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The geometry of continued fractions 
and the topology of surface singularities 

Patrick Popescu-Pampu 

Abstract. 

We survey the use of continued fraction expansions in the alge­
braical and topological study of complex analytic singularities. We 
also prove new results, firstly concerning a geometric duality with 
respect to a lattice between plane supplementary cones and secondly 
concerning the existence of a canonical plumbing structure on the 
abstract boundaries (also called links) of normal surface singulari­
ties. The duality between supplementary cones gives in particular 
a geometric interpretation of a duality discovered by Hirzebruch be­
tween the continued fraction expansions of two numbers >. > 1 and 
>.j(>.- 1). 
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§1. Introduction 
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Continued fraction expansions appear naturally when one resolves 
germs of plane curves by sequences of plane blowing-ups, or Hirzebruch­
J ung (that is, cyclic quotient) surface singularities by to ric modifications. 

They also appear when one passes from the natural plumbing de­
composition of the abstract boundary of a normal surface singularity to 
its minimal JSJ decomposition. In this case it is very important to keep 
track of natural orientations. In general, as was shown by Neumann [57], 
if one changes the orientation of the boundary, the resulting 3-manifold 
is no more orientation-preserving diffeomorphic to the boundary of an 
isolated surface singularity. The only exceptions are Hirzebruch-Jung 
singularities and cusp-singularities. This last class of singularities got 
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its name from its appearance in Hirzebruch's work [37] as germs at the 
compactified cusps of Hilbert modular surfaces. For both classes of sin­
gularities, one gets an involution on the set of analytical isomorphism 
types of the singularities in the class, by changing the orientation of the 
boundary. From the viewpoint of computations, Hirzebruch saw that 
both types of singularities have structures which can be encoded in con­
tinued fraction expansions of positive integers, and that the previous 
involution manifests itself in a duality between such expansions. 

In the computations with continued fractions alluded to before, there 
appear in fact two kinds of continued fraction expansions. Some are 
constructed using only additions - we call them in the sequel Euclidean 
continued fractions - and the others using only subtractions - we call 
them Hirzebruch-Jung continued fractions. There is a simple formula, 
also attributed to Hirzebruch, which allows to pass from one type of 
continued fraction expansion of a number to the other one. Both types 
of expansions have geometric interpretations in terms of polygonal lines 
P(a). If (L, a) is a pair consisting of a 2-dimensionallattice L and a 
strictly convex cone a in the associated real vector space, P(a) denotes 
the boundary of the convex hull of the set of lattice points situated inside 
a and different from the origin. 

For Euclidean continued fractions this interpretation is attributed 
to Klein [45], while for the Hirzebruch-Jung ones it is attributed to Cohn 
[12]. 

It is natural to try to understand how both geometric interpretations 
fit together. By superimposing the corresponding drawings, we were led 
to consider two supplementary cones in a real plane, in the presence of 
a lattice. By supplementary cones we mean two closed strictly convex 
cones which have a common edge and whose union is a half-plane. 

Playing with examples made us understand that the algebraic du­
ality between continued fractions alluded to before has as ·geometric 
counterpart a duality between two supplementary cones in the plane 
with respect to a lattice. This duality is easiest to express in the case 
where the edges of the cones are irrational: 

Suppose that the edges of the supplementary cones a and a' are irra­
tional. Then the edges of each polygonal line P(a) and P(a') correspond 
bijectively in a natural way to the vertices of the other one. 

When at least one of the edges is rational, the correspondence is 
slightly more complicated (there is a defect of bijectivity near the in­
tersection points of the polygonal lines with the edges of the cones), as 
explained in Proposition 5.3. In this duality, points correspond to lines 
and conversely, as in the classical polarity relation between points and 
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lines with respect to a conic. But the duality relation described in this 
paper is more elementary, in the sense that it uses only parallel trans­
port in the plane. For this reason it can be explained very simply by 
drawing on a piece of cross-ruled paper. 

The duality between supplementary cones gives a simple way to 
think about the relation between the pair (L, a) and its dual pair (L, G-) 
and in particular about the relations between various invariants of toric 
surfaces (see Section 6). Indeed (see Proposition 5.11): 

The supplementary cone of a is canonically isomorphic over the 
integers with the dual cone 0", once an orientation of L is fixed. 

As stated at the beginning of the introduction, computations with 
continued fractions appear also when one passes from the canonical 
plumbing structure on the boundary of a normal surface singularity to its 
minimal JSJ structure. Using this, Neumann [57] showed that the topo­
logical type of the minimal good resolution of the germ is determined by 
the topological type of the link. In fact all continued fractions appearing 
in Neumann's work are the algebraic counterpart of pairs (L, a) canon­
ically determined by the topology of the boundary. Using this remark, 
we prove the stronger statement (see Theorem 9.7): 

The plumbing structure on the boundary of a normal surface sin­
gularity associated to the minimal normal crossings resolution is deter­
mined up to isotopy by the oriented ambient manifold. In particular, 
it is invariant up to isotopy under the group of orientation-preserving 
self-diffeomorphisms of the boundary. 

In order to prove this theorem we have to treat separately the bound­
aries of Hirzebruch-Jung and cusp singularities. In both cases, we show 
that the oriented boundary determines naturally a pair (L, a) as before. 
If one changes the orientation of the boundary, one gets a supplementary 
cone. In this way, the involution defined before on both sets of singular­
ities is a manifestation of the geometric duality between supplementary 
cones (see Propositions 9.3 and 9.6). 

For us, the moral of the story we tell in this paper is the following 
one: 

If one meets computations with either Euclidean or Hirzebruch-Jung 
continued fractions in a geometrical problem, it means that somewhere 
behind is present a natural 2-dimensional lattice L and a couple of lines 
in the associated real vector space. One has first to choose one of the 
two pairs of opposite cones determined by the four lines and secondly 
an ordering of the edges of those cones. These choices may be dictated 
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by choices of orientations of the manifolds which led to the construction 
of the lattice and the cones. So, in order to think geometrically at the 
computations with continued fractions, recognize the lattice, the lines and 
the orientation choices. 

Let us outline now the content of the paper. 
Someone who is interested only in the algebraic relations between 

the Euclidean and the Hirzebruch-Jung continued fraction expansions 
of a number can consult only Section 2. If one is also interested in their 
geometric interpretation, one can read Sections 3 and 4. 

In Section 5 we prove geometrically the relations between the two 
kinds of continued fractions using the duality between supplementary 
cones described before. We introduce also a new kind of graphical rep­
resentation which we call the zigzag diagram, allowing to visualize at 
the same time the algebra and the geometry of the continued fraction 
expansions of a number. 

In Section 6 we give applications of zigzag diagrams to the algebraic 
description of special curve and surface singularities, defined using toric 
geometry. 

Sections 8 and 9 are dedicated to the study of topological aspects of 
the links of normal surface singularities, after having recalled in Section 7 
general facts about Seifert, graph, plumbing and JSJ-structures on 3-
manifolds. 

We think that the new results of the paper are Proposition 5.3, The­
orem 9.1 and Theorem 9.7, as well as the very easy Proposition 5.11, 
which is nevertheless essential in order to understand the relation be­
tween dual cones in terms of parallelism, using Proposition 5.3. 

We wrote this paper having in mind as a potential reader a grad­
uate student who wants to be initiated either to the algebra of surface 
singularities or to their topology. That is why we tried to communicate 
basic intuitions, often referring to the references for complete proofs . 

. Acknowledgments. We are very grateful to Friedrich Hirzebruch 
for the historical comments he sent us, as well as to Paolo Lisca, Andras 
Nemethi, Bernard Teissier, Terry Wall and the anonymous referee for 
their pertinent remarks and suggestions. 

§2. Algebraic comparison of Euclidean and Hirzebruch-Jung 
continued fractions 

Definition 2.1. If XI, ..• , Xn are variables, we consider two kinds 
of continued fractions associated to them: 
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1 
[xt, ... , Xn]+ := X1 + -----

1 

1 
[xt, ... , Xn]- := X1- ----1--

X2----
1 

Xn 

We call [x1 , ... , Xn]+ a Euclidean continued fraction (abbrevi­
ated E-continued fraction) and [xt, ... , Xn]- a Hirzebruch-Jung 
continued fraction (abbreviated HJ-continued fraction). 

The first name is motivated by the fact that E-continued fractions 
are tightly related to the Euclidean algorithm: if one applies this algo­
rithm to a couple of positive integers (a, b) and the successive quotients 
are q1, ... , qn, then ajb = [qt, ... , qn]+. See Hardy & Wright [32], 
Davenport [15] for an introduction to their arithmetics and Fowler [22] 
for the relation with the Greek theories of proportions. An extended bib­
liography on their applications can be found in Brezinski [7] and Shallit 
[72]. 

The second name is motivated by the fact that HJ-continued frac­
tions appear naturally in the Hirzebruch-Jung method of resolution of 
singularities, originating in Jung [42] and Hirzebruch [35], as explained 
after Definition 6.4 below. 

Define two sequences (Z±(x1, ... , Xn))n2:1 of polynomials with in­
teger coefficients, by the initial data 

and the recurrence relations: 

(1) z±(Xl, ... , Xn) 

= x1z±(X2, ... , Xn) ± z±(xa, ... , Xn), Vn :2: 2. 

Then one proves immediately by induction on n the following equal­
ity of rational fractions: 

(2) 
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Also by induction on n, one proves the following twin ofrelation (1): 

(3) z±(x1, ... , Xn) 

= z±(x1, ... , Xn-1)Xn ± z±(Xb ... , Xn-2), \:fn 2': 2. 

which, combined with (1), proves the following symmetry property: 

If (y1, ... , Yk) is a finite sequence of numbers or variables and mE 

N U { +oo }, we denote by 

the sequence obtained by repeating m times the sequence (y1, ... , Yk)· 
By convention, when m = 0, the result is the empty sequence. 

Each number >. E R can be expanded as (possibly infinite) Euclidean 
and Hirzebruch-Jung continued fractions: 

with the conditions: 

(5) 

(6) 

a1 E Z, an EN- {0}, \:In 2': 1 

0:1 E Z, Cl:n E N - {0, 1 }, \:In 2': 1 

Of course, we consider only indices n effectively present. For an in­
finite number of terms, these conditions ensure the existence of the 
limits [ab a2, .... ]+ := limn-++oo[ab ... , an]+ and [o:I> 0:2, ... ]- := 

limn-++oo[o:1, ···, Cl:n]-. 
Any sequence (an)n~ 1 which verifies the restrictions (5) can appear 

and the only ambiguity in the expansion of a number as a E-continued 
fraction comes from the identity: 

(7) 

We deduce that any real number >. -::/= 1 admits a unique expansion 
as a E-continued fraction such that condition (5) is satisfied and in the 
case that the sequence (an)n is finite, its last term is different from 1. 
When we speak in the sequel about the E-continued fraction expansion 
of a number >. -::/= 1, it will be about this one. By analogy with the 
vocabulary of the Euclidean algorithm, we say that the numbers (an )n~ 1 
are the E-partial quotients of >.. 



126 P. Popescu-Pampu 

Similarly, any sequence (an)n>l which verifies the restrictions (6) 
can appear and the only ambiguity in the expansion of a number as a 
HJ-continued fraction comes from the identity: 

We see that any real number A admits a unique expansion as a HJ­
continued fraction such that condition (6) is satisfied and the sequence 
(an)n is not infinite and ultimately constant equal to 2. When we speak 
in the sequel about the HI-continued fraction expansion of a number A, 
it will be about this one. We call the numbers (an)n;:::I the HJ-partial 
quotients of A. 

The following lemma (see Hirzebruch [37, page 257]) can be easily 
proved by induction on the integer b ~ 1. 

Lemma 2.2. If a E Z, bEN- {0} and x is a variable, then: 

Using this lemma one sees how to pass from theE-continued fraction 
expansion of a real number A to its HJ-continued fraction expansion: 

Proposition 2.3. If (an)n>l is a (finite or infinite) sequence of 
positive integers, then: 

[a1, ... , a2n]+ 

= [al + 1, (2)az-I, a3 + 2, (2)a4-I, ... ' (2tzn-lr 

[a1, ... , a2n+I]+ 
_ [ + 1 (2)az-l + 2 (2)a4-l (2)azn-l + 1]-- al ' ' a3 ' ' ... ' ' a2n+l 

[a1, a2, a3, a4, ... ]+ 

= [al + 1, (2)az-I, a3 + 2, (2)arl' as+ 2, (2t6 -l' ... r 
(recall that, by convention, (2)0 denotes the empty sequence). 

Example 2.4. 11/7 = [(1)3 , 3]+ = [2, 3, (2) 2]-. 

Notice that this procedure can be inverted. In particular, an im­
mediate consequence of the previous proposition is that a number has 
bounded E-partial quotients if and only if it has bounded HJ-partial quo­
tients. Similarly, it has ultimately periodic E-continued fraction (which 
happens if and only if it is a quadratic number, see Davenport [15]) if 
and only if it has ultimately periodic HJ-continued fraction. In this case, 
Proposition 2.3 explains how to pass from its E-period to its HJ-period. 
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The continued fraction expansions of two numbers which differ by 
an integer are related in an evident and simple way. For this reason, 
from now on we restrict our attention to real numbers A > 1. The map 

(9) 

is an involution of the interval (1, +oo) on itself. TheE-continued frac­
tion expansions of the numbers in the same orbit of this involution are 
related in a very simple way: 

Lemma 2.5. If A E (1, +oo) and A= [ab a2, ... ]+ is its expan­
sion as a (finite or infinite) continued fraction, then: 

ifa1 = 1, 
if a1 ~ 2 

The proof is immediate, once one notices that A/ (A -1) = [1, A -1] +. 
Notice also that the involutivity of the map (9) shows that the first 
equality in the previous lemma is equivalent to the second one. 

Example 2.6. If A= 11/7 = [(1) 3 , 3]+, then 11/4 = Aj(A -1) = 
[2, 1, 3]+. 

By combining Proposition 2.3 and Lemma 2.5, we get the following 
relation between the HJ-continued fraction expansions of the numbers 
in the same orbit of the involution (9): 

Proposition 2. 7. If A E R is greater than 1 and 

is its expression as a (finite or infinite) continued fraction, with mi, ni E 

N, Vi ~ 1, then: 

, A~ 1 = [ml + 2, (2)n1 , m2 + 3, (2)n2 , mg + 3, ... t 

For A rational, this was proved in a different way by Neumann [57, 
Lemma 7.2]. It reads then: 

A= [(2)m\ n 1 + 3, (2)m2 , ••• , ns + 3, (2)ms+1 ]- ===? 
A . 

A _ 1 = [ml + 2, (2)n1 , m2 + 3, ... , (2)ns, ms+l + 2]-

The important point here is that even a value ms+l = 0 contributes 
to the number of partial quotients in the HJ-continued fraction expan­
sion of Aj(A- 1). 
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The next proposition is equivalent to the previous one, as an easy 
inspection shows. Its advantage is that it gives a graphical way to pass 
from the HJ-continued fraction expansion of a number >. > 1 to the 
analogous expansion of >.j(>.- 1) > 1. 

Proposition 2.8. Consider a number>. E R greater than 1 and 
let 

>. -
>. -1 = [/h, fh ... ] 

be the expressions of>. and >.j (>. -1) as (finite or infinite) HI-continued 
fractions. Construct a diagram made of points organized in lines and 
columns in the following way: 

• its lines are numbered by the positive integers; 
• the line numbered k ::::: 1 contains ak - 1 points; 
• the first point in the line numbered k + 1 is placed under the last 

point of the line numbered k. 
Then the k-th column contains fA- 1 points. 

This graphical construction seems to have been first noticed by Rie­
menschneider in [66] when>. E Q+. Nowadays one usually speaks about 
Riemenschneider's point diagram or staircase diagram. 

Example 2.9. If>. = 11/7 = [2, 3, (2)2]-, the associated point 
diagram is: 

• 
• • 

• 
• 

One deduces from it that >.j(>. -1) = [3, 4]-. 

§3. Klein's geometric interpretation of Euclidean continued 
fractions 

We let Klein [46] himself speak about his interpretation, in order to 
emphasize his poetical style: 

Let us now enliven these considerations with geometric pic­
tures. Confining our attention to positive numbers, let us mark 
all those points in the positive quadrant of the xy plane which 
have integrol coordinates, forming thus a so-called point lattice. 
Let us examine this lattice, I am tempted to say this "firma­
ment" of points, with our point of view at the origin. [ ... ] 



Continued fractions and surface singularities 

Looking from 0, then, one sees points of the lattice in all ra­
tional directions and only in such directions. The field of view 
is everywhere "densely" but not completely and continuously 
filled with "stars". One might be inClined to compare this 
view with that of the milky way. With the exception of 0 it­
self there is not a single integral point lying upon an irrational 
ray x/y = w, where w is irrational, which is very remark­
able. If we recall Dedekind's definition of irrational number, 
it becomes obvious that such a ray makes a cut in the field 
of integral points by separating the points into two point sets, 
one lying to the right of the ray and one to the left. If we 
inquire how these point sets converge toward our ray x/y = w, 
we shall find a very simple relation to the continued fraction 
for w. By marking each point (x = Pv, y = qv ), corresponding 
to the convergent Pv / qv, we see that the rays to these points 
approximate to the ray x/y = w better and better, alternately 
from the left and from the right, just as the numbers Pv/qv 

approximate to the number w. Moreover, if one makes use of 
the known number-theoretic properties of Pv, qv, one finds the 
following theorem: Imagine pegs or needles affixed at all the in­
tegral points, and wrap a tightly drawn string about the sets of 
pegs to the right and to the left of thew-ray, then the vertices of 
the two convex string-polygons which bound our two point sets 
will be precisely the points (Pv, qv) whose coordinates are the 
numerators and denominators of the successive convergents to 
w, the left polygon having the even convergents, the right one 
the odd. This gives a new and, one may well say, an extremely 
graphical definition of a continued fraction. 

