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Global solutions to a one-dimensional nonlinear 
parabolic system modeling colonial formation 

by chemotactic bacteria 

Khin Phyu Phyu Htoo, Masayasu Mimura and Izumi Takagi 

Abstract. 

We consider a diffusion-chemotaxis-growth system which models 
pattern formation by a bacterial colony. In the case of spatial dimension 
one we prove that the initial-boundary value problem for the system 
has a unique solution on the entire time interval (0, +oo), and that the 
solution remains bounded. 

§1. Statement of Results 

Budrene and Berg ([1], [2]) observed in experiments that a chemo­
tactic strain of E. coli generate surprisingly complex and ordered spatial 
patterns. In order to understand analytically why they generate such 
patterns, the second author and his group proposed a mesoscopic model 
governed by a diffusion-chemotaxis-growth system. They suggest by nu­
merical simulation that the resulting patterns are possibly generated in 
a self-organized way. However, the rigorous study of this system has not 
been done yet. As a first step, we will study the fundamental question 
of existence of solutions of the initial and boundary value problem for 
the system in the case where the spatial dimension is one. 

We assume that the bacteria have two states. The active bacteria 
move around randomly, and take nutrients in the environment. In addi­
tion, they release a certain chemical which causes a directed movement 
toward its higher concentration (chemotaxis). Some of the active bacte­
ria become inactive at a rate depending on the population of the active 
bacteria and the nutrient concentration. The proposed model comprises 
the population density of the active bacteria u(x, t), the population den­
sity of the inactive bacteria w(x, t), the density of nutrient n(x, t), and 
the concentration of the chemoattractant c(x, t) at position x E (0, l) 

Received October 31, 2005. 
Revised January 27, 2006. 



614 Khin Phyu Phyu Htoo, M. Mimura and I. Takagi 

and timet E [0, oo). The diffusion-chemotaxis-growth system in the one 
dimensional case becomes: 

(P) 

Ut = duUxx + wg(u)nu- (u(x(c))x)x- a(u)b(n)u, 

nt = dnnxx- g(u)nu, 

Ct = deCxx + au - {Jc, 

Wt = a(u)b(n)u, 

Ux(O, t) = Ux(l, t) = 0, nx(O, t) = nx(l, t) = 0, 

Cx(O, t) = Cx(l, t) = 0, 

u(x, 0) = uo(x), n(x, 0) = no(x), c(x, 0) = co(x), 

w(x, 0) = wo(x). 

Here, du > 0, dn > 0 and de > 0 are the diffusion rates of u, n and 
c, respectively. a > 0 and f3 > 0 are the production by the bacteria 
and degradation rates of c, respectively. du, dn, de, a, f3 are positive 
constants and w is a nonnegative constant. x(c) is the sensitivity func­
tion and is assumed to be of class C3 [ 0, oo) and satisfy 0 < x (c) ::::; M, 
0 < x'(c) ::::; M and lx"(c)l + lx'"(c)l ::::; M for all c ~ 0 with some posi­
tive constant M. The active bacteria are assumed to become inactive at 
a rate a(u)b(n) per capita, where a(u) and b(n) are monotone decreasing 
smooth positive functions defined for u ~ 0 and n ~ 0, respectively. Fi­
nally, we assume that the growth rate of bacteria is of the form wg( u )n, 
where g(u) is a smooth bounded positive function such that g'(u) ~ 0. 
To be specific, in this paper we will assume that 

ao 
a(u) = --u-, 

1+­
al 

bo 
b(n) = --n, 

1+-
bl 

kc2 

x(c) = ()2 + c2 

for some positive constants a0 , a1. b0 , b1. g0 , m, u*, k and e. 
For an integer j ~ 2, let HJv(o, l) denote the Hilbert space of all 

£ 2-functions whose derivatives up to order j are in £ 2 and satisfy the 
homogeneous Neumann boundary conditions at x = 0 and x = l. Our 
results are stated as follows: 

Theorem 1. Let uo E H'Jv(O, l), no E H'Jv(O, l), co E HJv(O, l) be 
nonnegative functions. Moreover, let w0 be a non-negative continuous 
function on [0, l]. Then, there exists a unique solution to (P) for all 
t > 0. Moreover, we have 



Parabolic system modeling bacterial colony patterns 615 

and 

it+lll(u;x +n;x +c;x +u; +n; +c;)dxds:::; M 

for any t 2: 0, where M is a positive constant independent oft. 

