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On weighted-degrees 
for algebraic local cohomologies associated 
with semiquasihomogeneous singularities 

Yayoi Nakamura and Shinichi Tajima 

Abstract. 

In this paper, a notion of a weighted-degree is introduced to 
algebraic local cohomology classes associated with a semiquasihomo­
geneous function. Utilizing weighted-degrees, computations of a dual 
basis of Milnor algebra and membership problems are considered as 
applications. 

§1. Introduction 

Let X be a neighbourhood of the origin 0 of n-dimensional affine 
space en. Let f be a holomorphic function on X and S the hypersurface 
defined by the function j, i.e., S = {x E X I f(x) = 0}. We assume 
that the function f has an isolated singularity at the origin, i.e., 

{x EX I fxl(x) = ... = fxn(x) = 0} n s = {0}, 

where fxj = of jaxj and X = (xl, ... 'Xn)· Let J be Jacobi ideal in 
Ox,o of the function J, and HJ the set of algebraic local cohomology 
classes annihilated by J, i.e., 

J = Ox,oUx11 • • ·, fxn) C Ox,o, 

HJ = {17 E H[oJ(Ox) I g1] = 0, Vg E J} 

where Ox, o is the stalk at 0 of the sheaf Ox of germs of holomorphic 
functions and H[o] ( 0 x) is the sheaf of n-th algebraic local cohomology 

groups, supported at the origin. Then, HJ and Ox, o/ J are finite di­
mensional vector spaces of the same dimension, i.e., Milnor number. H f 
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is isomorphic to £xt0x 0 (0x,oi.:J, Ox,o) and thus there exists non-
degenerate pairing, ' 

(1.1) reso ( · , · ) : 0 x, o I .:J x H J ____, C 

between them defined by Grothendieck local residues ([3], [4]). 
As 'HJ is the dual space of Ox,oi.:J, the space 1-lt reflects proper­

ties of a given singularity. Furthermore, these algebraic local cohomol­
ogy classes in H f and the associated holonomic systems exhibit some 
characteristic features of the singularity ([5], [6]). This indicates there­
fore that further studies of 1-lt in the context of D-modules would be 
of interest. In this paper, we study basic properties of H1 for semi­
quasihomogeneous function and give a method for constructing a basis 
of 1-lt· As applications, we consider a membership problem and a com­
putation of standard basis. We show that Grothendieck local duality 
provides us with an effective method for these problem. Note that the 
approach and the results presented in this paper have applications to the 
study of holonomic systems attached to semiquasihomogeneous isolated 
singularities. 

In Section 2, we define a notion of weighted-degrees of algebraic local 
cohomologies and study their properties. For semiquasihomogeneous 
functions f, we clarify relations of these properties for 1{ f to Poincare 
polynomial. In Section 3, by combining Grothendieck duality (1.1) and 
the notion of the weighted-degree with respect to the weight vector of the 
function f, we derive a method for constructing a basis of the space H f 
that gives rise to a dual basis of Ox,o I :f. In Section 4, as applications, 
we study a membership problem for the ideal .:Janda computation of a 
standard basis of .:J. By making the most of the dual basis, we give an 
effective method for solving a membership problem for the ideal .:J and 
illustrate a method for computing a standard basis of .:J with examples. 

§2. Algebraic local cohomologies 

We introduce a notion of weighted-degrees for algebraic local coho­
mology classes and study the dual space of 0 x, o I .:J associated with 
semiquasihomogeneous singularities. 

2.1. Definition of weighted-degrees 

Let us fix a weight vector w = (w1, ... , wn) E N+ for a fixed 
coordinate system x = (x1, ... , Xn) EX. Put lwl = W1 + · · · + Wn and 
(w, A)= A1W1 + · · · + AnWn for A= (Al, ... , An) E Nn. 
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Any algebraic local cohomology class TJ in 1-l[oJ ( 0 x) can be ex­

pressed in terms of a relative Cech cohomology. 

where cA E C, xA = x~1 · · · x~n with A = (A1, ... , An) E A71 , A71 is a 
finite subset of N+. Then, we define the weighted-degree of an alge­
braic local cohomology class [1/xAJ to be -(w, A). We call algebraic 
local cohomology classes, represented by a single term, monomials. An 
algebraic local cohomology class TJ E 1-l[oJ ( 0 x) can be written in the 
form 

A71 is a finite subset of N+ and [ · J stands for a relative Cech cohomology. 