129 

In the original article [45], one finds moreover the following inter-
pretation of theE-partial quotients: 

Each edge of the polygons [ ... ] may contain integral points. 
The number of parts in which the edge is decomposed by such 
points is exactly equal to a partial quotient. 

Before Klein, Smith expressed a related idea in [73]: 

If with a pair of rectangular axes in a plane we construct a 
system of unit points (i.e. a system of points of which the 
coordinates are integral numbers), and draw the line y = Ox, 
we learn from that theorem that if (x, y) be a unit point lying 
nearer to that line than any other unit point having a less 
abscissa (or, which comes to the same thing, lying at a less 
distance from the origin), y/x is a convergent to (}; and, vice 
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versa, if yjx is a convergent, (x, y) is one of the 'nearest points'. 
Thus the 'nearest points' lie alternately on opposite sides of the 
line, and the double area of the triangle, formed by the origin 
and any two consecutive 'nearest points', is unity. 

Proofs of the preceding properties can be found in Stark [75]. Here 
we only sketch the reason of Klein's interpretation. For explanations 
about our vocabulary, read next section. 

Let X > 1 be a real number. In the first quadrant u0 , consider 
the half-line L>. of slope >. (see Fig. 1). It is defined by the equation 
y =AX, which shows that).= w- 1 = e, where w is Klein's notation and 
e is Smith's. It subdivides the quadrant u0 into two closed cones with 
vertex the origin, ux(>-) adjacent to the axis of the variable x and uy(.X) 
adjacent to the axis of the variable y. 

Lemma 3.1. The segment which joins the lattice points of coor­
dinates (1, 0) and (1, a1) is a compact edge of the convex hull of the set 
of lattice points different from the origin contained in the cone O"x(>.), 
where >. = [a1, a2, ... ]+ is the E-continued fraction expansion of>.. 

Proof. Indeed, the half-line starting from (1, 0) and directed to­
wards (1, a1) cuts the half-line L>. inside the segment [(1, [>.]), (1, [>.] + 
1)), where [>.] is the integral part of>.. But [>.] = a1 , which finishes the 
proof. Q.E.D. 

y 

(0, l) 

(1,0) X 

Fig. 1. Figure illustrating the proof of Lemma 3.1 

Replace now the initial basis of the lattice by (0, 1), (1, a1 ). With 
respect to this new basis, the slope of the half-line L>. is (.X- al)- 1 = 
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[a2 , a3 , ... ]+. This allows one to prove Klein's interpretation by induc­
tion. 

If one considers all lattice points on the compact edges of the bound­
aries of the two previous convex hulls instead of only the vertices, and 
then one looks at the slopes of the lines which join them to the origin, 
one obtains the so-called slow approximating sequence of >.. This kind 
of sequence appears naturally when one desingularizes germs of complex 
analytic plane curves by successively blowing up points (see Enriques & 
Chisini [19], Michel & Weber [53] and Le, Michel & Weber [51]). We 
leave as an exercise for the interested reader to interpret this geometri­
cally (first, read Section 6.3). 

As explained by Klein himself in [45], his interpretation suggests 
to generalize the notion of continued fraction to higher dimensions by 
taking the boundaries of convex hulls of lattice points situated inside 
convex cones. For references about recent research in this area, see 
Arnold [1] and Moussafir [54]. 

§4. Cohn's geometric interpretation of Hirzebruch-Jung con­
tinued fractions 

A geometric interpretation of HJ-continued fractions analogous to 
Klein's interpretation of Euclidean ones was given by Cohn [12] (see 
the comment on his work in Hirzebruch [37, 2.3]). It seems to have 
soon become folklore among people doing toric geometry (see Section 6). 
Before describing this interpretation, let us introduce some vocabulary 
in order to speak with more precision about convex hulls of lattice points 
in the plane. 

Let L be a lattice of rank 2, that is, a free abelian group of rank 2. It 
embeds canonically into the associated real vector space LR = L ®z R. 
When we picture the elements of Las points in the affine plane LR, we 
call them the integral points of the plane. When A and B are points 
of the affine plane LR, we denote by AB the element of the vector 
space LR which translates A into B, by [AB] the closed segment in 
LR of extremities A, B and by [AB the closed half-line having A as an 
extremity and directed towards B. 

If ( u, v) is an ordered basis of LR and l is a line of LR, its slope is 
the quotient f3 /01 E R U { oo}, where 01u + f3v generates l. 

Definition 4.1. A (closed convex) triangle ABC in LR is called 
elementary if its vertices are integral and they are the only intersections 
of the triangle with the lattice L. 
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If the triangle ABC is elementary, then each pair of vectors (AB, AC), 
(BC, BA), (CA, CB) is a basis of the lattice L. Conversely, if one of 
these pairs is a basis of the lattice, then the triangle is elementary. 

We call a line or a half-line in LR rational if it contains at least two 
integral points. If so, then it contains an infinity of them. If A and B 
are two integral points, the integral length lz[AB] of the segment [AB] is 
the number of subsegments in which it is divided by the integral points 
it contains. A vector OA of Lis called primitive if lz[OA] = 1. 

Let CJ be a closed strictly convex 2-dimensional cone in the plane 
LR, that is, the convex "angle" (in the language of plane elementary 
geometry) delimited by two non-opposing half-lines originating from 0. 
These half-lines are called the edges of CJ. The cone CJ is called rational if 
its edges are rational. A cone is called regular if its edges contain points 
A, B such that the triangle GAB is elementary. The name is motivated 
by the fact that the associated toric surface Z(L, CJ) is smooth (that is, 
all its local rings are regular) if and only if CJ is regular (see Section 6.1). 

Let K ( CJ) be the convex hull of the set of lattice points situated 
inside CJ, with the exception of the origin, that is: 

K(CJ) := Conv(CJ n (L- {0})). 

The closed convex set K ( CJ) is unbounded. Denote by P( CJ) its boundary: 
it is a connected polygonal line. It has two ends (in the topological 
sense), each one being asymptotic to (or contained inside) an edge of CJ 
(see Fig. 2). An edge of CJ intersects P(CJ) if and only if it is rational. 

Denote by V(CJ) the set of vertices of P(CJ) and by £(CJ) the set 
of its (closed) edges. For example, in Fig. 3 the vertices are the points 
Ao, Az, As and the edges are the segments [AoAz], [AzAs] and two half­
lines contained in L, l+, starting from Ao, respectively As. 

Now order arbitrarily the edges of CJ. Denote by L the first one 
and by l+ the second one. This orients the plane LR, by deciding to 
turn from L towards l+ inside CJ. If we orient P( CJ) from the end which 
is asymptotic to L towards the end which is asymptotic to l+, we get 
induced orientations of its edges. 

Suppose now that the edge L of CJ is rational. Denote then by 
A_ =/=- 0 the integral point of the half-line L which lies nearest to 0, and 
by V_ =/=- A_ the vertex of P( CJ) which lies nearest to A_. Define in the 
same way A+ and V+ whenever l+ is rational. Denote by (An)n;:::o the 
sequence of integral points on P(CJ), enumerated as they appear when 
one travels on this polygonal line in the positive direction, starting from 
Ao = A_. If l+ is a rational half-line, then we stop this sequence when 
we arrive at the point A+. If l+ is irrational, then this sequence is 



Continued fractions and surface singularities 133 

0 

Fig. 2. The polygonal line associated to a convex cone 

infinite. Definer 2:: 0 such that Ar+l =A+. So, r = +oo if and only if 
l+ is irrational. 

Example 4.2. We consider the lattice Z2 c R 2 and the cone 
u with rational edges, generated by the vectors (1, 0) and (4, 11) (see 
Fig. 3). The small dots represent integral points in the plane and the 
bigger ones represent integral points on the polygonal lines P(u). In this 
example we have V+ = V_ = A2. 

Fig. 3. An illustration of Example 4.2 

Each triangle OAnAn+l is elementary, by the construction of the 
convex hull K(u), which implies that all the couples (OAn, OAn+l) are 
bases of L. This shows that for any n E {1, ... , r }, one has a relation 
of the type: 

(10) 
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with O:n E Z, and the convexity of K(a) shows that: 

(11) O:n 2: 2, Vn E {1, ... , r} 

Conversely: 

Proposition 4.3. Suppose that (OAn)n>o is a (finite or infinite) 
sequence of primitive vectors of L, related by r~lations of the form (10). 
Then we have 

and the slope of the half-line l+ = limn_,00 [0An) in the base 
( -OAo, OAt) is equal to [o:1, 0:2, . , .]-. 

Proof. Recall that the polynomials z- were defined by the recur­
sion formula (1). The first assertion can be easily proved by induc­
tion, using the relations (10). The second one is a consequence of for­
mula (2), which shows that the slope of the half-line [DAn in the base 
( -OAo, OA1) is equal to [o:1, ... , O:n-d-. Q.E.D. 

Proposition 4.4. Let a be the closure of the convex hull of the 
union of the half-lines ([OAn)n>O· Then a is strictly convex and the 
points {An }n~ 1 are precisely the integral points on the compact edges of 
the polygonal line P(a) if and only if the conditions (11) are satisfied 
and the sequence (o:n)n>l is not infinite and ultimately constant equal 
to 2. 

Proof. • What remains to be proved about the necessity is that if 
the sequence (o:n)n~l is infinite, then it cannot be ultimately constant 
equal to 2. If this was the case, by relation (8) we would deduce that 
[o:1, 0:2, ... ]- is rational, and Proposition 4.3 would imply that l+ is 
rational. Then P(a) would contain a finite number of integral points on 
its compact edges, which would contradict the infinity of the sequence 
(o:n)n~l· 

• Let us prove now the sufficiency. As O:n 2: 2, Vn E {1, ... , r }, we 
see that the triangles (OAnAn+dn~oturn in the same sense. Moreover, 
Proposition 4.3 shows that a is a strictly convex cone. The vertices of 
the polygonal line P = AoA1A2 ... are precisely those points An for 
which O:n 2: 3. As all the triangles OAnAn+l are elementary, we see 
that the origin 0 is the only integral point of the connected component 
of a- P which contains it. Moreover, conditions (11) show that the 
other component is convex. So, P C P( a). 

The proposition is proved. Q.E.D. 
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§5. Geometric comparison of Euclidean and HJ-continued 
fractions 

In Section 5.1 we relate the two preceding interpretations, by de­
scribing a duality between two supplementary cones in the plane, an 
underlying lattice being fixed (see Proposition 5.3). In Section 5.2 we 
introduce a so-called zigzag diagram based on this duality, which makes 
it very easy to visualize the various relations between continued fractions 
proved algebraically in Section 2. In Section 5.3 we give a proof of the 
isomorphism between the supplementary cone (L, a-') and the dual cone 
(L, 0") of a given cone (L, a-). 

5.1. A geometric duality between supplementary cones 

Suppose again that a- is any strictly convex cone in LR, whose edge 
L is not necessarily rational. Let l'_ be the half-line opposite to L and 
a-' be the closed convex cone bounded by l+ and l'_. So, a- and a-' are 
supplementary cones: 

Definition 5.1. Two strictly convex cones in a real plane are 
called supplementary if they have a common edge and if their union 
is a half-plane. 

By analogy with what we did in the previous section for a-, orient 
the polygonal line P(cr') from l'_ towards l+. If L is rational, define 
the point A'_ and the sequence (A~)n>o, with A~ = A'_. They are 
the analogs for a-' of the points A_ and (An)n2:0 for cr. In particular, 
QA_ + OA'_ = 0. 

Example 5.2. Consider the same cone as in Example 4.2. Then 
the polygonal lines P( a-) and P( a-1 ) are represented in Fig. 4 using heavy 
segments. 

The basis for our geometric comparison of Euclidean and Hirzebruch­
Jung continued fractions is the observation that the polygonal line P(a-1) 

can be constructed in a very simple way once one knows P(cr). Namely, 
starting from the origin, one draws the half-lines parallel to the oriented 
edges of P( a-). On each half-line, one considers the integer point which 
is nearest to the origin. Then the polygonal line which joins those points 
is the union of the compact edges of P(cr'). 

Now we describe this with more precision. If e E E(cr) is an edge of 
P(cr), denote by I( e) E L the integral point such that OI(e) is a primi­
tive vector of L positively parallel to e (where e is oriented according to 
the chosen orientation of P( a-)). Then it is an easy exercise to see that 
I(e) E a-' (use the fact that the line containing e intersects L and l+ in 
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cr 

1~ 

Fig. 4. An illustration of Example 5.2 

interior points). We can define a map: 

(12) 
I: £(a)---> a'nL 

e ---> I(e) 

As the edges of P(a) always turn in the same direction, one sees that 
the map I is injective. 

Proposition 5.3. The map I respects the orientations and the 
image of I verifies the double inclusion 

V(a') c Im(I) cP(a') n L. 

The difference lm(I) - V(a') contains at most the points I[A_ V_], 
I[V+A+ ]. Such a point is a vertex of P(a') if and only if the inte­
gral length of the corresponding edge of P(a) is 2:: 2. In particular, 
one has the equality V(a') = Im(I) if and only if lz[A_ V_] 2:: 2 and 
lz [V+ A+] 2:: 2, whenever these segments exist. 

Proof. Denote by (Vj)jEJ the vertices of P(a), enumerated in the 
positive direction. The indices form a set of consecutive integers, well­
defined only up to translations. 

For any j E J, denote by Vj- and Vj+ respectively the integral 
points of P(a) which precede and follow Vj. If Vj is an interior point of 
a, denote by Wi E L the point such that OWi = OVj- + OVj+, and by 

wi- its nearest integral point in the interior of the segment [OWiJ (see 
Fig. 5). 

As OVj- Vj and OVj Vj+ are elementary triangles, it implies that both 

(OVj-, OVj) and (OVj, OVj+) are bases of L. So, there exists an integer 
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1_ 

Fig. 5. The first illustration for the proof of Proposition 5.3 

nj such that 

(13) 

As Vj is a vertex of P(a), we see that nj ;::: 0. We deduce that the points 
0, Vj, wj-, wj are aligned in this order, that Vj l-j- + Vj l-j+ = Vj wj-

and that lz [Vj wn = nj + 1. 
Let us join each one of the nj interior points of [Vj wj-] to l-j-. This 

gives a decomposition of the triangle l-j- Vj wj- into ( nj + 1) triangles. 

These are necessarily elementary, because the triangle Ol-j- Vj is. Denote 

Bythe definition of the map I, we see that OVJ = l-j-Vj and OVJ+l = 
Vj l-j+ = l-j- wJ-. This implies that the triangleOVjVJ+1 is the trans­
lated image by the vector l-j- 0 of the triangle l-j- Vj wJ-. The preceding 
arguments show that its only integral points are its vertices and nj other 
points in the interior of the segment [VjVJ+ 1]. Indeed: 

(14) 

Moreover, the triangle OVJVJ+1 is included in the cone a' and the couple 
of vectors (OVj, OVJ+ 1 ) has the same orientation as (l'_, l+)· 
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This shows that the triangles (OVJVJ+ 1 )jEJ are pairwise disjoint 
and that their union does not contain integral points in its interior. 

• If both edges of a are irrational, then the closure of the union 
of the cones R+OVJ + R+OVJ+l is the cone a', as the edges L and 
l+ are asymptotic to P(a). We deduce from relation (14) that the se­
quence (>..j )jEJ of slopes of the vectors (VjVJ+ 1 )jEJ, expressed in a base 
( u_, u+) of LR which verifies l± = R+ U± is strictly increasing, and that 
limj->-oo Aj = 0, limj->+oo Aj = +oo. This shows that the closure of the 
connected component of a'- UjEJ[VjVJ+d which does not contain the 
origin is convex. As a consequence, 

U [VjVJ+d = P(a'). 
jEJ 

Moreover, as nj ~ 0, the strict monotonicity of the sequence (>..j)jEJ 
implies that the points (Vj)jEJ are precisely the vertices of P(a'). The 
proposition is proved in this case. 

• Suppose now that L is rational. Then choose the index set J such 
that Vo = A_ and V1 = V_. By the construction of the map I, the 
triangle OV0V{ is the translated image ofVoOV0+ by the vector VoO (see 
Fig. 6). 

Fig. 6. The second illustration for the proof of Proposi­
tion 5.3 

In particular, V0V{ = OV(t But V{V~ = (n1 + 1)0V1 by relation 
(14), which shows that the vectors V0V{ and V{V~ are proportional if 
and only if V(t = V1 , which is equivalent to lz [A_ V_J = 1. Moreover, 
the property of monotonicity for the slopes of the vectors (VjVj+l)jEJ 
is true as before, if one starts from j = 0. 

• An analogous reasoning is valid for l+ if this edge of a is rational. 
By combining all this, the proposition is proved. Q.E.D. 
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The previous proposition explains a geometric duality between the 
supplementary cones a, a' with respect to the lattice L. We see that, 
with possible exceptions for the compact edges which intersect the edges 
of a and a', the compact edges of P( a) correspond to the vertices of 
P(a') interior to a' and conversely (by permuting the roles of a and a'), 
which is a kind of point-line polarity relation. 

The next corollary shows that the involution (9) studied algebraically 
in Section 2 is closely related to the previous duality. 

Corollary 5.4. Suppose that L is rational and that a is not reg­
ular. If (OA0, U) is a basis of L with respect to which the slope of l+ 
is greater than 1, then U = OA1. If>. > 1 denotes the slope of the 
half-line l+ in the base (OA0, OAI), then >.j(>.- 1) is its slope in the 
base (OAo, OAU. 

Proof. We leave the first affirmation to the reader (look at Fig. 6). 
As the triangles OA0 A 1 and OA0A~ are elementary, we see that 

(OA0 , OA1 ) and (OA0, OA~) are indeed two bases of the lattice L. 
Proposition 5.3 shows that OA0 = AoA1, which allows us to relate the 
two bases: 

(15) { OA0 = -OAo 
OA~ = OA1- OAo 

Let v E LR be a vector which generates the half-line l+. We want 
to express it in these two bases. As l+ lies between the half-lines [OA0 
and [OA1 , we see that: 

(16) v = -qOAo + pOA1, with p, q E R:f_ 

The equations (15) imply then that: 

(17) v = -(p- q)OAo + pOA~ 

which shows that p- q > 0, as l+ lies between the half-lines [OA~ and 
[OA0 • This implies that >. := pjq > 1. We then deduce the corollary 
from equation (17). Q.E.D. 