Remarks. 

(i) The theorem implies that any solution of (P) remains bounded 
uniformly in t > 0. 

(ii) The conclusion holds true also for more general a(u), b(n), g(u) 
and x(c). 

(iii) In a forthcoming paper, as an application of the estimates de­
rived in Theorem 1 we will study the asymptotic behavior of 
the solution as t --> oo, and show that u --> 0, c --> 0 as t --> oo 
while n converges to a nonnegative constant. 

§2. Proof of Theorem 

First, we note that if the initial data u0 , n0 and c0 are nonnegative, 
then solution of (P) remains nonnegative by the Maximum Principle. 
Since the local-in-time existence of a solution and its uniqueness can be 
proved along the same line as in [3], we only verify the estimates. The 
proof is carried out in several steps. 

Step 1. Integrating the equation (P) in x yields that 

(1) 

(2) 

(3) 

(4) 

Therefore, 

d rl rl rl 
dt}o udx = w Jo g(u)nudx- Jo a(u)b(n)udx, 

d rl t 
dt Jo n dx = - Jo g(u)nu dx, 

d rl t rl 
dt}o cdx =a Jo udx- (3 Jo cdx, 

d t t 
dt}o wdx = Jo a(u)b(n)udx. 

d t d rl d rl 
dt} 0 u dx + w dt } 0 n dx + dt J 0 w dx = 0 
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whence follows that 

(5) fo1
udx + w fo1

ndx + fo1
wdx = fo1

uodx + w fo1
no dx +fo1

wo dx. 

Therefore, 

(6) 11 
udx::::; M. 

Here and hereafter M denotes various positive constants independent of 
t. 

Step 2. Multiply both sides of (3) by ef3t and integrate the resulting 
equation with respect tot. Then, 

11 cdx = e-f3t 11 c0 dx +a lot e-f3(t-s) 11 udxds. 

This together with (6) implies 

(7) 11 
cdx::::; 11 

co dx + M. 

Similarly, integrating the third equation of (P) multiplied by c with 
respect to x yields 

(8) ~ dd { 1c2 dx +de tcx 2 dx + j3 { 1c2 dx =a f 1ucdx. 
2 t}o Jo lo lo 

Observe that 

c(x, t) 11! 1x l c(x, t) dx + cx(~, t) d~ 
0 xo 

where 
1 t 

c(xo, t) = T Jo c(x, t) dx. 

Hence 
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Combining (8) and (9), we obtain 

(10) fo1
c2 dx ~ fo1

co 2 dx + M. 

Let G(x, y, t) be the fundamental solution of the initial-boundary value 
problem 

{

Ct; = dcCxx- (3c (0 ~X~ l, t > 0), 
Cx(O, t) = Cx(l, t) = 0 (t > 0), 

c(x, 0) = co(x) (0 ~ x ~ l). 

Moreover, let H(x, y, t) denote the fundamental solution of the following 
problem: 

{
Vt = dcVxx- (3v (0 ~X~ l, t > 0), 

v(O, t) = v(l, t) = 0 (t > 0), 

v(x, 0) = vo(x) (0 ~ x ~ l). 

Then 

(11) c(x, t) = 11G(x, y, t)co(Y) dy +a fotds 11G(x, y, t- s)u(y, s) dy, 

and 
(12) 

cx(x, t) = 11H(x, y, t)co'(y) dy +a lot ds 11 ~~ (x, y, t- s)u(y, s) dy. 