Definition. We define the weighted-degree degw ( TJ) of a cohomol­
ogy class 

(2.1) 

by the smallest degree of monomials [1/xA] for A E A71 : 

degw(TJ) =min{ -(w, A) I A E A71 }, 

where A71 is a set of all exponents A= (A1 , ••• , An) EN+ with non-zero 
coefficients cA in the above expression (2.1) of the cohomology class ry. 

2.2. Basic properties 

Let w = (w1, ... , wn) EN+ be a weight vector. A polynomial f(x) 
is said to be weighted homogeneous of degree d with weight w if f(x) is 
a sum of weighted homogeneous monomials of weighted degree d, i.e., 

f(x) = L cKxK 
(w,K)=d 

where cK E C, xK = x~1 · · · x~n and (w, K) = w1k1 + · · · + Wnkn for 
"'= (kt, ... , kn) E Nn. We define a weighted degree of a holomorphic 
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function h(x) to be the smallest degree of monomials x"' constituting 
h(x); 

degw(h) =min{ (w, /'i,) I h(x) = L c"'x"', c"' i- 0}. 
c"#O 

Definition. A polynomial f is said to be semiquasihomogeneous 
of weighted degree d if f is of the form f = fo + g where fo is a weighted 
homogeneous polynomial of weighted degree d defining an isolated sin­
gularity at the origin and g is a function of weighted degree strictly 
greater than d. 

Let f be a semiquasihomogeneous function with respect to a weight 
vector w = ( W1, ... , Wn) E Nf-. Let :Jo denote Jacobi ideal of the 
weighted homogeneous part of the function f and Eo the canonical 
monomial basis of Ox, ol :!0 . It is known ([1]) that Eo also gives a 
monomial basis of Ox, o I :f. We use the notation E when we regard E 0 

as a monomial basis of 0 x, o I :J. 
Let us recall the following result (see [1]): 

Lemma 2.1. There exists exactly one basis monomial in E of de­
green· degw(f)- 2lwl. Monomials x"' belong to the ideal :J if (w, /'i,) > 
n · degw(f)- 2lwl. 

Based on these results, we have the following: 

Proposition 2.1. Any cohomology class rJ E rt1 \ {0} satisfies the 
following inequality: 

And there exist cohomology classes in H1 of degree -lwl and -n · 
degw(f) + lwl. 

Proof. Since the set A,., of exponents for the cohomology class TJ 

is a subset of Nf-, we have degw(TJ) :::; -(w, 1) = -lwl where 1 = 
(1, ... , 1) E Nf-. The equality holds if and only if A17 = {1} which 
corresponds to Dirac's delta function J = [1l(x1 · · · xn)]. It is evident 
that J is in H1 . 

Assume, for the moment, that there exists a cohomology class TJ E 

H1 satisfying degw(TJ) < -n · degw(f) + lwl. Put degw(TJ) = -n · 
degw(f) + lwl - r for some positive integer r E N+. Then there exists 
A= (AI, ... , An) E A17 such that (w, A) = n · degw(f)- lwl + r. Then, 
for an exponent /'i, = A-1 = (AI -1, ... , An -1) E Nn, we have x"'ry = cJ 
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where c is a non-zero constant. On the other hand, since 

(w, "') 
(w, .\) - (w, 1) 

n · degw(f) - lwl + r- lwl 

n · degw(f) - 2lwl + r > n · degw(f) - 2lwl, 

we have x~< E J, i.e., x~<ry = 0, which is a contradiction. 
Let e E E be a monomial with the weighted-degree n·degw(f)-2lwl. 

There exists a cohomology class T E fit such that er E fit \ { 0}. Then 
we have 

n · degw(f)- 2lwl + degw(r) 

< degw(er) 

< -lwl. 