The previous corollary shows that the number >. > 1 can be canon­
ically attached to the pair (L, a), once a rational edge of a is chosen as 
the first edge L. This motivates the following definition: 

Definition 5.5. Suppose that L is rational and that the cone a 
is not regular. We say that the pair (L, a) with the chosen ordering of 
sides is of type >. > 1 if >. is the slope of the half-line l+ in the base 
(OAo, OAI). 
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Proposition 4.3 shows that, if (L, a) is of type A > 1, then A = 
[a1, a2, ... ]-, where the sequence (an)n~l was defined using relation 
(10). 

· Suppose now that both edges of a are rational. Then one can choose 
p, q EN* with gcd(p, q) = 1 in relation (16), condition which determines 
them uniquely. So, A = pfq. The following proposition describes the 
type of (L, a) after changing the ordering of the sides. 

Proposition 5.6. If (L, a) is of type pfq with respect to the or­
dering L, l+, then it is of type pfq with respect to the ordering l+, L, 
where qq = 1(modp). 

Proof. By relation (16), we have OA+ = -qQA_ +pOA1. Multiply 
both sides by q. By the definition of q, there exists k E N such that 
qq = 1 + kp. We deduce that OA_ = -qOA+ + p(qOA1- kOA-). 
So, ( -OA+, qOA1 - kOA_) is a base of L in which the slope of L is 
pfq > 1. By the first affirmation of Corollary 5.4, the proposition is 
proved. Q.E.D. 

By combining the previous proposition with Proposition 4.3, we 
deduce the following classical fact (see [4, section III.5]): 

Corollary 5.7. Ifpfq = [a1, a2, ... , ar]-, then 
pfq =[an ar-1, ... , a1]-. 

Another immediate consequence of Corollary 5.4 is: 

Proposition 5.8. If (L, a) is of type pfq with respect to the or­
dering L, l+, then (L, a') is of type pf(p-q) with respect to the ordering 
l'_, l+· 

The previous proposition describes the relation between the types 
of two supplementary cones. In Section 5.2, we describe more precisely 
the relation between numerical invariants attached to the edges .and the 
vertices of P(a) and P(a'). 

5.2. A diagram relating Euclidean and HJ-continued frac­
tions 

We introduce now a diagram which allows one to "see" the duality 
between P(a) and P(a'), as well as the relations between the various 
numerical invariants attached to these polygonal lines. 

• Suppose first that both L and l+ are irrational. Consider two 
consecutive vertices Vj, VJ+1 of P(a). Let us attach the weight n1 + 3 to 
the vertex Vj, where n1 2: 0 was defined by relation (13). Introduce also 
the integer mJ+l 2: 0 such that lz [Vj VJ+d = ffiJ+l + 1. The relation (14) 
shows that lz[VjVj+1] = n1 + 1. By reversing the roles of the polygonal 
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lines P(a') and P(a), we deduce that the weight of the vertex VJ+I of 
P(a') is mJ+l + 3. 

We can visualize the relations between the vertices Vj, VJ+t. Vj, Vf+1 

as well as the numbers associated to them and to the segments [Vj VJ+1], 

[VJVJ+ 1 ] by using a diagram, in which the heavy lines represent the 
polygonal lines P(a), P(a'), and each vertex Vj is joined to Vj and VJ+I 
(see Fig. 7). In this way, the region contained between the two curves 
representing P(a) and P(a') is subdivided into triangles. Each edge E 
of P(a), P(a') is contained in only one of those triangles. Look at its 
opposite vertex. We say that E is the opposite edge of that vertex in 
the zigzag diagram. We see that the weight of a vertex is equal to the 
length of the opposite edge augmented by 2. 

I 

p(o-') : 
I 

\ p (a-) 

.-· ni+1+3 
__ ... -------\j+l 1 

m. 1+ 3 < mi+l+ 
J+ --,--------

n. + 1 \j + 1 ---------------
J ...• -·· 

m/3 -·· \j 

, , ' ' ' 

Fig. 7. Local aspect of the zigzag diagram 

As an edge and its opposite vertex are dual through the morphism 
I (see Proposition 5.3) and its analog I' attached to the cone a', the 
triangles appearing in the zigzag diagram are a convenient graphical 
representation of the duality explained in Section 5.1. 

• When L is rational and l+ is irrational, we draw a little differ­
ently the diagram (see Fig. 8). The curves representing P(a) and P(a') 
start from points Vo and Vo' of a horizontal line representing the line 
which contains L. We represent the integral point V{ differently from 
the points V~, Vj, ... , because it may not be a vertex of P(a'), as ex­
plained in Proposition 5.3. The length of [Vo'V{] is always 1. The relation 
between the length of an edge and the weight of the opposite vertex is 
the same as before, with the exception of the triangle V{Vo Vi, where the 
weight of V{ is equal to lz [Vo V1] + 1. 



142 P. Popescu-Pampu 

p (o-') P(o-) 

Fig. 8. The zigzag diagram when L is rational 

• When both L and l+ are rational and there is at least one vertex 
on P( a) lying strictly between A_ and A+ (that is, s ~ 1), the curves 
representing P(a) and P(a') start again from a horizontal line, but now 
they join in a point A+ (see Fig. 9). 

P(o-')/ , 

, , , 
' 
\P(o-) 

' 

Fig. 9. The zigzag diagram when both L and l+ are ratio­
nal 
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• When both L and l+ are rational and [A_A+] is an edge of P(O') 
(that is, s = 0), the diagram is represented in Fig. 10. 

1' 
\b=A_ 

Fig. 10. The zigzag diagram when P(a) has only one com­
pact edge 

To summarize, we have the following procedure for constructing and 
decorating the diagram when L is rational: 

Procedure. Suppose that L is rational. Then draw a horizontal 
line with three marked points V0 = A~, 0, Vo = A_ in this order, V0 on 
the left and Vo on the right. Starting from V0 and Vo, draw in the upper 
half-plane two curves P(O''), respectively P(O'), concave towards 0 and 
coming closer and closer from one another. If l+ is rational, join them in 
a point A+. Draw a zigzag line starting from V0 and going alternatively 
from P(O') to P(O''). Denote its successive vertices by V{, V1, V~, ... 
and stop at the point v;+l· Decorate the edges V0V{ and v;+l A+ by 
1. The other edges and vertices will be decorated using the initial data 
(discussed in the sequeQ, by respecting the following rule: 

Rule. The weight of a vertex is equal to the length of the opposite 
edge augmented by the number of its vertices distinct from the points 
A_, A~, A+· 

Initial data. If 0' is of type >., write the HJ-continued fraction 
expansion of >. in the form: 

(18) 

Then decorate the edges of P(O') with the numbers m1 + 1, m2 + 1, ... 
and the vertices with the numbers n 1 + 3, n2 + 3, .... 
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Definition 5.9. We call the previous diagram the zigzag dia­
gram associated to the pair (L, O") and to the chosen ordering of the 
edges of O", or to the number A > 1, where (L, O") is of type A with 
respect to this ordering. We denote it by ZZ(A). 

The zigzag diagrams allow one to visualize the relations between 
Euclidean and Hirzebruch-Jung continued fractions, proved algebraically 
in Section 2. Indeed, one can read the HJ-continued fraction expansion 
of A > 1 on the right-hand curved line of ZZ(A). By Corollary 5.4, we 
can read the HJ-continued fraction expansion of >.j(A- 1) on the left­
hand curved line P(O") of ZZ(A). So, by looking at Fig. 9, which can be 
easily constructed from the initial data by respecting the rule, we get: 

(19) 

which gives a geometric proof of Proposition 2.7. 
Now, by Klein's geometric interpretation of E-continued fractions 

(see Section 3), we see that theE-continued fraction expansion of Aj(A-
1) can be obtained by writing alternatively the integral lengths of the 
edges of the polygonal lines P(O") and P(O"')- [V~V{] (indeed, Aj(A -1) 
is the slope of l+ in the base (OV0 , OV{)): 

(20) A - [ j+ -\--- m1 + 1, n1 + 1, m2 + 1, n2 + 1, m3 + 1,... . 
A-1 

This proves geometrically Proposition 2.3. 
In order to read the E-continued fraction expansion of A on the 

diagram, one has to look at Z Z (A) from left to right instead of from 
right to left and draw a new zigzag line starting from V~. The important 
point here is that one has to discuss according to the alternative m 1 = 0 
or m1 > 0. In the first case, the zigzag line joins V~ to V1 and V1 to v;. 
In the second case, it joins V~ to a new point representing A1 and A1 to 
V{. Compare this with Lemma 2.5. 

Example 5.10. Take A= 11/7. After computing A= [2, 3, 2, 2]-, 
we can construct the associated zigzag diagram ZZ(ll/7). We see that 
the extreme points V{, v; are vertices of P(O"'). One can read on it the 
results of the Examples 2.4, 2.6, 2.9. 

If one had starts instead from A = 11/4 = [3, 4]-, the corresponding 
diagram would be ZZ(ll/4). In this case the extreme points are not 
vertices of P(O"'), because their weights are equal to 2. 
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3 

2 

Fig. 11. The first illustration for Example 5.10: ZZ(ll/7) 

4 

2 3 

Fig. 12. The second illustration for Example 5.10: 
ZZ(ll/4) 

5.3. Relation with the dual cone 

Denote by L := Hom(L, Z) the dual lattice of L. Inside the associ­
ated vector space LR lives the dual cone 6 of O", defined by: 

6 := {u E LR I u.u ~ o, VuE O"}. 

Let w be the volume form on LR which verifies w(u1 , u 2 ) = 1 for 
any basis (u1, u2) of L defining the opposite orientation to (L, l+)· It 
is a symplectic form, that is, a non-degenerate alternating bilinear form 
on LR. But we prefer to look at it as a morphism (obtained by making 
interior products with the elements of L): 

w: L--> L. 

Proposition 5.11. The mapping w realizes an isomorphism be­
tween the pairs (L, 0"1) and (L, 6). 

Proof Indeed we have: 

w- 1 (6) = {u ELI w(u) E 6} = {u ELI w(u, v) ~ 0, Vv E L} = 0"1 • 
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While writing the last equality, we used our convention on the orientation 
of w. Notice that the dual cone a can be defined without the help of 
any orientation, in contrast with the morphism w. Q.E.D. 

The previous proposition shows that the construction of the polyg­
onal line P(a') explained in Proposition 5.3 describes also the polygonal 
line P(a). This observation is crucial when one wants to use zigzag dia­
grams for understanding computations with invariants of toric surfaces 
(see next section). 

It also helps to understand geometrically the duality between the 
convex polygons K(a) and K(a) explained in Gonzalez-Sprinberg [30] 
and in Oda [60, pages 27-29]. As Dimitrios Dais kindly informed us after 
seeing a version of this paper on ArXiv, a better algebraic understanding 
of that duality is explained in Dais, Haus & Henk [14, Section 3]. In 
particular, modulo Proposition 5.11, the Theorem 3.16 in the previous 
reference leads easily to an algebraic proof of our Proposition 5.3. 

(Added in proof) Emmanuel Giroux has informed us that he had 
realized the existence of a duality between supplementary cones (see 
[25, section l.G]). 

§6. Relations with toric geometry 

First we introduce elementary notions of toric geometry (see Sec­
tion 6.1). In Section 6.2 we explain how to get combinatorially vari­
ous invariants of a normal affine toric surface and of the corresponding 
Hirzebruch-Jung analytic surface singularities. In Section 6.3 we explain 
how to read the combinatorics of the minimal embedded resolution of a 
plane monomial curve on an associated zigzag diagram. 

The basics about resolutions of surface singularities needed in order 
to understand this section are recalled in Section 8.1. 

6.1. Elementary notions of toric geometry 
For details about toric geometry, general references are the books 

of Oda [60] and Fulton [23], as well as the first survey of it by Kempf, 
Knudson, Mumford & St. Donat [44]. 

In the previous section, our fundamental object of study was a pair 
(L, a), where L is a lattice of rank 2 and a is a strictly convex cone in 
the 2-dimensional vector space LR· 

Suppose now that the lattice L has arbitrary finite rank d ~ 1 and 
that a is a strictly convex rational cone in LR. The pair (L, a) gives 
rise canonically to an affine algebraic variety: 

Z(L, a) :=Spec C[a n L]. 
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This means that the algebra of regular functions on Z(L, a) is gen­
erated by the monomials whose exponents are elements of the semigroup 
ant of integral points in the dual cone of a. If v E an£, we formally 
write such a monomial as xv. One can show that the variety Z(L, a) 
is normal (see the definition at the beginning of Section 8.1). 

The closed points of Z(L, a) are the morphisms of semigroups (an 
L, +) ----> (C, · ). Among them, those whose image is contained in C* 
form ad-dimensional algebraic torus TL =Spec C[L], that is, a complex 
algebraic group isomorphic to (C*)d. The elements of L correspond to 
the 1-parameter subgroups ofTL, that is, the group morphisms (C*, ·) ----> 

(TL, · ). The action of TL on itself by multiplication extends canonically 
to an algebraic action on Z(L, a), such that TL is the unique open 
orbit. If (L, a) is a second pair and¢: L----> Lis a morphism such that 
¢(a) C a, one gets an associated toric morphism: 

¢*: Z(L, a) ----> Z(L, a) 

It is birational if and only if¢ realizes an isomorphism between L and L. 
In this case¢* identifies the tori contained inside Z(L, a) and Z(L, a). 

In general: 

Definition 6.1. Given an algebraic torus T, a toric variety Z 
is an algebraic variety containing T as a dense Zariski open set and en­
dowed with an action T x Z ----> Z which extends the group multiplication 
ofT. 

Oda [60] and Fulton [23] study mainly the normal toric varieties. For 
an introduction to the study of non-necessarily normal toric varieties, 
one can consult Sturmfels [76] and Gonzalez Perez & Teissier [29]. 

A normal toric variety can be described combinatorially using fans, 
that is finite families of rational strictly convex cones, closed under the 
operations of taking faces or intersections. If L is a lattice and F is a 
fan in LR, we denote by Z(L, F) the associated normal toric variety. It 
is obtained by glueing the various affine toric varieties Z(L, a) when a 
varies among the cones of the fan F. As glueing maps, one uses the toric 
birational maps Z(L, a) ----> Z(L, a) induced by the inclusion morphisms 
(L, a)----> (L, a), for each pair a C a of cones of F. 

The variety Z(L, F) is smooth if and only if each cone of the fan F 
is regular, that is, generated by a subset of a basis of the lattice L. 

6.2. Toric surfaces 

We restrict now to the case of surfaces. Consider a 2-dimensional 
normal toric surface Z(L, a), where a is a strictly convex cone with 
non-empty interior. There is a unique 0-dimensional orbit 0, whose 



148 P. Popescu-Pampu 

maximal ideal is generated by the monomials with exponents in the 
semigroup 6 n L - 0. The surface is smooth outside 0, and 0 is a 
smooth point of it if and only if rJ is a regular cone. Supposing that rJ 
is not regular, we explain how to describe combinatorially the minimal 
resolution morphism of Z(L, rJ) and the effect of blowing-up the point 
0. We also give a formula for the embedding dimension of the germ 
(Z(L, rJ), 0), which is a so-called Hirzebruch-Jung singularity. 

With the notations of Section 4, let us subdivide rJ by drawing the 
half-lines starting from 0 and passing through the points Ak, \/k E 

{1, ... , r }. In this way we decompose rJ in a finite number of regular 
subcones. They form the minimal regular subdivision of rJ, in the sense 
that any subdivision of rJ by regular cones is necessarily a refinement of 
the preceding one. 

The family consisting of the 2-dimensional cones in the subdivision, 
of their edges and of the origin form a fan F( rJ). For each such subcone 
rJ1 of rJ, there is a canonical birational morphism Z(L, rJ1) ~ Z(L, rJ), 
which realizes an isomorphism of the tori. Using these morphisms, one 
can glue canonically the tori contained in the surfaces Z(L, rJ1 ) when 
rJ1 varies, and obtain a new toric surface Z(L, F(rJ)), endowed with a 
morphism: 

Z(L, F(rJ)) ~ Z(L, rJ) 

Proposition 6.2. The morphism Pa is the minimal resolution of 
singularities of the surface Z(L, rJ). Moreover, its exceptional locus Ea 
is a normal crossings divisor and the dual graph of Ea is topologically a 
segment. 

Proof. For details, see [23]. Here we outline only the main steps. 
The morphism Pa is proper, birational and realizes an isomorphism over 
Z(L, rJ) - 0. As Z(L, F(rJ)) is smooth, Pa is a a resolution of sin­
gularities of Z(L, rJ) (see Definition 8.2). There is a canonical bijec­
tion between the irreducible components Ek of the exceptional divisor 
Ea = p;; 1 (0) and the half-lines [OAk, fork E {1, ... , r}. Moreover, Ek 
is a smooth compact rational curve and 

(21) El_ = -ak, \fk E {1, ... , r} 

where the numbers ak were introduced in relation (10). 
Using the inequality (11), we deduce that no component of Ea is 

exceptional of the first kind (see the comments which follow Definition 
8.2). This implies that Pa is the minimal resolution of singularities of 
Z(L, rJ). The proposition is proved. Q.E.D. 
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Notice that relation (21) gives an intersection-theoretical interpreta­
tion of the weights attached through relation (10) to the integral points 
situated on P(a-) which are interior to a. 