It is well-known that 

(13) 0 < G(x, y, t) ~ ~ exp ( _lx4~c~l 2 
- (3t), 

(15) IGx(x, y, t)l ~ ~ exp ( -K lx4~c~l 2 
- (3t). 

Here 0 < K < 1 and M depends on K. 

From (12), (13), (14), (15) and after a series of estimates we obtain 

(16) fo
1
c;dx ~ M. 
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Therefore, by (10) and (15), we conclude that c(x, t) ~ M for any 
0 ~ x ~ l and t ;::: 0. 

Step 3. Multiply the first equation of (P) by u and then integrate 
with respect to x. Then, 

so that 

1 d1l d 1l 1l --d u 2 dx + __.:!!:. u; dx + a(u)b(n)u2 dx 
2 t 0 2 0 0 

1
l 1 1l ~ M u2 dx + -d u2 (x'(c))2c; dx. 

0 2 u 0 

Note that n(x, t) ~ 1/no//L'"' by the Maximum Principle. 
By the Gagliardo-Nirenberg inequality, 

1 3 

< MlluiiHl llullu llcxll]p//cxlll2 

< E (llull~l + l!cl!~2) + K, 

with an arbitrary E > 0 and a positive constant K, depending on E. 

Therefore, 

Similarly, multiplying the third equation of (P) by Cxx and integrating 
the result with respect to x, we obtain 

1 d rl t t t 2 dt Jo c; dx +de Jo c;x dx + (3 Jo c; dx = -o: Jo UCxx dx, 
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Again by the Gagliardo-Nirenberg inequality, we have 

for an arbitrary t: > 0 and a positive constant K, depending on t:. There­
fore, 
(17) 

1 2 c 2 2 2 2 d1l d 1l 1l 
2dt 0 cxdx + 2 0 Cxxdx+/3 0 cxdx :<:; M (t:lluiiHl +K,IIulb). 

Hence, 

~! ll ( u2 + c;) dx + ll ( ~u u; + ~c c;x) dx 

+ fo 1
a(u)b(n)u2 dx+f3fo

1
c;dx 

< M 11u2 dx + t: (llull~l + llcll~2) + K, + M ( t:llull~l + K,llull~l) · 
Consequently, we obtain that 

Step 4. We multiply the first equation of (P) by Uxx and then 
integrate with respect to x to get 

Therefore, we have 

by a calculation similar to that in Step 3. 
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On the other hand, we obtain from the third equation of (P) 

Hence, we have 

Therefore, 

Step 5. Multiply the second equation of (P) by n and integrate the 
resulting equation with respect to x. We then have 

therefore 11 
n2 dx ::; fol n6 dx. 

Next we multiply the second equation of (P) by nxx and then integrate 
with respect to x, obtaining 

1 d rl t t 
2 dt}o n; dx + dn Jo n;x dx = Jo g(u)unnxx dx. 

Hence 

1 d 1! 2 dn 1! 2 1l 2 - -d nx dx + - nxx dx ::; M n dx. 
2 t 0 2 0 0 

From the Poincare inequality, the above estimate implies 

(22) fol n; dx ::; M. 

Multiply the second equation of (P) by nt and then integrate with re­
spect to x. Then, 

fo 1n~dx = -dn fo1
nxtnxdx- fo1

g(u)unntdX, 
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Integrating the above inequality in t, we have 

1t+l1l ni dx ds + dn 1 1 nx(x, t + 1)2 dx 

< dn11nx(x,t) 2 dx+ 1t+l1lg(u)2u2n2 dxds. 

Therefore 

(23) 
rt+l rl 

it io ni dx ds :S: M. 

Similarly we can prove that 

rt+l rl 
it io ci dx ds :S: M, 

and 

t+l t 
it io u; dx ds :S: M. 

Thus we have proved Theorem 1. 
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