Qj) j?_ 1 stand for the sequence of convergents to e. Then, the 
theory of continued fractions gives that 

e = Pne' + Pn-1 
Qne' + Qn-1 

and <I>= Pn<I>' + Pn-1 
Qn<l>' + Qn-1' 
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since the first n-th partial quotients of 8 and If> are assumed to be the 
same. We thus obtain 

18 - 1>1 1
Pn8' + Pn-1 _ Pnlf>' + Pn-11 
qn8' + qn-1 qn!l>' + qn-1 

I 
8 , - If>' I 18 ' - If>' I 

(qn8' + qn_l)(qn!l>' + qn-d - 8'!f>'q~ . 

Together with (4.3) and (4.4), this yields 

concluding the proof of the lemma. D 

§5. Proof of Theorem 1 

Without any loss of generality, we may assume that 181 ::; 1/2 and 
we write 8 = [0, a 1, a2, ... , ak, .. . ]. Let M be an upper bound for the 
degrees of the polynomials ak. We first construct inductively a rapidly 
increasing sequence ( nj) r~ 1 of positive integers. We set n 1 = 1 and 
we proceed with the inductive step. Assume that j 2': 2 is such that 
n 1, ... , nj _ 1 have been constructed. Then, we choose nj sufficiently 
large in order that 

(5.1) 

where mj = n 1 + n 2 + ... + nj + (j - 1). Such a choice is always possible 
since r.p tends to zero at infinity and since the right-hand side of (5.1) 
only depends on n1, n2, ... , nj-1· 

Our sequence (n1 )r;~ 1 being now constructed, for an arbitrary se­
quence t = (tj)j?I with values in k[X] \ k, we set 

Then, we introduce the set 

where kn [X] denotes the set of polynomials in k[X] of degree n. Clearly, 
the set B'P ( 8) is uncountable. 

Let If> be in B'P(8). We first prove that (2.1) holds for the pair 
(8,!1>). Let (Pnfqn)n?_1 (resp. (rn/sn)n?.d stand for the sequence of 
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convergents to 8 (resp. to <I>). Let j 2::: 2 be an integer. We infer from 
Lemma 1 that 

By (4.2), we have 
(5.2) 

On the other hand, Lemma 2 implies that 

1
8- SmJ-11 ::::; ~ = 2-2degq,J. 

Sm1 lqnJ I 

Consequently, we get 

(5.3) 

It follows from (4.1) that 

m.i-nJ 

L degbk::::; (M + 2)(mj- nj) (5.4) 
k=1 

and 
~ ~-~ 

degsm1 = L degbk = degqn1 + L degbk. (5.5) 
k=1 k=1 

We infer from (5.3), (5.4) and (5.5) that 

(5.6) 

Since 'P is a non-increasing function and mj-1 + 1 = mj - nj, we 
deduce from (5.1) that 

'P(Ism; I) ::::; 'P(2mJ) ::::; T2(M+2)(mJ-1 +1) = T2(M+2)(m;-n;). (5.7) 

From (5.2), (5.6) and (5.7), we thus obtain that 

Since j 2::: 2 is arbitrary, we have established that (2.1) holds. 
It now remains to prove that 1, 8 and <I> are independent over k[X]. 

Therefore, we assume that they are dependent and we aim at deriving a 
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contradiction. Let (A, B, C) be a non-zero triple of polynomials in k[X] 
satisfying 

A8 + Bq_) + C = 0. 

Then, for any non-zero polynomial q in k[X], we have 

In particular, we get 

for any j 2: 2. Here and below, the constants implied by« depend (at 
most) on A, B, C, 8 and M, but do not depend on j. 

On the other hand, we have constructed the sequence ( nj )j-:?1 in 
order to guarantee that 

(5.9) 

This implies that 

for j jarge enough. Since by assumption the degree of bmi- 1 +1 = tj-1 is 
either Jl;f + 1 or M +2, we have deg bm;-dl -:j=. deg an;+l and in particular 
bmj- 1 +1 -:j=. ani+l· Consequently, Lemma 3 implies that 

8 J > ~ I Sm.·-lt 1 1 
---;;;:; - 22(M+2) ·lqn; 12 ~ 2 2degq,i' 

thus, 
(5.10) 

Moreover, we infer from (5.5) that deg Sm; 2: deg Qni +mj-1· Combined 
with (5.10), this gives 

lsmil·llsm;8ll » 22mi-1. 

For j large enough, we deduce from (5.9) that 

lsmiA8- smi_ 1AI < 2- 1, 

thus, 

By (5.11), this yields 

(5.11) 

which contradicts (5.8). This completes the proof of Theorem 1. o 
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§6. Proof of Theorems 2, 3 and 4 

Proof of Theorem 2. Let 8 = [ao, a1, a2, .. . ]. The key observation 
for the proof of Theorem 2 is Lemma 1. Indeed, assume that the integer 
n?: 3 is such that a0a1 ... an is a palindrome. In particular, the degree 
of ao is at most 1 since ao = an, and 1/8 = [0, ao, a1, a2, .. . ]. Let 
(Pk/qk)k>l denote the sequence of convergents to 1/8. It then follows 
from Lemma 1 that qn+l I qn is very close to 8. Precisely, we have 

by Lemma 2. Furthermore, ( 4.2) asserts that 

Consequently, we get 

This ends the proof. 0 

In the proofs below we assume that 181 ::; 1/2 (if needed, replace 8 
by 1/8 in Theorem 3, and 8 by 8- a0 in Theorem 4). The constants 
implied by« may depend on 8 but not on k. 

Proof of Theorem 3. Assume now that 8 is in Bad and satisfies 
the assumption of Theorem 3. Let k ?: 1 be an integer and let Pk/Qk 
be the last convergent to the rational number 

Since, by assumption, Vk is a palindrome, we obtain that the word 
Uk VkU k is also a palindrome. Then, Lemma 1 implies that P~ = Qk. 
Setting rk = IUkl and Sk = !Vkl, we infer from Lemma 2 that 

(6.1) 

Observe that by Lemmas 1 and 2 we have 

18-1 _~:I « T2degqrk+sk 

and thus 
(6.2) 
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Furthermore, it follows from (4.1) that 

Then, we get from (6.1) and (6.2) that 

IQki·IIQk8ll ·11Qk8- 1 ll « 23 degqrk Tdegqrd•k · 

In virtue of (2.3), this concludes the proof. D 

Proof of Theorem 4. Assume now that 8 and ci> satisfy the as­
sumption of Theorem 4. Let k 2:: 1 be an integer and let Pk/Qk be 
the last convergent to the rational number 

pk ,_ [0 U y[nk]] Q/., .- ' k, . 

On the one hand, ( 4.2) gives 

On the other hand, Lemma 1 implies that 

~: = [V[nk]' Uk]· 

Setting rk 

(4.1) that 
IUkl and Sk = IV[nk]l, we thus infer from Lemma 2 and 

IIQkci>II « 2Mrk-mBk. 

In virtue of (2.4), this concludes the proof. D 

Acknowledgements. We are grateful to the referee for his very 
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