Conversely (see [4] and [64]): 

Proposition 6.3. Suppose that a smooth surface R contains a 
compact normal crossings divisor E whose components are smooth ra­
tional curves of self-intersection ::::; -2 and whose dual graph is topolog­
ically a segment. Denote by a1, ... , ar the self-intersection numbers 
read orderly along the segment. Then E can be contracted by a map 
p: (R, E) ....... (S, 0) to a normal surfaceS and the germ (S, 0) is ana­
lytically isomorphic to a germ of the form (Z(L, a), 0), where a is of 
type A:= [all ... , nr]-. 

This motivates: 

Definition 6.4. A normal surface singularity (S, 0) isomorphic 
to a germ of the form (Z(L, a), 0) is called a Hirzebruch-Jung sin­
gularity. 

Hirzebruch-Jung singularities can also be defined as cyclic quotient 
singularities (see [4] and [64]). They appear naturally in the so-called 
Hirzebruch-Jung method of studying an arbitrary surface singularity. 
Namely, one projects the given singularity by a finite morphism on a 
smooth surface, then one makes an embedded resolution of the dis­
criminant curve and takes the pull-back of the initial surface by this 
morphism. In this case, the normalization of the new surface has only 
Hirzebruch-Jung singularities (see Laufer [47], Lipman [52], Brieskorn 
[8] for details and Popescu-Pampu [64] for a generalization to higher 
dimensions). 

The proof of Proposition 6.2 shows that the germs (Z(L, a), 0) and 
(Z(L, a), 0) are analytically isomorphic if and only if there exists an 
isomorphism of the lattices L and L sending a onto o=. The same is true 
for strictly convex cones in arbitrary dimensions, as proved by Gonzalez 
Perez & Gonzalez-Sprinberg [28]. Previously we had proved this for 
simplicial cones in [64]. 

A Hirzebruch-Jung singularity isomorphic to (Z(L, a), 0) is said to 
be of type Ap,q, with 1 ::::; q < p and gcd(p, q) = 1 if (using Definition 
5.5) the pair (L, a) is of type pjq with respect to one of the orderings of 
the sides of a. Then, by Proposition 4.3, we have pjq = [a1, ... , ar]-. 
By Proposition 5.6, one has Ap, q ~ Ap', q' if and only if p = p' and 
q' E {q, q}, where qq = 1 (modp). 

The singularities of type An+l,n are also called of type An. They 
are those for which the polygonal line P( a) has only one compact edge, 
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as (n + 1)/n = [(2)n]- (a case emphasized in Section 5.2), and also 
the only Hirzebruch-Jung singularities of embedding dimension 3 (more 
precisely, they can be defined by the equation zn+l = xy). Indeed: 

Proposition 6.5. If pjq = [a1, ... , ar]- = [(2)m1 , n1 + 3, ... , 
ns +3, (2)ms+l]-, then: 

r s 

embdim(.Ap,q) = 3 + :~)ai- 2) = 3 + s + L nk. 
i=l k=l 

Proof. If s is a generating system of the semigroup L n a- 0, 
then the monomials (Xv)vES form a generating system of the Zariski 
cotangent space M/ M 2 of the germ at the singular point, where M is 
the maximal ideal of the local algebra of the singularity Ap, q. By taking 
a minimal generating system, one gets a basis of this cotangent space. 
But such a minimal generating system is unique, and consists precisely 
of the integral points of P(a) interior to a. By Propositions 5.11 and 
2.7, we see that this number is as given in the Proposition. Q.E.D. 

Hirzebruch-Jung singularities are particular cases of mtional singu­
larities, introduced by M. Artin [2], [3] in the 60's (see also [4]). In [79], 
Tjurina proved that the blow-up of a rational surface singularity is a 
normal surface which has again only rational singularities (see also the 
comments of Le [50, 4.1]). As any surface can be desingularized by a 
sequence of blow-ups of its singular points followed by normalizations 
(Zariski [87], see also Cossart [13] and the references therein), this shows 
that a rational singularity can be desingularized by a sequence of blow­
ups of closed points. In particular this is true for a Hirzebruch-Jung 
singularity. As th~ operation of blow-up is analytically invariant, we 
can describe the blow-up of 0 in the model surface Z(L, a). We use 
notations introduced at the beginning of the proof of Proposition 5.3. 

Proposition 6.6. Suppose that the cone a is not regular. Subdi­
vide it by dmwing the half-lines starting from 0 and passing through the 
points A1, Vt, V2, ... , V,, Ar· Denote by Fo(a) the fan obtained in this 
way. Then the natuml toric morphism Z(L, F0 (a)) ~ Z(L, a) is the 
blow-up of 0 in Z(L, a). 

Proof A proof is sketched by Lipman in [52]. Here we give more 
details. 

Let (S, 0) be any germ of normal surface. Consider its minimal res­
olution Pmin: (Rmin, Emin) --+ (S, 0) and its exceptional divisor Emin = 
L~=l Ek. The divisors Z E L~=l ZEk which satisfy Z · Ek :::; 0, Vk E 
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{1, ... , r} form an additive semigroup with a unique minimal element 
Ztop' called the fundamental cycle of the singularity. It verifies 

(22) 

for the componentwise order on the set of cycles with integral coefficients. 
In the case of a rational singularity, Tjurina [79] showed that the divisors 
Ek which appear in the blow-up of 0 on S can be characterized using 
the fundamental cycle: they are precisely those for which Ztop · Eic < 0. 

In our case, where (S, 0) = (Z(L, a), 0), Proposition 6.2 shows 
that Pmin = P(j• Using the relations (21) and (22), we see that Ztop = 
2:::~= 1 Ek· Again using relation (21), we get: 

Ztop · Ek < 0 {:::==} either k E {1, r} or ak;::: 3. 

This shows that the components of E(j which appear when one blows­
up the origin, are precisely those which correspond to the half-lines 
[OA1, [OVt, [OV2, ... , [Olfs, [OAr. But the surface obtained by blow­
ing-up the origin is again normal, by Tjurina's theorem, which shows 
that it coincides with Z(L, F 0 (a)). Q.E.D. 

One sees that after the first blow-up, the new surface has only sin­
gularities of type An, where n varies in a finite set of positive numbers. 
The singular points are contained in the set of 0-dimensional orbits of 
the toric surface Z(L, F 0 (a)), which in turn correspond bijectively to 
the 2-dimensional cones of the fan F 0 (a). The germs of the surface at 
those points are Hirzebruch-J ung singularities of types Ano, ... , An., 
where no= lz[A1 V1], n1 = lz[V1 V2], ... , ns = lz[VsAr]· 

We have spoken until now of algebraic aspects of Hirzebruch-Jung 
singularities. We discuss their topology in Section 8.3. 

6.3. Monomial plane curves 

Suppose that (S, 0) is a germ of smooth surface and that (C, 0) C 

( S, 0) is a germ of reduced curve. A proper birational morphism p: n ---. 
S is called an embedded resolution of the germ (C, 0) if n is smooth, p 
is an isomorphism above S- 0 and the total transform p- 1(C) of Cis a 
divisor with normal crossings on n in a neighborhood of the exceptional 
divisor E := p-1(0). The closure in 'R of the difference p-1(C)- p-1(0) 
is called the strict transform of C by the morphism p. 

It is known since the XIX-th century that any germ of plane curve 
can be resolved in an embedded way by a sequence of blow-ups of points 
(see Enriques & Chisini [19], Laufer [47], Brieskorn & Knorrer [9]). The 
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combinatorics of the exceptional divisor of the resolution can be deter­
mined starting from the Newton-Puiseux exponents of the irreducible 
components of the curve and from their intersection numbers using E­
continued fraction expansions. We explain here how to read the sequence 
of self-intersection numbers of the components of the exceptional divi­
sor of the minimal embedded resolution of a monomial plane curve by 
using a zigzag diagram, instead of just doing blindly computations with 
continued fractions. 

If p, q EN*, 1::; q < p and gcd(p, q) = 1, consider the plane curve 
Cp/q defined by the equation: 

(23) 

It can be parametrized by: 

(24) 

As p and q are relatively prime, one sees that (24) describes the 
normalization morphism for cp/q (see its definition at the beginning 
of Section 8.1). As tP and tq are monomials, one says that Cp/q is a 
monomial curve. There is a natural generalization to higher dimensions 
(see Teissier [ 77]) . 

If one identifies the plane C 2 of coordinates (x, y) with the toric 
surface Z(L0 , a0 ), where L 0 = Z2 and a0 is the first quadrant, then it is 
easy to see (look at equation (24)) that Cp/q is the closure in C 2 of the 
image of the 1-parameter subgroup of the complex torus TLo = (C*) 2 

corresponding to the point ( q, p). 
Consider again the notations introduced before Lemma 3.1. Let 

L := [0(1, 0) and l+ := [O(q, p) be the edges of the cone ax(Piq). 
We leave to the reader the proof of the following lemma, which is very 
similar to the proof of Lemma 3.1. Recall that the type of a cone was 
introduced in Definition 5.5. 

Lemma 6. 7. With respect to the chosen ordering of its edges, the 
cone ax (pI q) is of type pI (p- q). Moreover, with the notations of Section 
5, A1 = (1, 1), A~= (0, 1) and A+= (q, p). 

Even if the proof is very easy, it is important to be conscious of this 
result, as it allows to apply the study done in Section 5 to our context. 

Given the pair (p, q), we want to describe the process of embedded 
resolution of the curve Cp/q by blow-ups, as well as the final excep­
tional divisor, the self-intersections of its components and their orders 
of appearance during the process. 
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Lemma 6.8. The blow-up 1ro: Ro ----t C 2 of 0 in C2 is a toric 
morphism corresponding to the subdivision of o-0 obtained by joining 
0 to A1 = (1, 1). The strict transform of Cpfq passes through the a­
dimensional orbit of Ro associated to the cone R+OA1 + R+OA~. 

Proof With the notations of Section 3, we consider the fan :F0 

subdividing cro which consists of the cones CTx(1), cry(1), their edges and 
the origin. Let 1f:F0 : Z(L, :Fo) ----t Z(L, cro) be the associated toric mor­
phism. It is obtained by gluing the maps 1fx: Z(L, crx(1)) ----t Z(L, cro) 
and 1fy: Z(L, cry(1)) ----t Z(L, cro) over (C*)2 . With respect to the coor­
dinates given by the monomials associated to the primitive vectors of L 
situated on the edges of the cones cro, cr x ( 1), cry ( 1), the maps 1r x and 1r y 

are respectively described by: 

{ 
X= X1Y1 

Y = Y1 
and { x = X2 

y = X2Y2 

One recognizes the blow-up of 0 in C 2 . Now, in order to compute the 
strict transform of Cpfq' one has to make the previous changes of vari­
ables in equation (19). The lemma follows immediately. Q.E.D. 

Starting from Lemma 6. 7 and using the previous lemma as an in­
duction step, we get: 

Proposition 6.9. The following procedure constructs the dual 
graph of the total transform of Cpfq by the minimal embedded resolu­
tion morphism, starting from the zigzag diagram ZZ(pf(p- q)): 

• On each edge of integral length l 2: 1, add ( l- 1) vertices of weight 
2. Then erase the weights of the edges (that is, their integral length). 

• Attach the weight 1 to the vertex A+. Then change the signs of 
all the weights of the vertices. 

• Label the vertices by the symbols E1, E2, E3, ... starting from A1 

on P( cr) till arriving at V1 , continuing from the first vertex which follows 
V{ on P( cr') till arriving at V2, coming then back to P( CT) at the first 
vertex which follows V1 and so on, till labelling the vertex A+. 

• Erase the horizontal line, the zigzag line and the curved segment 
between V~ and the first vertex which follows V{. 

• Add an arrow to the vertex A+ and keep only the weights of the 
vertices and their labels En. 

The arrowhead vertex represents the strict transform of the curve 
Cpfq and the indices of the components Ei correspond to the orders of 
appearance during the process of blow-ups. 

It is essential to remark that in the previous construction one starts 
from ZZ(pf(p- q)) and not from ZZ(pfq) (look again at Lemma 6.7). 
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Example 6.10. Consider the curve x 11 - y4 = 0. Then .A = 
11/(11- 4) = 11/7. Its zigzag diagram ZZ(11/7) was constructed in 
Example 5.10. So, the dual graph of the total transform of C 11; 4 by 
the minimal embedded resolution morphism has 6 vertices, of easy com­
putable weights (see Fig. 13). 

-4 -I -2 -2 -3 -2 
• • • • • 
E3 E6 Es E4 E2 EI 

Fig. 13. The dual graph of the total transform of Cu, 4 

Proposition 6.9 endows us with an easy way of remembering the 
following classical description of the minimal embedded resolution of a 
monomial plane curve (see Jurkiewicz [43], who attributes it to Hirze­
bruch; Spivakovsky [74] extends it to the case of monomial-type valua­
tions on function- fields of surfaces): 

Proposition 6.11. If pjq = [m1 + 1, n1 + 1, m2 + 1, ... , ns + 
1, ms+l + 1]+, then the dual graph of the total transform of the monomial 
curve Cpjq is the one which appears in Fig. 14. 

Proof. Combine formulae (20) and (18) with Fig. 9 and Proposition 
6.9. Q.E.D. 

In Fig. 14 we have indicated only the orders of appearance of the 
components of the exceptional divisor corresponding to the extremities 
of the graph. We leave as an exercise for the reader to complete the 
diagram with the sequence (Ek)k?.l· 

Notice that in the E-continued fraction expansion of p / q used in 
the previous proposition, there is the possibility that ms+l = 0. In 
this case, the canonical expansion is obtained using relation (7). But 
in order to express in a unified form the result of the application of 
the algorithm, it was important for us to use an expansion of E. with q 

an odd number of partial quotients (which is always possible, precisely 
according to formula (7)). 

One can use the combinatorics of the embedded resolution of mono­
mial plane curves as building blocks for the description of the combina­
torics of the resolution of any germ of plane curve. A detailed descrip­
tion of the passage between the Eggers tree, which encodes the Newton­
Puiseux exponents of the components of the curve, and the dual graph 
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Fig. 14. The dual graph of the total transform of Cpfq 

of the total transform of the curve by its embedded resolution morphism 
can be found in Garda Barroso [24] (see also Brieskorn & Knorrer [9, 
section 8.4] and Wall [85]). A topological interpretation of the trees ap­
pearing in these two encodings was given in Popescu-Pampu [62, chapter 
4]. 

In higher dimensions, Gonzalez Perez [27] used toric geometry in 
order to describe embedded resolutions of quasi-ordinary hypersurface 
singularities. Again, the building blocks are monomial varieties. A pro­
totype for his study is the method of resolution of an irreducible germ of 
plane curve by only one toric morphism, developed by Goldin & Teissier 
[26]. 

In the classical treatise of Enriques & Chisini [19], resolutions of 
curves by blow-ups of points are not studied using combinatorics of 
divisors, but instead using the infinitely near points through which the 
strict transforms of the curve pass during the process of blowing ups. 
Those combinatorics were also encoded in a diagram, called nowadays 
Enriques diagram (see Casas-Alvero [10]). Enriques diagrams are very 
easily constructed using the knowledge of the orders of appearance of 
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the divisors during the process of blowing ups. For this reason, zigzag 
diagrams combined with Proposition 6.9 give an easy way to draw them 
for a monomial plane curve. We leave the details to the interested reader. 
Then one uses this again as building blocks for the analysis of general 
plane curve singularities (see [10]). 

§7. Graph structures and plumbing structures on 3-manifolds 

This section contains preparatory material for the topological study 
of the 3-manifolds appearing as abstract boundaries of normal surface 
singularities, done in sections 8 and 9. 

We recall general facts about Seifert, graph and plumbing structures 
on 3-manifolds, as well as about JSJ theory. We also define particular 
classes of plumbing structures on thick tori and solid tori, starting from 
naturally arising pairs (L, cr), where Lis a 2-dimensionallattice and cr 
is a rational strictly convex cone in LR. Namely, given a pair of essential 
curves on the boundary of a thick torus M, their classes generate two 
lines in the lattice L := H 1 (M, Z). A choice of orientations of these lines 
distinguishes one of the four cones in which the lines divide the plane ... 

7 .1. Generalities on manifolds and their splittings 

We denote by I the interval [0, 1], by D the closed disc of dimen­
sion 2 and by sn the sphere of dimension n. An annulus is a surface 
diffeomorphic to I x S 1 . 

A simple closed curve on a 2-dimensional torus is called essential if 
it is non-contractible. It is classical that an oriented essential curve on 
a torus Tis determined up to isotopy by its image in H 1 (T, Z) (see [21, 
Section 2.3]). Moreover, the vectors of H 1 (T, Z) which are homology 
classes of essential curves are precisely the primitive ones. 

We say that a manifold is closed if it is compact and without bound-
a 

ary. If M is a manifold with boundary, we denote by M its interior and 
by aM its boundary. If moreover M is oriented, we orient aM in such 
a way that at a point of aM, an outward pointing tangent vector to 
M, followed by a basis of the tangent space to aM, gives a basis of the 
tangent space toM (this is the convention which makes Stokes' theorem 
JM dw = faM w true). We say then that aM is oriented compatibly with 
M. 

If M is an oriented manifold, we denote by - M the same manifold 
with reversed orientation. If M is a closed oriented surface, then - M is 
orientation-preserving diffeomorphic toM. This fact is no longer true in 
dimension 3, that is why it is important to describe carefully the choice 
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of orientation. In this sense, see Theorem 8.11, as well as Propositions 
9.3 and 9.6. 

We denote by Diff(M) the group of self-diffeomorphisms of M, by 
Diff0 ( M) the subgroup of self-diffeomorphisms which are isotopic to the 
identity and by Diff+(M) the subgroup of diffeomorphisms which pre­
serve the orientation of M (when M is orientable). 

Definition 7.1. Let M be a 3-manifold with boundary. We say 
that M is a thick torus if it is diffeomorphic to 8 1 X 8 1 X I. We say 
that M is a solid torus if it is diffeomorphic to D x 8 1. We say that 
M is a thick Klein bottle if it is diffeomorphic to a unit tangent circle 
bundle to the Mobius band. 