Thus degw(r) ::; -n · degw(f) + lwl. On the other hand, since T E fit, 
degw(r) 2: -n · degw(f) + lwl. Therefore we have degw(r) = -n · 
degw(f) + lwl. Q.E.D. 

Proposition 2.2. Let "' be an algebmic local cohomology class be­
longing to fit. Then the following conditions are equivalent: 

(1) degw("') = -n · degw(f) + lwl. 
(2) "' generates fit over Ox, O· 

Proof It is obvious that a generator of fit over Ox, o has a degree 
-n · degw(f) + lwl since a degree of any holomorphic function in Ox, o 
is greater than or equal to 0 and the smallest degree of classes in fit is 
-n · degw(f) + lwl. Let a be a generator of fit· There exists a function 
h = h(z) E Ox, o satisfying"' = ha. Since both "' and a are of degree 
-n · degw(f) + lwl, we have degw(h) = 0 equivalently h(O) -=1- 0. Thus, 
the function 1/h is in Ox,o and a can be represented by a= (1/h)ry. 
This completes the proof. Q.E.D. 

Corollary 2.1. For any basis monomial e E E, there exists a 
cohomology class "' E fit satisfying the following condition: 

( i) ery = c8, where 8 is the delta function with support at the origin 
and c is a non zero constant. 

(ii) degw("') = -lwl- degw(e). 

Proof Put d = n · degw(f) - 2lwl. Let e E E be a monomial 
with the weighted-degree w. It is known that the number of the basis 
monomial of weighted-degree w is the same with that of d- w. Let 
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e' E E be a monomial with weighted-degree d- w. Then a monomial 
ee' is in Ox, o/.J. For a generator a of 1it over Ox, o, we have 

degw(ee' a) d + degw(a) 

(n · degw(f)- 2lwl) + ( -n · degw(f) + lwl) 

-lwl. 

Since the only element in 1it with the weighted-degree -lwl is the delta 
function 8, we have ee' a = c8 with some non-zero constant c. Thus the 
algebraic local cohomology class 17 = e' a satisfies the conditions (i) and 
(ii). Q.E.D. 

The next corollary is obvious from Corollary 2.1. 

Corollary 2.2. Let XJ(t) = L~=l JLd1td1 be Poincare polynomial 
of .:To where JLd1 EN, j = 1, ... , £. There is a basis of1it consisting of 
JLd1 classes of the degree -dj - lwl. 

For instance, for any generator a over 0 x, o of 1i f, the set { e1 a, ... , 
elLa} with ej E E gives a basis of 1i f enjoying Corollary 2.2. 

In general, weighted-degrees of basis monomials of 0 x, o /.J depend 
on representatives and thus some monomial bases do not meet the con­
dition of Poincare polynomial. In contrast, the semiquasihomogeneity of 
f always warrants the existence of a basis of 1i f as claimed in Corollary 
2.2. 

§3. Computation of the dual basis 

In this section, we give a method for constructing relative Cech coho­
mologies that constitute the dual basis of E with respect to Grothendieck 
local residues. 

Let fo be the quasihomogeneous part of the semiquasihomogeneous 
function f E Ox, O· Let K 0 be the set of exponents"' of basis monomials 
in Eo; 

Ko = {"' E Nn I x"' E Eo}. 

For an exponent "' E Nn, let r"' be a set of multi indices .\ E N+. satisfying 
.\- 1 rt Ko and (w, .\) = (w, "') + lwl; 

r I< ={.\EN+. I ), - 1 rt. Ko, (w, .\) = (w, "') + lwl}. 

We have the following: 
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Proposition 3.1. 

(1) For every exponent"' E Ko, there exists an algebraic local coho­
mology class 'T}o,"' in Hto of the form 

(3.1) 'TJo,,_ = [x"'~l + L C>. x\] · 
.>.Er,. 

(2) For Ko = { "-1, ... , "-JL}, algebraic local cohomology classes 'T/0,~<-v 
... , 'T}o, "'" in (3.1) constitute the dual basis of Eo with respect 
to Grothendieck local duality between 0 x, o /:To and 7-{ fa. 