In the definition of a thick Klein bottle M we use an arbitrary rie­
mannian metric on a Mobius band. The manifold obtained like this 
is independent of the choices up to diffeomorphism. Moreover, it is 
orientable, because any tangent bundle is orientable and the manifold 
we define appears as the boundary of a unit tangent disc bundle. The 
preimage of a central circle of the Mobius band by the fibration map is 
a Klein bottle, and the manifold M appears then as a tubular neighbor­
hood of it, which explains the name. For details, see [82, Section 3] and 
[21, Section 10.11]. 

On the boundary of a solid torus M there exists an essential curve 
which is contractible in M. Such a curve, which is unique up to isotopy 
(see [21]), is called a meridian of M. A 3-manifold Miscalled irreducible 
if any embedded sphere bounds a ball. A surface embedded in M is 
called incompressible if its n1 injects in n1 (M). Two tori embedded in 
M are called parallel if they are disjoint and they co bound a thick torus 
embedded in M. The manifold M is called atoroidal if any embedded 
incompressible torus is parallel to a component of aM. 

Definition 7.2. Let M be an orientable manifold and S be an 
orientable closed (not necessarily connected) hypersurface of M. A man­

ifold with boundary Ms endowed with a map Ms r~ Miscalled a 
splitting of M along S if: 

• rM, s is a local embedding; 
• 8Ms = (rM, s)-1(8) and the restriction rM, slaMs is a trivial 

double covering of S; 
0 

• the restriction (rM,s)IMs :Ms-------> M- Sis a diffeomorphism. 

If this is the case, the map rM,S is called the reconstruction map 
associated to the splitting. We say that S splits Minto Ms and that 
the connected components of Ms are the pieces of the splitting. If N 



158 P. Popescu-Pampu 

is a piece of Ms and P C M is a set, we say that P contains N if 
rM, s(N) C P. 

It can be shown easily that splittings of M along S exist and are 
unique up to unique isomorphism. The idea is very intuitive, one simply 
thinks at M being split open along each connected component of S. A 
way to realize this is to take the complement of an open tubular neigh­
borhood of Sin M and to deform the inclusion mapping in an arbitrarily 
small neighborhood of the boundary in order to push it towards S (see 
Waldhausen [83] and Jaco [39]). 

If ¢ E Diff+ ( M), one can also canonically split ¢ and get a dif­
feomorphism ¢ s of manifolds with boundary (we leave the axiomatic 
definition of ¢8 to the reader): 

c/Js: Ms --+ Mq;(S) 

Among closed 3-manifolds, two particular classes will be especially 
important for us, the lens spaces and the torus fibrations. The reason 
why we treat them simultaneously will appear clearly in Section 8.3. 

Definition 7.3. Let M be an orientable 3-manifold. We say that 
M is a lens space if it contains an embedded torus T such that Mr 
is the disjoint union of two solid tori whose meridians have non-isotopic 
images on T. We say that M is a torus fibration if it contains an 
embedded torus T such that Mr is a thick torus. 

Lens spaces can also be defined as quotients of S3 by linear free 
cyclic actions or - and this explains the name - as manifolds obtained 
by gluing in a special way the faces of a lens-shaped polyhedron (see 
[71] or [21, Section 4.3]). We impose the condition on the meridians in 
order to avoid the manifold S 1 x S2 , which can also be split into two 
solid tori, but whose universal cover is not the 3-dimensional sphere, a 
difference which makes it to be excluded from the set of lens spaces by 
most authors. There exists a classical encoding of oriented lens spaces by 
positive integers. We recall it at the end of Section 9.1 (see Proposition 
9.4). 

If M is a torus fibration and T C M splits it into a thick torus, then 
a trivial foliation of Mr by tori parallel to the boundary components is 
projected by rM, Tonto a foliation by pairwise parallel tori. The space of 
leaves is topologically a circle and the projection 1r: M -+ S 1 is a locally 
trivial fibre bundle whose fibres are tori, which explains the name. 

Definition 7 .4. Let 1r: M -+ S 1 be a locally trivial fibre bundle 
whose fibres are tori. Fix a fibre of 1r (for example the initial torus T) and 
also an orientation of the base space S 1 . The algebraic monodromy 
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operator m is by definition the first return map of the natural parallel 
transport on the first homology fibration over S 1, when one travels in 
the positive direction. 

The map m is a well-defined linear automorphism mE SL(H1(T, Z)), 
once an orientation of S 1 was chosen. Its conjugacy class in SL(2, Z) 
is independent of the choice of the fibre. If one changes the orientation 
of S1, then m is replaced by m-1. This shows that the trace of m is 
independent of the choice of T and of the orientation of S 1 . Remark 
that no choice of orientation of M is needed in order to define it. 

For more information about torus fibrations, see Neumann [57] and 
Hatcher [33]. We come back to them in Section 9.2, with special empha­
sis on subtleties related to their orientations. 

7.2. Seifert structures 

Seifert manifolds are special3-manifolds whose study can be reduced 
in some way to the study of lower-dimensional spaces. 

Definition 7.5. A Seifert structure on a 3-manifold M is' a 
foliation by circles such that any leaf has a compact orientable saturated 
neighborhood. A leaf with trivial holonomy is called a regular fibre. 
A leaf which is not regular is called an exceptional fibre. The space of 
leaves is called the base of the Seifert structure. We say that a Seifert 
structure is orientable if there is a continuous orientation of all the 
leaves of the foliation. If such an orientation is fixed, one says that the 
Seifert structure is oriented. If there exists a Seifert structure on M, 
we say that M is a Seifert manifold. 

The condition on the leaves to have compact saturated neighbor­
hoods is superfluous if the ambient manifold M is compact, it is enough 
then to ask that any leaf be orientation-preserving, as was shown by 
Epstein [20]. This is no longer true on non-compact manifolds, as was 
shown by Vogt [81]. 

The initial definition of Seifert [70] was slightly different: 
a) He did not speak of "foliation", but of "fibration". 
b) He gave models for the possible neighborhoods of the leaves. 
In what concerns point a), Seifert's definition is one of the historical 

sources of the concept of fibration and fibre bundle. For him a fibration 
is a decomposition of a manifold into "fibres"; only in a second phase 
can one try to construct the associated "orbit space", or the "base" with 
our vocabulary. This shows that his definition is closer to the present 
notion of foliation; in fact his "fibration" is a foliation, but this can 
be seen only by using the required condition on model neighborhoods. 
We prefer to speak about "Seifert structure" and not "Seifert fibration" 
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precisely because what is important to us is to see the structure as living 
inside the manifold, which makes possible to speak about isotopies. For 
details about the historical development of different notions of fibrations, 
see Zisman [88]. 

In what concerns point b), the possible orientable saturated neigh­
borhoods of foliations by circles coincide up to a leaf-preserving diffeo­
morphism with Seifert's model neighborhoods. If one drops the ori­
entability condition, appears a new model which was not considered by 
Seifert, but which is very useful in the classification of non-orientable 3-
manifolds (see Scott [69], Bonahon [6]). Some general references about 
Seifert manifolds are Orlik [61], Neumann & Raymond [58] (where the 
base was defined as an orbifold), Scott [69], Fomenko & Matveev [21] 
and Bonahon [6]. 

In the sequel, we are interested in Seifert structures only up to iso­
topy. 

Definition 7.6. Two Seifert structures F 1 and F 2 on Mare called 
isotopic if there exists ¢ E Diff 0 

( M) such that ¢( F 1 ) = F 2 . 

The following proposition is proved in Jaco [39] and Fomenko & 
Matveev [21]. 

Proposition 7. 7. The only orientable compact connected 3-mani­
folds with non-empty boundary which admit more than one Seifert struc­
ture up to isotopy are the thick torus, the solid torus and the thick Klein 
bottle. 

a) If M is a thick torus, any essential curve on one of its boundary 
components is the fibre of a Seifert structure on M, unique up to isotopy, 
and devoid of exceptional fibres. Moreover, M appears like this as the 
total space of a trivial circle bundle over an annulus. 

b) If M is a solid torus and "( is a meridian of it, an essential curve 
c on its boundary is a fibre of a Seifert structure on M if and only if 
their homological intersection number [c] · [r] (once they are arbitrarily 
oriented) is non-zero. In this case, the associated structure is unique up 
to isotopy and has at most one exceptional fibre. All fibres are regular if 
and only if [c] · [r] = ±1. In this last case, M appears as the total space 
of a trivial circle bundle over a disc. 

c) If M is a thick Klein bottle, it admits up to isotopy two Seifert 
structures. One of them is devoid of exceptional fibres and its space of 
orbits is a Mobius band. The other one has two exceptional fibres with 
holonomy of order 2 and its space of orbits is topologically a disc. 
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The closed orientable 3-manifolds which admit more than one Seifert 
structure up to isotopy are also classified (see Bonahon [6] and the ref­
erences therein). In this paper we need only the following less general 
result, which can be deduced by combining [6] with [57] (see Definition 
8.1): 

Proposition 7.8. The only 3-manifolds which are diffeomorphic 
to abstract boundaries of normal surface singularities and which admit 
non-isotopic Seifert structures are the lens spaces. 

7.3. Graph structures and JSJ decomposition theory 
If one glues various Seifert manifolds along components of their 

boundaries, one obtains so-called graph-manifolds: 

Definition 7.9. A graph structure on a 3-manifold M is a pair 
(T, :F), where Tis an embedded surface in M whose connected compo­
nents are tori and where :F is a Seifert structure on MT (see Definition 
7.2). We say that a graph structure is orientable if :F is an orientable 
Seifert structure on MT. If there exists a graph structure on M, we say 
that M is a graph manifold. 

Notice that no particular graph structure is specified when one 
speaks about a graph manifold. One only supposes that there exists 
one. In the sequel we are interested in graph structures on a given 
manifold only up to isotopy: 

Definition 7.10. Two graph structures (7i, :F1), (72, :F2) on M 
are called isotopic if there exists ¢ E Diff0 (M) such that ¢(7i) = 72 
and ¢Ti (:Fl) is isotopic to :F2. 

Graph manifolds were introduced by Waldhausen [82], generalizing 
von Randow's tree manifolds (see their definition in the next paragraph) 
studied in [65]. Following Mumford [55] who proved Poincare conjecture 
for the abstract boundaries of normal surface singularities (see Definition 
8.1), von Randow proved it for tree manifolds; his proof contained a gap 
which was later filled by Scharf [68]. 

Waldhausen's definition was different from Definition 7.9. On one 
side he did not allow exceptional fibres in the Seifert structure on MT 
and on another side he did not fix (up to isotopy) a precise fibration by 
circles, but only supposed that such a fibration existed. He represented 
a graph structure by a finite graph with decorated vertices and edges 
(corresponding respectively to the pieces of MT and to the components 
of T), which explains the name. Tree manifolds are then the graph 
manifolds which admit a graph structure ('T, :F) such that the corre­
sponding graph is a tree and the base of the Seifert structure on :F has 
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genus 0. With our definition, graph structures can also be encoded by 
graphs. One has only to add more decorations to the vertices, in order 
to keep in memory the exceptional fibres of the corresponding Seifert 
fibred pieces. 

With his definition, Waldhausen solved the homeomorphism prob­
lem for graph-manifolds, by giving normal forms for the graph struc­
tures on a given manifold and by showing that with exceptions in a 
finite explicit list, any irreducible graph-manifold has a graph-structure 
in normal form which is unique up to isotopy. 

Later, Jaco & Shalen [40] and Johannson [41] showed that there 
remains no exception in the classification up to isotopy if one modifies 
the notion of graph-structure by allowing exceptional fibres, that is, 
when one works with Definition 7.9. More generally, they proved: 

Theorem 7 .11. Let M be a compact, connected, orientable and 
irreducible 3-manifold (with possible non-empty boundary). Then M 
contains an embedded surface T whose connected components are in­
compressible tori and such that any piece of MT is either a Seifert man­
ifold or is atoroidal. Moreover, if T is minimal for the inclusion among 
surfaces with this property, then it is well-defined up to isotopy. 

We say that a minimal family T as in the previous theorem is a JSJ 
family of tori in M. 

A variant of the previous theorem considers also embedded annuli. 
These various theorems of canonical decomposition are called nowadays 
Jaco-Shalen-Johannson (JSJ) decomposition theory, and were the start­
ing point of Thurston's geometrization program, as well as of the theory 
of JSJ decompositions for groups. For details about JSJ decomposi­
tions, in addition to the previously quoted books one can consult Jaco 
[39], Neumann & Swarup [59], Hatcher [33] and Bonahon [6]. In [62] and 
[63], we showed that also knot theory inside an irreducible 3-manifold 
reflects the ambient JSJ decomposition. 

We define now a notion of minimality for graph structures on a given 
manifold. 

Definition 7.12. Suppose that (T, :F) is a graph structure on M. 
We say that it is minimal if the following conditions are verified: 

• No piece of MT is a thick torus or a solid torus. 
• One cannot find a Seifert structure :F' on MT such that the im­

ages of its leaves by the reconstruction mapping r M, T coincide on a 
component ofT. 
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As a corollary of Theorem 7.11, if (T, :F) is a minimal graph struc­
ture on M, then Tis the minimal JSJ system of tori in M. But one can 
prove more: 

Theorem 7.13. Each closed orientable irreducible graph manifold 
which is not a torus fibration with I tr ml ~ 3 admits a minimal graph 
structure. Moreover, the family T of tori associated to a minimal graph 
structure coincides with the JSJ family of tori. In particular, it is unique 
up to an isotopy. 

Suppose that (T, :F) is a given graph structure without thick tori 
and solid tori among its pieces. In view of Proposition 7.7, its only 
pieces which can have non-isotopic Seifert structures are the thick Klein 
bottles. This shows that, in order to check whether (T, :F) is minimal 
or not, one has only to consider the possible choices of Seifert structures 
on them up to isotopy (that is 2n possibilities, where n is the number of 
such pieces) . 

Suppose that M is a graph manifold which is neither a torus fibration 
with I tr ml ~ 3, nor a Seifert manifold which admits non-isotopic Seifert 
structures. Then, if T is a family of tori associated to a minimal graph 
structure, there is a unique Seifert structure on MT up to isotopy, such 
that each piece which is a thick Klein bottle has an orientable base. 

Definition 7.14. Suppose that M is an orientable graph manifold 
which is neither a torus fibration with I tr ml ~ 3 nor a Seifert manifold 
which admits non-isotopic Seifert structures. We say that a minimal 
graph structure is the canonical graph structure on M if each piece 
which is a thick Klein bottle has an orientable base. 

7.4. Plumbing structures 

Plumbing structures are special types of graph structures: 

Definition 7.15. A plumbing structure on a 3-manifold M is 
a graph structure without exceptional fibres (T, :F) on M, such that for 
any component T ofT, the homological intersection number on T of 
two fibres of :F coming from opposite sides is equal to ±1. 

Plumbing structures are the ancestors of graph structures. They 
were introduced by Mumford [55] in the study of singularities of com­
plex analytic surfaces (see Hirzebruch [36], Hirzebruch, Neumann & Koh 
[38], as well as our explanations in Section 8.2). In fact Mumford does 
not speak about "plumbing structure". Instead, he describes a way to 
construct the abstract boundary of a normal surface singularity (see 
Definition 8.1) by gluing total spaces of circle-bundles over real surfaces 
using "plumbing fixtures". 
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Later on, "plumbing" was more used as a verb than as a noun. 
That is, one concentrated more on the operations needed to construct 
a new object from elementary pieces, than on the structure obtained 
on the manifold resulting from the construction. The fact that we are 
interested precisely in this structure up to isotopy and not on the graph 
which encodes it, is a difference with Neumann [57] for example. 

In [57], Neumann describes an algorithm for deciding if two mani­
folds obtained by plumbing are diffeomorphic. He uses as an essential 
ingredient Waldhausen's classification theorem of graph manifolds (ac­
cording to the definition which does not allow exceptional fibres, see the 
comments made in Section 7.3). In fact, by using the uniqueness up 
to isotopy of the JSJ-tori, we can deduce the uniqueness up to isotopy 
for special plumbing structures on singularity boundaries. This is the 
subject of Section 9. 

Even if Definition 7.15 seems to suggest the opposite, the class of 
graph manifolds is the same as the class of manifolds which admit a 
plumbing structure. A way to see this is to use the construction of 
plumbing structures on thick tori and solid tori described in Section 7.5. 
For a detailed comparison of graph structures and plumbing structures, 
as well as for a study of the elementary operations on them, one can 
consult Popescu-Pampu [62, Chapter 4]. 

7.5. Hirzebruch-Jung plumbing structures on thick tori 
and solid tori 

In this section we define special classes of plumbing structures on 
thick tori and solid tori, which will be used in Section 9. The starting 
point is in both cases a pair (L, u) of a 2-dimensional lattice and a 
rational strictly convex cone u C LR, naturally attached to essential 
curves on the boundary of the 3-manifold. 

• Suppose first that M is an oriented thick torus. 
On each component of its boundary, we consider an essential curve. 

Denote by "(, J these curves. We suppose that their homology classes 
(once they are arbitrarily oriented) in H1(M, R) c:::: R 2 are non-propor­
tional. So, we are in presence of a 2-dimensional lattice L = H 1 ( M, Z) 
and of two distinct rational lines in it, generated by the homology classes 
b], [J]. 

Orient oM compatibly with M. Then order in an arbitrary way the 
components of oM: call the first one T_ and the second one T+. Denote 
by 'Y- the simple closed curve drawn on T_ and by 'Y+ the one drawn 
on T+. Then orient 'Y- and 'Y+· By hypothesis, their homology classes 
b-], b +] are non-proportional primitive vectors in the 2-dimensional 
lattice L = H1(M, Z). This shows that (b-J, b+]) is a basis of LR = 
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H 1 ( M, R) which induces an orientation of this vector space. As T + is 
a deformation retract of M, one has canonically H1(T+, Z) = L, and so 
the ordered pair b-, 'I+) induces an orientation ofT+. 

Definition 7.16. We say that'/- and 'I+ are oriented compati­
bly with the orientation of M if, when taken in the order ('y_, '1+), 
they induce on T + an orientation which coincides with its orientation as 
a component of 8M. 

Of course, a priori there is no reason for choosing this notion of 
compatibility rather than the opposite one. Our choice was done in 
order to get a more pleasant formulation for Lemma 8.5. 

Let a be the cone generated by b-] and b+l in LR. As these 
homology classes were supposed non-proportional, the cone a is strictly 
convex and has non-empty interior. Denote by l± the edge of a which 
contains the integral point b±l· Then, with the notations of Section 4, 
A± = b±l· Indeed, as'/± is an essential curve ofT±, its homology class 
is a primitive vector of L. 

Let (An)o:s;n:S:r+l be the integral points on the compact edges of 
P(a), defined in Section 4. So, OAo = b-J and OAr+l = ['"Y+l· Let 
(Tn)o:s;n:S:r+2 be a sequence of pairwise parallel tori in M, such that 
To = T_ and Tr+2 = T+. Moreover, we number them in the order in 
which they appear between T_ and T+· Denote T := U~~i Tn. If Mn 
denotes the piece of My whose boundary components are Tn and Tn+l, 
where n E {0, ... , r + 1 }, we consider on it a Seifert structure such that 
the homology class of its fibres in L is OAn. 

T0 =T_ 

Fig. 15. Hirzebruch-Jung plumbing structures on thick tori 

We get like this a plumbing structure on M, well-defined up to iso­
topy, and depending only on the triple (M, 'f-, 'I+)· We see that the 
simultaneous change of the orientations of'/- and 'I+ or the change of 
their ordering (in order to respect the compatibility condition of Defini­
tion 7.16) leads to the same (unoriented) plumbing structure. 
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Definition 7.17. We say that the previous unoriented plumb­
ing structure on the oriented thick torus M is the Hirzebruch-J ung 
plumbing structure associated to ('y, c5) and we denote it by P( M, '"Y, c5). 

• Suppose now that M is an oriented solid torus. 

N 

eliminate 

Fig. 16. Hirzebruch-Jung plumbing structures on solid tori 

We consider an essential curve '"Y on 8M which is not a meridian. 
0 

Take a torus T embedded in M and parallel to 8M. Denote by N 
the thick torus contained between 8M and T. PutT_ = 8M, T+ = T, 
'"'/- = '"Y and let '"Y+ be an essential curve on T+ which is a meridian of the 

0 

solid torus M- N (see Fig. 16). Consider the Hirzebruch-Jung plumbing 
structure P(N, '"'/-, '"Y+)· With the notations of the construction done 
for thick tori, denote T(M, '"'!) := U~=1 Tn. Then the pieces of MT(M,-y) 
are the thick tori Mo, M1, ... , Mr-1 and a solid torus which is the 

0 

"union" of Mr, Mr+1 and M- N. On Mo, ... , Mr-1 we keep the 
Seifert structure of P(N, '"'/-, '"'!+)· On the solid torus we extend the 
Seifert structure of Mr. By Proposition 7.7 b), we see that this Seifert 
structure has no exceptional fibres. This shows that we have constructed 
a plumbing structure on M. It is obviously well-defined up to isotopy, 
once the isotopy class of '"Y is fixed. 

Definition 7.18. We say that the previous unoriented plumb­
ing structure on the oriented solid torus M is the Hirzebruch-Jung 
plumbing structure associated to '"Y and we denote it by P(M, '"'f). 

§8. Generalities on the topology of surface singularities 

In this section we look at the boundaries M ( S) of normal surface 
singularities (S, 0). We explain how to associate to any normal crossings 
resolution p of (S, 0) a plumbing structure on M(S). Then we explain 
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how to pass from the plumbing structure associated to the minimal 
normal crossings resolution of (S, 0) to the canonical graph structure on 
M(S) (see Definition 7.14). 

We recommend the survey articles of Nemethi [56] and Wall [84] for 
an introduction to the classification of normal surface singularities. 

8.1. Resolutions of normal surface singularities and their 
dual graphs 

First we recall basic facts about normal analytic spaces. Let V be 
a reduced analytic space. It is called normal if for any point P E V, 
the germ (V, P) is irreducible and its local algebra is integrally closed 
in its field of fractions. If V is not normal, then there exists a finite 
map v: V ---> V which is an isomorphism over a dense open set of V 
and such that V is normal. Such a map, which is unique up to unique 
isomorphism, is called a normalization map of V. 

A reduced analytic curve is normal if and only if it is smooth. If a 
germ (S, 0) of reduced surface is normal, then there exists a represen­
tative of it, which we keep callingS, such that S- 0 is smooth. The 
converse is not true. 

Let ( S, 0) be a germ of normal complex analytic surface. We say also 
that ( S, 0) is a normal surface singularity (even if the point 0 is regular 
on S). In the sequel, we use the same notation (S, 0) for the germ and 
for a sufficiently small representative of it. If e: (S, 0) ---> (CN, 0) is any 
local embedding, denote by Se, r the intersection of S with a euclidean 
ball of CN of radius r « 1 and by Me, r(S) the boundary of Se, r· 

By general transversality theorems due to Whitney, when r > 0 
is small enough, Me, r ( S) is a smooth manifold, naturally oriented as 
the boundary of the complex manifold Se, r· It does not depend on the 
choices of embedding e and radius r « 1 made to define it (see Durfee 
[16]). 

Definition 8.1. An oriented 3-manifold M(S) orientation-pre­
serving diffeomorphic with the manifolds Me,r(S), where r > 0 is small 
enough, is called the (abstract) boundary or the link of the singularity 
(S, 0). 

It is important to keep in mind that in the sequel M(S) is supposed 
naturally oriented as explained before. In order to understand better this 
remark, look at Theorem 8.11. 

The easiest way to describe the topological type of the manifold 
M(S) is (as first done by Mumford [55]) by retracting it to the excep­
tional divisor of a resolution of (S, 0). Let us first define this last notion. 
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Definition 8.2. An analytic map p: (R, E) ---+ (S, 0) is called a 
resolution of the singularity (S, 0) with exceptional divisor E 
p- 1(0) if the following conditions are simultaneously satisfied: 

• R is a smooth surface; 
• p is a proper morphism; 
• the restriction of p to R- E = R- f- 1 ( 0) is an isomorphism onto 

S-0. 
We say that p: (R, E)---+ (S, 0) is a normal crossings resolution 

if one has moreover: 
• E is a divisor with normal crossings. 

Recall that, by definition, a divisor on a smooth complex surface has 
normal crossings if in the neighborhood of any of its points, its support 
is either smooth, or the union of transverse smooth curves. 

Normal crossings resolutions always exist (see Laufer [47] and Lip­
man [52] for a careful presentation of the Hirzebruch-Jung method of 
resolution, as well as Cossart [13] for Zariski's method of resolution by 
normalized blow-ups). 

There is a unique minimal resolution, which we denote 
Pmin: (Rmin, Emin) ---+ (S, 0). The minimality property means that any 
other resolution p: (R, E) ---+ (S, 0) can be factorized as p = Pmin o q, 
where q: R ---+ Rmin is a proper bimeromorphic map. The minimal reso­
lution Pmin is characterized by the fact that Emin contains no component 
Ei which is smooth, rational and of self-intersection -1 (classically called 
an exceptional curve of the first kind). 

Analogously, there is a unique resolution which is minimal among 
normal crossings ones. We denote it: 

Pmnc: (Rrnnc, Emnc)---+ (S, 0) 

It is characterized by the fact that Emnc has normal crossings and each 
component Ei of Emnc which is an exceptional curve of the first kind 
contains at least 3 points which are singular on Emnc· 

If a normal crossings resolution has moreover only smooth compo­
nents, one says usually that the resolution is good; there exists also a 
unique minimal good resolution, but in this paper we don't consider it. 

The following criterion allows one to recognize the divisors which 
are exceptional with respect to some resolution of a normal surface sin­
gularity. 

Theorem 8.3. Let E be a reduced compact connected divisor in a 
smooth surfaceR. Denote by (Ei)!-:5,i-:5,n its components. Then E is the 
exceptional divisor of a resolution of a normal surface singularity if and 
only if the intersection matrix (Ei · Ej )i, j is negative definite. 
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The necessity is classical (see [38, Section 9], where is presented 
Mumford's proof of [55] and where the oldest reference is to Du Val 
[80]). The sufficiency was proved by Grauert [31] (see also Laufer [47]). 
If E verifies the conditions which are stated to be equivalent in the 
theorem, one also says that E can be contracted on R. 

From now on we suppose that p: (R, E)--+ (S, 0) is a normal cross­
ings resolution of (S, 0). 

Denote by f(p) its weighted dual graph. Its set of vertices V(p) is 
in bijection with the irreducible components of E. Depending on the 
context, we think about Ei as a curve on R or a vertex of f(p). The 
vertices which represent the components Ei and Ej are joined by as 
many edges as Ei and Ej have intersection points on R. In particular, 
there are as many loops based at the vertex Ei as singular points (that 
is, self-intersections) on the curve Ei (see Fig. 17). Each vertex Ei is 
decorated by two weights, the geometric genus gi of the curve Ei (that is, 
the genus of its normalization) and its self-intersection number ei :::; -1 
in R. Denote also by ~i the valency of the vertex Ei, that is, the number 
of edges starting from it (where each loop counts for 2). For example, 
in Fig. 17 one has ~1 = 9, ~2 = 5, etc. 

Fig. 17. A normal crossings divisor and its dual graph 

8.2. The plumbing structure associated to a normal cross­
ings resolution 

By Definition 8.1, M(S) is diffeomorphic to Me, r(S), where e: (S, 0) 
--+ (CN, 0) is an embedding and r «: 1. But Me,r(S) is the level-set at 
level r of the function Pe: (S, 0) --+ (R+, 0), the restriction to e(S) of 
the distance-function to the origin in CN. 
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As the resolution p realizes by definition an isomorphism between 
R- E and S- 0, it means that Me,r(S) = p; 1 (r) is diffeomorphic to 
'I/J; 1 (r), where '1/Je := Pe o p. The advantage of this changed viewpoint 
on M ( S) is that it appears now orientation-preserving diffeomorphic 
to the boundary of a "tubular neighborhood" of the curve E in the 
smooth manifold R. As in general E has singularities, one has to discuss 
the precise meaning of the notion of tubular neighborhood. We quote 
Mumford [55, pages 230-231]: 

Now the general problem, given a complex K C En, Euclidean 
n-space, to define a tubular neighborhood, has been attacked 
by topologists in several ways although it does not appear to 
have been treated definitively as yet. J.H.C. Whitehead [86], 
when K is a subcomplex in a triangulation of En, has defined 
it as the boundary of the star of K in the second barycentric 
subdivision of the given triangulation. I am informed that 
Thorn [78] has considered it more from our point of view: for 
a suitably restricted class of positive c= fens. f such that 
f(P) = 0 if and only if P E K, define the tubular neighborhood 
of K to be the level manifolds f = E, small E. The catch is how 
to suitably restrict f; here the archtype for f- 1 may be thought 
of as the potential distribution due to a uniform charge on K. 

In [34] M. W. Hirsch has constructed a theory of tubular neighbor­
hoods well-adapted to complexes K appearing in analytic singularity 
theory. 

Let us come back to the normal crossings divisor E in the smooth 
surfaceR. 

If E is smooth, then one can construct a diffeomorphism between a 
tubular neighborhood U(E) of E in Rand of E in the total space NnE 
of its normal bundle in R. As NnE is naturally fibred by discs, this is 
also true for U(E). The fibration of U(E) can be chosen in such a way 
that the levels 'l(;; 1 (r) are transversal to the fibres for r « 1. In this way 
one gets a Seifert structure without singular fibres on 'I/J; 1 (r) ':::' M(S). 

Suppose now that E is not smooth, but that its irreducible compo­
nents are so. One can also define in this situation a notion of tubular 
neighborhood U(E) of E in R. One way to do it is to take the union 
of conveniently chosen tubular neighborhoods U(Ei) of E's components 
Ei· Abstractly, one has to glue the 4-manifolds with boundary U(Ei) by 
identifying well-chosen neighborhoods of the points which get identified 
on E. This procedure is what is called the "plumbing" of disc-bundles 
over surfaces (see Hirzebruch [36], Hirzebruch & Neumann & Koh [38], 
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Brieskorn [8]). Its effect on the boundaries 8U(Ei) is to take out sat­
urated filled tori and to identify their boundaries, by a diffeomorphism 
which permutes fibres and meridians in an orientation-preserving way. 
This is the 3-dimensional "plumbing" operation introduced by Mumford 
[55], alluded to in Section 7.4. 

In order to understand what happen.s near a singular point of E, it is 
convenient to choose local coordinates (x, y) onE in the neighborhood 
of the singular point, such that E is defined by the equation xy = 0. 
So, y = 0 defines locally an irreducible component Ei of E and similarly 
x = 0 defines Ej. It is possible that Ei = Ej, a situation excluded 
in the previous paragraph for pedagogical reasons. If this equality is 
true, then the same plumbing procedure can be applied, this time by 
identifying well-chosen neighborhoods of points of the same 4-manifold 
with boundary U(Ei)· 

At this point appears a subtlety: the 4-manifold U(Ei) to be consid­
ered is no longer a tubular neighborhood of Ei in R, but instead of the 
normalization Ei of Ei inside the modified normal bundle v;TR/TEi. 

Here Vi : Ei ----> R denotes the normalization map of Ei and TR, 
respectively T Ei denote the holomorphic tangent bundles to the· smooth 
complex manifolds. Rand Ei. As a real differentiable bundle of rank 2, 
this vector bundle over Ei is characterized by its Euler number ei, which 
is equal to the self-intersection number of Ei inside the total space of 
the bundle. This number is related to the self-intersection of Ei inside 
R in the following way (see Neumann [57, page 333]): 

Lemma 8.4. If ei is the Euler number of the real bundle 
v;TR/T Ei over Ei, where Vi: Ei ----> R is the normalization map of Ei, 
then ei = ei- 8i. 

Proof In order to understand this formula, just think at the effect 
of a small isotopy of Ei inside R. Near each self-crossing point of Ei, 
the intersection point of one branch of Ei with the image of the other 
branch after the isotopy is not counted when one computes h Q.E.D. 

Notice that Theorem 8.3 is true if one takes as diagonal entries 
of the matrix the numbers ei = E[, but is false if one takes instead 
the numbers h The easiest example is given by an irreducible divisor 
E = E 1 , with e1 = 1 > 0 and 81 = 2 which, by Lemma 8.4 implies that 
e1 = -1 < o. 

In Fig. 18 we represent in two ways the local situation near the 
chosen singular point of E. On the left we simply draw the union of 
the two neighborhoods U(Ei) and U(Ej)· On the right, "the corners 
are smoothed". This is precisely what happens when we look at the 
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levels of the function '1/Je· Moreover, we represent by interrupted lines 
the real analytic set defined by the equation lxl = IYI· Its intersection 
with 'I/J-; 1 (r) ::::' oU(E) ::::' M(S) is a two-dimensional torus T. This is 
the way in which such tori appear naturally as structural elements of the 
3-manifolds M(S). One also sees how the complement ofT in oU(E) is 
fib red by boundaries of discs transversal to Ei or E1. 

By considering model neighborhoods of the singular points of E 
structured as in the right-hand side of Fig. 18 and conveniently extending 
them to a tubular neighborhood of all of E, one gets a retraction 

ci>: U(E) -+ E 

which restricts to a locally trivial disc-fibration over the smooth locus 
of E and whose fibre over each singular point of E is a cone over a 2-
dimensional torus. By considering the restriction ci>Iau(E), we see that 
the fibres over the singular points of E are embedded tori, and that their 
complement gets fibred by circles. 

As aU (E) is orientation-preserving diffeomorphic to M ( S), we see 
that M(S) gets endowed with a graph structure (T(p), F(p)) well­
defined up to isotopy. It is a good test of the understanding of the com­
plexifications of Fig. 18 to show that (T(p), :F(p)) is in fact a plumbing 
structure (see Definition 7.15). 

E. 
J E-J 

~T 

' " ' 
, 

" 
" ' ' , 

' 
E 

Fig. 18. The local configuration which leads to plumbing 

The pieces of M(S)r(p) correspond to the irreducible components 
of E, that is to the vertices of f(p). Denote by M(Ei) the piece which 
corresponds to Ei. The fibres of M(Ei) are obtained up to isotopy by 
cutting the boundary of the chosen sufficiently small tubular neighbor­
hood of E with smooth holomorphic curves transversal to E at smooth 
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points of Ei. So, the plumbing structure (T(p), F(p)) is naturally ori­
ented. 

Lemma 8.5. With their natuml orientations, the fibres on both 
sides of any component of T(p) are oriented compatibly with the orien­
tation of M(S). 

Proof The notion of compatibility we speak about is the one of 
Definition 7.16. We mean that, if we take an arbitrary component T 
of T(p), and a tubular neighborhood N(T) such that its preimage in 
M(S)T(p) is saturated by the leaves of the foliation F(p), then two fibres, 
one in each boundary component of N(T), are oriented compatibly with 
the orientation of N(T). Now, this is an instructive exercise on the 
geometrical understanding of the relations between the orientations of 
various objects in the neighborhood of a normal crossing on a smooth 
surface. Just think of the complexification of Fig. 18. Q.E.D. 

Corollary 8.6. The orientation of the fibres of (T(p), F(p)) is 
determined by the associated unoriented plumbing structure up to a si-
multaneous change of orientation of all the fibres. · 

Proof Consider the unoriented plumbing structure. Start from an 
arbitrary piece M(Ei), and choose one of the two continuous orienta­
tions of its fibres. Then propagate this orientations farther and farther 
through the components of T(p), by respecting the compatibility con­
dition on the neighboring orientations. As M(S) is connected, we know 
that after a finite number of steps one has oriented the fibres of all the 
pieces. As one orientation exists which is compatible in the neighbor­
hood of all the tori, we see that our process cannot arrive at a contra­
diction (that is, a non-trivial monodromy around a loop of r(p) in the 
choice of orientations). Q.E.D. 