Let Ho = { 'T/o, ,_11 ••• , 'T}o, "'"} be the dual basis given in Proposition 
3.1 of Eo. Since the basis Eo for Ox,o/.:To also gives a basis E of 
Ox,o/.:1, we have the following: 

Proposition 3.2. For each 'T}o, ,_ E H0, there exists algebraic local 
cohomology class Tl< satisfying AT,. nr"' = 0 and degw(rlt) > degw('T/o, ,_) 
or T"' = 0 such that the algebraic local cohomology class 

(3.2) 

belongs to 7-{ f. 

Let us discuss a method for constructing algebraic local cohomology 
classes 'T},_ based on the above proposition. 

There are monomials 'T},_ in 7-{ f that are determined by the conditions 
fxi'TJ"' = 0 for all j = 1, : .. , n. Note that such monomials also belong 
to H0. Denote the set of these monomials 'T}"' in Ho by HM: 

HM = { [:>.] E Ho I fxi [:>.] = 0, Vj = 1, ... , n}. 
Let Ao be the set of multi indices defined by {A E Nf. I .A -1 E Ko}. 

Let L, = {A E Nf. I .A ~ Ao, (w, .A) :-:::; - degw(TJ)} for an algebraic 
local cohomology class 'T} E H0. Then, in order for 'T},_ given in (3.2) to 
constitute the dual basis of E, we may take T,_ for 'T}o, ,_ E H0 \ HM by a 
linear combination of monomials [1/x.>.] with .A E L,o, K. 

We give a procedure for constructing the dual basis of E with respect 
to Grothendieck duality among Ox,o/.:1 and Ht· Put A,,xj = Atxj"'' 
Let R, denote a set of multi indices defined by 

R, = {v E N I 3j .E {1, ... ' n }, s.t., A,,Xj n A[l/xv], Xj f= 0} 

where N is a given set of multi indices. 
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Procedure 1. Put H = HM. For each 'f)o = 'f)o, k E Ho \ HM, 

(1) Put 7] = 'f)o and N = Lryo· 
(2) Until Rry = 0, 

compute Rry, 
put 7] := 7] + LvER, cv[1/xv] with undetermined coeffi­
cients Cv and 
put N := N \ Rry· 

(3) Determine coefficients Cv in 7] by the condition 
fx1 77 = 0 for all j = 1, ... ,n. 

(4) Put H = H u {77}. 

Theorem 3.1. The set H of algebraic local cohomology classes 
constructed by Procedure 1 gives rise to the dual basis of E. 

Proof. It is obvious that each 77"; constructed by the above proce­
dure satisfies the condition 

{ 1 i = j, 
reso('r/l"<jl x"') = o' . .../.. . 

' z r J. 

It completes the proof. Q.E.D. 

Example 1. Let f = x 3 y + y6 + axy5 with a parameter a. This 
is a normal form of zl3 type semiquasihomogeneous function with the 
weighted-degree degw (f) = 18 with respect to the weight vector w = 
(5, 3) E N~. The quasihomogeneous part of the function f is fo = 
x3 y + y6 and thus 

We have 

E {1 2 3 2 2 3 5 4 5} = , y, x, y , xy, y , x , xy , xy , y , xy , xy . 

[x~J, [x~2]' [x;y]' [x~3]' [x;y2]' [x~4]' [x!y]' [x;y3]' 
[_1 ] [-1 ] [-1 _ 6_1 ] [-1 ] [-1 _ 6_1 ] E H 
xy5 ' x2y4 ' xy6 x4y ' x2y5 ' x2y6 x5y fo · 

The partial derivatives of the function f are fx = 3x2 y + ay5 and fy = 
x3 + 6y5 + 5axy4. Then, the set HM is given by the following ten 
monomials: 

[x~J, [x~2]' [x;y]' [x~3]' [x;y2]' [x~4]' 
[x!y J ' [x21y3 J' [x~5]' [x21y4] · 
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Thus, in order to construct the dual basis of E, it suffices to compute 
other three cohomology classes in 1i f with quasihomogeneous parts 

[x~6 - 6 x!J' [x21y5]' [x21y6 - 6 x!y] · 
(1) Let 11o = [(1/xy6)- 6(1/x4y)]. Then L'l/o = {(3, 2), (4, 1)}. 