The following lemma is a particular case of the study done in Mum­
ford [55, page 11] and Hirzebruch [36, page 250-03]. 

Lemma 8. 7. Suppose that Ei is a component of E which is smooth, 
mtional and whose valency in the gmph r(p) is 2. In the thick torus 
M(Ei) which corresponds to it in the plumbing structure (T(p), F(p)), 
consider an oriented fibre f of M(Ei), as well as oriented fibres J', !"of 
the two (possibly coinciding) adjacent pieces. Then one has the following 
relation in the homology group H1(M(Ei), Z): 

[f'] + [!"] = leil · [f]. 
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8.3. The topological characterization of HJ and cusp sin­
gularities 

We want now to understand how to pass from the plumbing struc­
ture (T(p), F(p)) on M(S) to the canonical graph structure on it (see 
Definition 7.14). We see that the pieces of M(S)T(p) which are thick tori 
correspond to components Ei which are smooth and rational with §i = 2, 
and those which are solid tori correspond to components Ei which are 
smooth and rational with §i = 1. It is then natural to introduce the 
following: 

Definition 8.8. We say that a vertex Ei off(p) is a chain vertex 
if Ei is smooth, 9i = 0 and §i s; 2. If moreover §i = 2, we call it an 
interior chain vertex, otherwise we call it a terminal chain vertex. 
We say that a vertex of r(p) is a node if it is not a chain vertex. 

In [51], Le, Michel & Weber used the name "rupture vertex" for a 
node in the dual graph associated to the minimal embedded resolution 
of a plane curve singularity. In their situation, where all the vertices 
represent smooth rational curves, nodes are simply those of valency ~ 3. 
In our case this is no longer true, as one can have also vertices of valency 
s; 2, if they correspond to curves Ei which are either not smooth or of 
genus 9i ~ 1. 

Denote by N(p) the set of nodes of r(p). It is an empty set if and 
only if f(p) is topologically a segment or a circle and all the components 
Ei are smooth rational curves. The first situation occurs precisely for 
the Hirzebruch-Jung singularities, defined in Section 6.2 (see Proposition 
6.2), and the second one for cusp singularities, introduced by Hirzebruch 
[37] in the number-theoretical context of the study of Hilbert modular 
surfaces. 

Definition 8.9. A germ (S, 0) of normal surface singularity is 
called a cusp singularity if it has a resolution p such that f(p) is 
topologically a circle and N(p) = 0. 

For other definitions and details about them, see Hirzebruch [37], 
Laufer [49] (where they appear as special cases of minimally elliptic 
singularities), Ebeling & Wall [17] (where they appear as special cases of 
Kodaira singularities), Oda [60], Wall [84] and Nemethi [56]. They were 
generalized to higher dimensions by Tsuchihashi (see Oda [60, Chapter 
4]). 

In the previous definition it is not possible to replace the resolution 
p by the minimal normal crossings one. Indeed: 
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Lemma 8.10. lf(S, 0) is a cusp singularity, thenr(Pmnc) is topo­
logically a circle and either N'(Pmnc) = 0, or Emnc is irreducible, ratio­
nal, with one singular point where it has normal crossings. 

Proof. One passes from p to Pmnc by successively contracting com­
ponents F which are smooth, rational and verify F 2 = -1 (that is, 
exceptional curves of the first kind, by a remark which follows Defini­
tion 8.2). The new exceptional divisor verifies the same hypothesis as 
the one of p, except when one passes from a divisor with 2 components 
to a divisor with one component. In this last situation, this second ir­
reducible divisor is rational, as its strict transform F is so. Moreover, 
it has one singular point with normal crossing branches passing through 
it, as by hypothesis F cuts transversely the other component of the first 
divisor in exactly two points. Q.E.D. 

We would like to emphasize the following theorem due to Neumann 
[57, Theorem 3], which characterizes Hirzebruch-Jung and cusp singu­
larities among normal surface singularities. 

Theorem 8.11. Let (S, 0) be a normal surface singularity. The 
manifold - M ( S) is orientation-preserving diffeomorphic to the abstract 
boundary of a normal surface singularity if and only if (S, 0) is either a 
Hirzebruch-Jung singularity or a cusp-singularity. 

Recall that - M ( S) denotes the manifold M ( S) with reversed ori­
entation. 

We will bring more light on this theorem with Propositions 9.3 and 
9.6, which show that for both Hirzebruch-Jung and cusp singularities, 
the involutions M(S) "'* -M(S) are manifestations of the duality de­
scribed in Section 5. 

As Hirzebruch-Jung singularities, cusp singularities can also be de­
fined using toric geometry (see Oda [60, Chapter 4]). In the same spirit, 
as a particular case of Laufer's [48] classification of taut singularities, we 
have: 

Theorem 8.12. Hirzebruch-Jung and cusp singularities are taut, 
that is, their analytical type is determined by their topological type. 

For this reason, it is natural to ask which 3-manifolds are obtained 
as abstract boundaries of Hirzebruch-Jung singularities and cusp singu­
larities. This question is answered by: 

Proposition 8.13. 1) (S, 0) is a Hirzebruch-Jung singularity if 
and only if M(S) is a lens space. Moreover, each oriented lens space 
appears like this. 
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2) (S, 0) is a cusp singularity if and only if M(S) is a torus fibration 
with algebraic monodromy of trace ~ 3. Moreover, each oriented torus 
fibration of this type appears like this. 

Proof. This proposition is a particular case of Neumann [57, Corol­
lary 8.3]. Here we sketch the proofs of the necessities, in order to develop 
tools for sections 9.1 and 9.2. 

Let p: (R, E) --+ (S, 0) be the minimal normal crossings resolution 
of ( S, 0) (for notational convenience, we drop the index "mnc"). Denote 
by U(E) a (closed) tubular neighborhood of E in Rand by <I>: U(E)--+ 
E a preferred retraction, as defined in Section 8.2. Denote also by 

W': 8U(E)--+ E 

the restriction of <I> to au (E) '::::' M ( S). 
1) Suppose that (S, 0) is a Hirzebruch-Jung singularity. 
Orient the segment f(p). Denote then by E 1 , ... , Er the compo­

nents of E in the order in which they appear along f(p) in the positive 
direction. For each i E {1, ... , r - 1 }, denote by Ai, i+l the intersec­
tion point of Ei and Ei+l· Consider also two other points Ao, 1 E E 1 , 

Ar, r+l E Er which are smooth points of E. Then consider on each 
component Ei a Morse function 

having as its only critical points Ai-l,i (where IIi attains its mlm­
mum) and Ai,i+l (where IIi attains its maximum). As IIi(Ai,i+l) = 

IIi+ 1 ( Ai, i+ 1) for all i E { 1, ... , r - 1}, we see that the maps IIi can be 
glued together in a continuous map 

II: E--+ [0, 1]. 

Consider the composed continuous map II o W: M ( S) --+ [0, 1] (see 
Fig. 19). 

Our construction shows that its fibres over 0 and 1 are circles and 
that those over interior points of [0, 1] are tori. Moreover, each such 
torus splits M into two solid tori. By Definition 7.3, we see that M is a 
lens space. 

It remains now to prove that each oriented lens space appears like 
this. 

Denote L := H 1(M(S) -(II o w)- 1{0, 1}, Z). As M(S)- (II o 
w)- 1 {0, 1} is the interior of a thick torus foliated by the tori (IIow)- 1 (c), 
where c E (0, 1), we see that L is a 2-dimensional lattice. With the 
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Fig. 19. The maps IT and W for a Hirzebruch-Jung singu­
larity 
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notations of Section 8.2, let fi be an oriented fibre in the piece M(Ei) of 
the plumbing structure (T(p), :F(p)) which corresponds to Ei. Consider 
also fo and fr+1, canonically oriented meridians on the boundaries of 
tubular neighborhoods of (II o w)- 1(0), respectively (II o w)- 1 (1). 

For each i E {0, ... , r + 1 }, denote by Vi := [fi] E L the homology 
class of k Recall that ei := E'f. By Lemma 8.7, we see that 

(25) 

By Proposition 6.2, p is also the minimal resolution of (S, 0), which 
shows that lei I 2: 2, Vi E {1, ... , r}. Now apply Proposition 4.4. We 
deduce that the numbers ei are determined by the oriented topological 
type of the lens space M(S), once the isotopy class of the tori (IIow)- 1 (c) 
is fixed. 

This shows that, starting from any oriented lens space M and torus 
T c M which splits Minto two solid tori, one can construct a Hirzebruch­
Jung singularity (S, 0) such that M(S) ~ M only by looking at the 
classes of the meridians of the two solid tori in the lattice L = H 1 ( T, Z). 
One has only to be careful to orient them compatibly with the orienta­
tion of M (as explained at the beginning of the proof of Lemma 8.5). 

2) Suppose that (S, 0) is a cusp singularity. 
• Consider first the case where r 2: 2. Orient the circle r(p) and 

choose one of its vertices. Denote then by E1, ... , Er the components 
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of E in the order in which they appear along r(p) in the positive di­
rection, starting from E 1• For each i E {1, ... , r }, denote by Ai, i+1 

the intersection point of Ei and Ei+b where Er+l = E1. Consider then 
functions IIi: Ei--+ [(i-1)/r, i/r] with the same properties as in the case 
of Hirzebruch-Jung singularities. By passing to the quotient R --+ R/Z, 
we can glue the previous maps into a continuous map: 

II: E--+ R/Z. 

Consider then the map II o \IT: M(S)--+ R/Z (see Fig. 20). 

n 

A r,l 

Fig. 20. The maps II and \f! for a cusp singularity 

Our construction shows that II realizes M ( S) as the total space of 
a torus fibration over R/Z. 

Denote by Ti,i+l := w- 1 (Ai,i+l) the torus of T(p) which corre­
sponds to the intersection point of Ei and Ei+l· Denote T := Tr, 1 

and let N(T) be a (closed) tubular neighborhood ofT, which does not 
intersect any other torus Ti, i+b for i E {1, ... , r - 1} (see Fig. 20). 

Denote L := H 1(M(S)- N(T), Z). As M(S)- N(T) is the interior 
of a thick torus, we see that L is a 2-dimensional lattice. With the 
notations of Section 8.2, let fi be an oriented fibre in the piece M(Ei)· 
We suppose moreover that h and fr are situated on the boundary of 
N(T). Consider two other circles fo and fr+l on 8N(T), such that fo, fr 
are isotopic inside N(T) and situated on distinct boundary components 
and such that the same is true for the pair JI, fr+l· 

For each i E {0, ... , r + 1 }, denote by vi := [/i] E L the homology 
class of fi· By Lemma 8.7, we see that: 

(26) Vi+1 = lei I ·Vi - Vi-1 = -ei ·Vi - Vi-1, \fi E {0, ... , r }, 
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where Eo := Er. 
Denote by n E GL(L) the automorphism which sends the basis 

(vo, v1) of L into the basis (vr, Vr+1)· The relations (26) show that its 
matrix in the basis (vo, v1) is: 

G ~n (~ ~:) · · · (~ ~:) 
A little thinking shows that n is the inverse of the algebraic monodromy 
mE GL(L) in the positive direction along R/Z. So, the matrix of min 
the basis ( vo, v1) is: 

( er 1) (er-1 1) ... (e1 1) -1 0 -1 0 -1 0 
We have reproved like this Theorem 6.1 IV in Neumann [57]. We deduce 
by induction the following expression for its trace, where the polynomials 
z- were defined by formula (1): 

(27) trm = z-(le11, ... , lerl)- z-(le21, ... ' ler-11). 

The negative definiteness of the intersection matrix of E (see The­
orem 8.3) shows that there exists i E {1, ... , r} such that leil ~ 3. 
Asp is supposed to be the minimal resolution of (S, 0), we have also 
ej ~ 2, '</j E {1, ... , r}. Using equation (27), we deduce then easily by 
induction on r that tr m ~ 3. 

• Consider now the case r = 1. Then, by Lemma 8.10, E is a 
rational curve with one singular point P, where E has normal cross­
ings. Let p': (R', E') ---+ (S, 0) be the resolution of (S, 0) obtained 
by blowing up P E R. Then E' is a normal crossings resolution with 
smooth components E 1, E 2, where Et = -1 and E2 is the strict trans­
form of E. As (p')* E = 2E1 + E 2 and ( (p')* E) 2 = E 2, we deduce that 
E~ = E 2 - 4 ::; -5. Now we apply the same argument as in the case 
r ~ 2, but for the resolution p'. 

An alternative proof could use Lemma 8.4. 
The fact that each oriented torus fibration with tr m ~ 3 appears 

like this is a consequence of the study done in Section 9.2. Indeed, there 
we show how to extract the numbers (e1, ... , er) from the oriented 
topological type of M(S). Q.E.D. 

By Neumann [57], there exist also abstract boundaries M(S) which 
are torus fibrations with algebraic monodromy of trace 2. But in that 
case the exceptional divisor of the minimal resolution is an elliptic curve 
(then, following Saito [67], one speaks about simple elliptic singularities, 
which are other particular cases of minimally elliptic ones). 
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8.4. Construction of the canonical graph structure 

Consider again an arbitrary normal surface singularity (S, 0) and a 
normal crossings resolution p of it. 

Definition 8.14. Suppose that the set of nodes .N(p) is non­
empty. Conceive the graph f(p) as a !-dimensional CW-complex and 
take the complement r(p) -.N(p). This complement is the disjoint union 
of segments, which we call chains. If a chain is open at both extremities 
we call it an interior chain. If it is half-open we call it a terminal 
chain. 

In Fig. 20 we represent the chains of Fig. 17, with the hypoth­
esis that E4, E5, E1 rt .N(p) and E6 E .N(p). That is, we suppose 
that E4, E5, E6, E1 are smooth and that g(E4) = g(E5) = g(E7) = 0, 
g(E6 ) 2: 1. There is only one terminal chain, which contains the terminal 
chain vertex E7. . 

Denote by C (p) the set of chains. This set can be written as a disjoint 
union 

where Ci (p) denotes the set of interior chains and Ct (p) the set of terminal 
chains. The edges of f(p) contained in a chain C E C(p) correspond to 
a set of parallel tori in M(S). Choose one torus Tc among them and 
define: 

T'(p) := U Tc. 
CEC;(p) 

Fig. 21. The chains of Fig. 17 when E6 is a node 
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By construction, each piece of M(S)T'(p) contains a unique piece 
M(Ei) of M(S)T(p) such that Ei is a node of f(p). If Ei E N(p), 
denote by M'(Ei) the piece of M(S)T'(p) which contains M(Ei)· One 
can extend in a unique way up to isotopy the natural Seifert structure 
without exceptional fibres on M(Ei) to a Seifert structure on M'(Ei)· 
One obtains like this a graph structure (T'(p), :F'(p)) on M(S). 

Till now we have worked with any normal crossings resolution p. 
We consider now a special one, the minimal normal crossings resolution 
Pmnc· 

Proposition 8.15. Suppose that (S, 0) is neither a Hirzebruch­
Jung singularity, nor a cusp singularity. Then the graph structure 
(T'(Pmnc), :F'(Pmnc)) is the canonical graph structure on M(S). 

Proof If T'(Pmnc) is empty, as (S, 0) is not a cusp singularity we 
deduce that (T'(Pmnc), F'(Pmnc)) is a Seifert structure. By Proposition 
7.8, we see that it is the canonical graph structure on M(S). 

Suppose now that T'(Pmnc) is non-empty. One has to verify two 
facts (see Definition 7.14): 

• first, that all the fibrations induced by F' (Pmnc) on the pieces 
which are thick Klein bottles have orientable basis; 

• second, that by taking the various choices of Seifert structures on 
the pieces of M(S)T'(Pmnc)' one does not obtain isotopic fibres coming 
from different sides on one of the tori of T'(Pmnc)· 

The first fact is immediate, as one starts from Seifert structures with 
orientable basis on the pieces of M(S)T(Pmnc) before eliminating tori of 
T(Pmnc) in order to remain with T'(Pmnc)· 

In what concerns the second fact, the idea is to look at the fibres 
corresponding to the chain vertices of any interior chain C. The union 
of the pieces of M(S)T(P=nc) which are associated to those vertices is 
a thick torus NR. Take a fibre in each piece (remember that they are 
naturally oriented as boundaries of holomorphic discs) and look at their 
images in L = H1(NR, Z). One gets like this a sequence of vectors 
v1 , ... , v8 E L. Consider also the images v0 and Vs+l of the fibres 
coming from the nodes of r(pmnc) to which cis adjacent, the order of 
the indices respecting the order of the vertices along the chain. 

By Lemma 8.7, Vk+l = akvk- Vk-1 for any k E {1, ... , s}, where 
ak is the absolute value of the self-intersection of the component Ei of 
r(Pmnc) which gave rise to the vector Vk· Here plays the hypothesis that 
Pmnc is minimal: this implies that ak ~ 2. Then one can conclude by 
using Proposition 7.7. 

The analysis of thick Klein bottles is similar. It is based on the 
fact that a thick Klein bottle can appear only from a portion of the 
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graph f(p) as in Fig. 21, where E 1 , E 2 , E3 are smooth rational curves 
of self-intersections -2, -2, respectively -n (see Neumann [57, pages 
305, 334]). The important point is that n 2: 2. Otherwise the complete 
sub-graph of f(p) with vertices E 1, E 2 , E3 would have a non-definite 
intersection matrix, which contradicts Theorem 8.3. Q.E.D. 

Fig. 22. The appearance of a thick Klein bottle 

The plumbing structure (T(Pmnc), F(Pmnc)) on N(S) is associated 
to the resolution Pmnc of (S, 0). One can wonder if the canonical graph 
structure (T'(Pmnc), F'(Pmnc)) is also associated to some analytic mor­
phism with target (S, 0). 

This is indeed the case. In order to see it, start from Pmnc and its 
exceptional divisor E. Then contract all the components of E which 
correspond to chain vertices. One gets like this a normal surface with 
only Hirzebruch-Jung singularities. The image of E on it is a divisor F 
with again only normal crossings when seen as an abstract curve. Take 
then as a representative of M(S) the boundary of a tubular neighbor­
hood ofF in the new surface and split it into pieces which project into 
the various components of F. The splitting is done using tori which are 
associated bijectively to the singular points of F. Namely, in a system 
of (toric) local coordinates (x, y) such that F is defined by xy = 0, one 
proceeds as for the definition of the plumbing structure associated to a 
normal crossings resolution (see Section 8.2). Then this system of tori 
is isotopic to T'(Pmnc)· 

§9. lnvariance of the canonical plumbing structure on the 
boundary of a normal surface singularity 

In this section we describe how to reconstruct the plumbing struc­
ture (T(Pmnc), F(Pmnc)) on M(S) associated to the minimal normal 
crossings resolution of (S, 0), only from the abstract oriented manifold 
M ( S). Namely, using the classes of plumbing structures on thick tori de­
fined in Section 7.5, we define a plumbing structure P(M(S)) on M(S) 
and we prove: 
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Theorem 9.1. 1) When considered as an unoriented structure, 
the plumbing structure P(M(S)) depends up to isotopy only on the nat­
ural orientation of M(S). We call it the canonical plumbing structure 
on M(S). 

2) The plumbing structure (T(Pmnc), F(Pmnc)) associated to the min­
imal normal crossings resolution of (S, 0) is isotopic to the canonical 
plumbing structure P(M(S)). 

As a corollary we get the theorem of invariance of the plumbing 
structure (T(Pmnc), F(Pmnc)) announced in the introduction (see Theo­
rem 9.7). We also explain how the orientation reversal on the boundary 
of a Hirzebruch-Jung or cusp singularity reflects the duality between 
supplementary cones explained in Section 5.1 (see Propositions 9.4 and 
9.6). 

In order to prove Theorem 9.1, we consider three cases, according 
to the nature of M(S). In the first one it is supposed to be a lens space, 
in the second one a torus fibration with algebraic monodromy of trace 
2:: 3 and in the last one none of the two (so, by Proposition 8.13, this 
corresponds to the trichotomy: ( S, 0) is a Hirzebruch-J ung singularity I 
a cusp singularity I none of the two). 

The idea is to start from some structure on M(S) which is well­
defined up to isotopy, and to enrich it by canonical constructions of 
Hirzebruch-Jung plumbing structures (defined in Section 7.5). When 
M ( S) is neither a lens space nor a torus fibration with algebraic mon­
odromy of trace 2:: 3, this starting structure will be the canonical graph 
structure (see Definition 7.14). Otherwise we need some special theo­
rems of structure (Theorems 9.2 and 9.5). 

9.1. The case oflens spaces 

Notice that by Proposition 8.13 1), M(S) is a lens space if and only 
if (S, 0) is a Hirzebruch-Jung singularity. 

The following theorem was proved by Bonahon [5]: 

Theorem 9.2. Up to isotopy, a lens space contains a unique torus 
which splits it into two solid tori. 

We say that a torus embedded in a lens space and splitting it into 
two solid tori is a central torus. By the previous theorem, a central torus 
is well-defined up to isotopy. 

Let M be an oriented lens space and T a central torus in M. Con­
sider a tubular neighborhood N(T) ofT in M, whose boundary com­
ponents we denote by T_ and T+, ordered in an arbitrary way. Then 
MT_uT+ has three pieces, one being sent diffeomorphically by the recon­
struction map rM, T_uT+ on N(T) - by a slight abuse of notations, we 
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keep calling it N(T) - and the others, M_ and M+, having boundaries 
sent by rM,T_uT+ on T_, respectively T+ (see Fig. 33). The manifolds 
M_ and M+ are solid tori, as T was supposed to be a central torus. 
Let/- and I+ be meridians of M_, respectively M+, oriented compat­
ibly with the orientation of N(T) (see Definition 7.16). Consider the 
Hirzebruch-Jung plumbing structure P(N(T), ,_, r+) on N(T), whose 
tori are denoted by To = T _, T1, ... , Tr+2 = T +, as explained in Section 
7.5. 

M+ 

T+ 
Mr+l 

~ Mr 
N(T) /;;! -·~"' M1 

Mo 
T_ 

M 

Fig. 23. Construction of the canonical plumbing structure 
on a lens space 

Denote TM := T2 U · · · U Tr. Then MrM contains four pieces less 
than the manifold Mr_uTMuT+· Denote by M'__ and M~ the piece which 
"contains" M_, respectively M+. On M'__ we consider the Seifert struc­
ture which extends the Seifert structure of M 1 and on M~ the one which 
extends the Seifert structure of Mr. By applying the intersection theo­
retical criterion of Proposition 7. 7 b), we see that those Seifert structures 
have no exceptional fibres (we used a similar argument to construct in 
Section 7.5 the Hirzebruch-Jung plumbing structure on solid tori). On 
the other pieces of MrM we consider the Seifert structure coming from 
the plumbing structure P(M, r-, r+)· Denote by P(M) the plumbing 
structure constructed like this on the oriented manifold M. 

Proof of Theorem 9.1. 
1) This is obvious by construction (we use Theorem 9.2). 
2) In the construction of P(M(S)), one can take as central torus T 

any torus (II o w)- 1 (c), with c E (0, 1), in the notations of the proof of 
Proposition 8.13, 1). Then one sees that b-J = [fo] and b+l = [fr+I] 
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in the lattice L = H1(M(S) -(II o w)- 1{0, 1}, Z) = H 1(T, Z). Us­
ing the relations (25) and the definition of a Hirzebruch-Jung plumbing 
structure on a thick torus (see Section 7.5), we deduce that the images 
of the fibres fi in L are equal to the images of the fibres of P(M(S)) 
(see also Proposition 4.4). The proposition follows by the fact that on a 
2-torus, any oriented essential curve is well-defined up to isotopy by its 
homology class. Q.E.D. 

Let u be the strictly convex cone of LR whose edges are generated by 
[1'-] and ['Y+ ]. If one changes the ordering of the components of BN(T), 
then one gets the same cone u, and if one changes simultaneously the 
orientations of 1'- and 1'+, then one gets the opposite cone. But if 
one changes the orientation of M, then the cone u is replaced by a 
supplementary cone. So, in view of Section 5.3, the two cones are in 
duality. In this sense, the canonical plumbing structure P( -M(S)) is 
dual to P(M(S)). We get: 

Proposition 9.3. Let (S, 0) be a Hirzebruch-Jung singularity. 
Then the canonical plumbing structures with respect to the two possi­
ble orientations of M(S) are dual to each other. More precisely, if 
(S, 0) ~ (Z(L, u), 0) ~ Ap,q, then -M(S) is orientation preserv­
ing diffeomorphic to M(S), where, with the notations of Section 4, 
(S, o) ~ (Z(L, a), 0) ~ Av,v-q· 

Let>. := pjq be the type of the cone (L, u) in the sense of Definition 
5.5, where 0 < q < p and gcd(p, q) = 1. The oriented lens space M(S), 
where (S, 0) ~ (Z(L, u), 0) ~ Ap, q, is said classically to be of type 
L(p, q). By Propositions 5.6 and 5.8, combined with Theorem 9.2, we 
get the following classical fact: 

Proposition 9.4. 1) The lens spaces L(p, q) and L(p, q') are ori­
entation-preserving diffeomorphic if and only if p = p' and q' E {q, q}, 
where 0 < q < p, qq = 1(modp). 

2) The lens spaces L(p, q) and L(p, q') are orientation-reversing 
diffeomorphic if and only if p = p' and q' E {p- q, p- q}. 

9.2. The case of torus fi.brations with tr m ~ 3 

Notice that by Proposition 8.13 2), M(S) is a torus fibration whose 
algebraic monodromy verifies tr m 2: 3 if and only if ( S, 0) is a cusp 
singularity. First we study with a little more detail torus fibrations. 

Let M be an orientable torus fibration. Take a fibre torus T. Then 
consider the lattice L = H 1 (T, Z) and the algebraic monodromy op­
erator m E SL(L) (see Definition 7.4) associated with one of the two 
possible orientations of the base. 
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The following theorem is a consequence of Waldhausen [83, section 
3] (see also Hatcher [33, section 5]): 

Theorem 9.5. Up to isotopy, an orientable torus fibration M 
such that tr m 2: 3 contains a unique torus which splits it into a thick 
torus (see Definition 7.2). 

We say that a torus embedded in an orientable torus fibration whose 
algebraic monodromy m verifies tr m 2: 3 and which splits it into a thick 
torus is a fibre torus. By the previous theorem, a fibre torus is well­
defined up to isotopy. 

From now on, we suppose that indeed tr m 2: 3 (see Proposition 
8.13, 2)). As M is orientable, m preserves the orientation of L, which 
shows that det m = 1. This implies that the characteristic polynomial 
of m is X 2 - (trm)X + 1. We deduce that m has two strictly positive 
eigenvalues with product 1, and so the eigenspaces are two distinct real 
lines in La. 

But the most important point is that these lines are irrational. In­
deed, the eigenvalues are V± := (1/2)(trm±J(trm)2 - 4) and (trm)2 -

4 is never a square if tr m 2: 3. 
Denote by d_ and d+ the eigenspaces corresponding to v _, respec­

tively v+. Then m is strictly contracting when restricted to d_ and 
strictly expanding when restricted to d+. Choose arbitrarily one of the 
two half-lines in which 0 divides the line d_, and call it L. 

At this point we have not used any orientation of M. Suppose now 
that M is oriented. Then the chosen orientation on the basis of the torus 
fibration induces an orientation of the fibre torus T, by deciding that 
this orientation, followed by the transversal orientation which projects 
on the orientation of the base induces the ambient orientation on M. 

Denote by l+ the half-line bounded by 0 on d+ into which L arrives 
first when turned in the negative direction. Let a be the strictly convex 
cone bounded by these two half-lines (see Fig. 24). 

We arrive like this at a pair (L, a) where both edges of a are ir­
rational. As m preserves L and a, it preserves also the polygonal line 
P(a). 

Let P1 be an arbitrary integral point of P(a). Consider the sequence 
(Pn)n~l of integral points of P(a) read in the positive direction along 
P(a), starting from P1 . There exists an index t 2: 1 such that Pt+l = 
m( PI). It is the period of the action of m on the linearly ordered set of 
integral points of P(a). 

Consider t parallel tori T1. ... , Tt inside M, where T1 = T and the 
indices form an increasing function of the orders of appearance of the 
tori when one turns in the positive direction. Denote T := U1::;k::;t Tk 
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Fig. 24. The case of torus bundles with tr m :0:: 3 
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and Tt+l := T1 . For each k E {1, ... , t}, denote by Mk the piece of 
My whose boundary components project by rM, T on Tk and Tk+l (see 
Fig. 25). Then look at the thick torus Mr. Let T_ be its boundary 
component through which one "enters inside" Mr when one turns in 
the positive direction, and T+ be the one by which one "leaves" Mr. 
Identify then H 1(Mr, Z) with H 1(T_, Z) through the inclusion T_ c 
Mr1 and H 1 (T_, Z) with H 1(T, Z) = L through the reconstruction 
mapping TM, rlr_: T _ __. T. 

Fig. 25. Construction of the canonical plumbing structure 
on a torus fibration with tr m :0:: 3 

Consider now on each piece Mk an oriented Seifert fibration :Fk such 
that the class of a fibre in L (after projection in Mr and identification 
of H 1(Mr, Z) with L, as explained before) is equal to OPk. Denote 
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by F the Seifert structure on Mr obtained by taking the union of the 
structures Fk. We get like this a plumbing structure on M. Denote it 
by P(M). 

This plumbing structure does not depend, up to isotopy, on the 
choice of the initial integral point on P((J). Indeed, by lifting to M a 
vector field of the form a 1 ae on the base of the torus fibration and by 
considering its flow, one sees that one gets isotopic torus fibrations by 
starting from any integral point of P((J). 

Notice that it does neither depend on the choice of the half-line L. 
An opposite choice would lead to the choice of an opposite cone, that is 
to the same unoriented plumbing structure. 

Proof of Theorem 9.1. 
1) This is obvious by construction (we use Theorem 9.5). 
2) In the construction of P(M(S)), one can take as fibre torus T the 

torus Tr, 1, with the notations of the proof of Proposition 8.13, 2). Using 
the relations (26) and Proposition 4.4, we get the Proposition. Q.E.D. 

By Theorem 8.12, cusp singularities are determined up to analytic 
isomorphism by the topological type of the oriented manifold M(S). By 
Theorem 9.5, this manifold can be encoded by a pair (T, J.L), where Tis 
an oriented fibre and J.L is a geometric monodromy diffeomorphism of T 
obtained by turning in the positive direction determined by the chosen 
orientation of T (recall that this is precisely the point were we use the 
given orientation of M ( S)). But it is known that J.L can be reconstructed 
up to isotopy by its action on L = H 1 (T, Z), that is, by the algebraic 
monodromy operator mE SL(L). Moreover, to fix an orientation ofT is 
the same as to fix an orientation of L. As explained in Section 5.3, such 
an orientation can be encoded in a symplectic isomorphism w: L ____, L. 

Denote by C(L, w, m) the cusp singularity associated to an oriented 
lattice (L, w) and an algebraic monodromy operator m E SL(L) with 
tr m 2: 3. If one changes the orientation of the base of the torus fibration, 
one gets the triple (L, -w, m- 1 ). This shows that: 

C(L, w, m)-::::: C(L, -w, m- 1). 

When one changes the orientation of M ( S), we see that the cone 
(L, (J) is replaced by a supplemetary one. In view of Section 5.3, we 
deduce that the two cones are dual to each other. In this sense, we get 
the following analog of Proposition 9.3: 

Proposition 9.6. Let (S, 0) be a cusp singularity. Then the ca­
nonical plumbing structures with respect to the two possible orienta­
tions of M(S) are dual to each other. More precisely, if (S, 0) -::::: 
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(C(L, w, m), 0), then -M(S) is orientation preserving diffeomorphic to 
M(S), where (S, 0) ~ (C(L, -w, m), 0). 

9.3. The other singularity boundaries 

As in the two previous cases, we first define the plumbing structure 
P(M(S)). 

Consider the canonical graph structure ('Ycan, Fcan) on M(S). We 
do our construction starting from the neighborhoods of the JSJ tori (the 
elements of 'Ycan) and the exceptional fibres in Fcan· 

• For each component T of 'Ycan, consider a saturated tubular neigh­
borhood N(T). We choose them pairwise disjoint. So, each manifold 
N (T) is a thick torus. We consider on each one of its boundary compo­
nents a fibre of Fcan· Denote these fibres by "f(T), J(T). We consider 
on N(T) the restriction of the orientation of M(S). Consider the as­
sociated Hirzebruch-Jung plumbing structure P(N(T), "f(T), J(T)) (see 
Definition 7.17). Replace the Seifert structure on N(T) induced from 
Fcan with this plumbing structure. Then eliminate the boundary com­
ponents of N(T) from the tori present in M(S) (by construction, the 
fibrations coming from both sides agree on them up to isotopy). 

• For each exceptional fibre F, consider a solid torus N(F), which 
is a saturated tubular neighborhood of F. Choose those neighbor­
hoods pairwise disjoint. On the boundary of N(F), take a fiber "f(F) 
of Fcan· Consider the associated Hirzebruch-Jung plumbing structure 
P(N(F), "f(F)) (see Definition 7.18). Replace the Seifert structure on 
N(F) induced from Fcan with this plumbing structure. Then eliminate 
the boundary component of N(F) from the tori present inside M(S) 
(by construction, the fibrations coming from both sides agree on it up 
to isotopy). Denote by P(M(S)) the plumbing structure constructed 
like this on M(S). 

Proof of Theorem 9.1. The proof is very similar to the ones ex­
plained in the two previous cases, but starting this time from the canon­
ical graph structure on M(S). The main point is Proposition 8.15. We 
leave the details to the reader. Q.E.D. 

9.4. The invariance theorem 

Let (S, 0) be a normal surface singularity. In [57], Neumann proved 
that the weighted dual graph r(Pmnc) of the exceptional divisor of its 
minimal normal crossings resolution Pmnc is determined by the oriented 
manifold M(S). But he says nothing about the action of the group 
Diff+(M(S)) on (T(Pmnc), F(Pmnc)). As a corollary of Theorem 9.1 we 
get: 
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Theorem 9.7. The plumbing structure (T(Pmnc), F(Pmnc)) is in­
variant up to isotopy by the group Diff+ ( M ( S)). 

Proof. Suppose first that M(S) is not a lens space or a torus fibra­
tion. As the canonical graph structure on it is invariant by the group 
Diff+ ( M ( S)) up to isotopy, we deduce that the canonical plumbing 
structure is also invariant up to isotopy by this group. This conclu­
sion is also true when M(S) is a lens space or a torus fibration, as one 
starts in the construction of P(M(S)) from tori which are invariant up 
to isotopy. Then we apply Theorem 9.1. Q.E.D. 

An easy study of the fibres of F(Pmnc) in the neighborhoods of the 
tori of T(Pmnc) which correspond to self-intersection points of compo­
nents of Emnc show that the analogous statement about the minimal 
good normal crossings resolution of S is also true. 

We arrived at the conclusion that the affirmation of Theorem 9. 7 was 
true while we were thinking about the natural contact structure on M ( S) 
(see Caubel, Nemethi & Popescu-Pampu [11]). Indeed, in that paper we 
prove that for normal surface singularities, the natural contact structure 
depends only on the topology of M ( S) up to contactomorphisms. It was 
then natural to look at the subgroup of Diff+ ( M ( S)) which leaves it 
invariant up to isotopy. Presently, we do not know how to characterize 
it. But we realized that the homotopy type of the underlying unoriented 
plane field was invariant by the full group Diff+ ( M ( S)), provided that 
Theorem 9.7 was true (see [11, section 5]). 
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