Put 17 = 170· Then A'f/, x = A'f/, y = {(1, 1)}. 
Put N = {(3, 2), (4, 1)}. 
Since R'l/ = {(3, 2)}, put 17 = 11o + c[1/x3y2]. 
By the condition fx17 = fy17 = 0, we have c = -(1/3)a. 

(2) Let 11o = [1/x2y5]. Then L'l/o = {(3, 2), (4, 1), (3, 3)}. 
Put 17 = 170· Then A'f/,x = 0 and A'f/,Y = {(1, 1)}. 
Put N = {(3, 2), (4, 1), (3, 3)}. 
Since R'l/ = {(4, 1)}, put 17 = 11o + c[1/x4y]. 
By the condition fx17 = fy17 = 0, we have c = -5a. 

(3) Let 11o = [(1/x2y6)- 6(1/x5y)]. Then 

L'llo = {(3, 2), (4, 1), (3, 3), (1, 7), (4, 2), (3, 4), (5, 1)}. 

Put 17 = 170· Then A'f/,x = {(2, 1)}, A'f/,Y = {(2, 1), (1, 2)}. 
Put N = L'f/o· 
Since R'l/ = {(1, 7), (4, 2), (3, 3)}, put 

17 = 110 + s[1/xy7] + t[1/x4y2] + u[1/x3y3]. 

Then A'f/,x = {(2, 1), (1, 2)} and A'f/,Y = {(2, 1), (1, 2)}. 
Put N = {(3, 2), (4, 1), (3, 4), (5, 1)}. 
Then, R'l/ = 0. 
Now, 17 = [(1/x2y6)-6(1/x5y)+s(1/xy7)+t(1/x4y2)+u(1/x3y3 )]. 

By the condition fx17 = fy17 = 0, we haves= -(7 /9)a, 
t = -(1/3)a and u = (7/27)a2. 

Thus, the dual basis of E with respect to Grothendieck pairing between 
Ox,o/J and 1-lf is given by 
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§4. Applications 

We give two applications of results in Section 3; one is a method for 
solving a membership problem for Jacobi ideal.J, the other is a method 
for computing a standard basis of .J. 

4.1. A membership problem 

Let us recall the following result which immediately follows from 
Grothendieck local duality (1.1): 

Proposition 4.1. Let p(x) E Ox, O· Then, reso(p(x), ry) = 0 for 
all 'f/ E 1-£1 is a necessary and sufficient condition for p(x) to be in the 
ideal .J. 

By using the dual basis H of E constructed by Procedure 1, we can 
find whether a given p(x) is in .J based on Proposition 4.1. For the dual 
basis H of E, let 

K = u7)EH{~ E Nn I~+ 1 E A7)} 

and KM = {~ E K I [1/x"'+1 ] E HM}· Then, 
(1) if there are monomials x"' in p(x) with~ E KM, p(x) does not 

belong to the ideal .J. 
On the other hand, Proposition 4.1 assures that 

(2) linear combinations of monomials x"' with exponents ~satisfying 
~ ¢. K belong to .J. 

Let K(p) = {~ E Nn I p(x) = L:a"'x"', a"' =f. 0} for a function p(x) 
and K' = K \ KM. Then, after testing the above two conditions (1) 
and (2), it suffices to find if the part q(x) of a given function satisfying 
K(q) C K' belongs to .J or not. By following the procedure below, one 
can solve the membership problem for the ideal .J. 

Procedure 2. For a given function p(x), 

If K(p) n KM =f. 0, then p(x) ¢. .J. 
Else, let q(x) be the part of p(x) given by the linear combination 
of monomials x"' with~ E K', i.e., p(x) = q(x) + Lt<\lK' c"'x"'. 

if q(x) satisfies reso(q(x), ry) = 0 for all 'f/ E H\HM, then 
p(x) E .J. 
else, p(x) ¢. .J. 

4.2. A standard basis 

Making use of the dual basis of E constructed by the above proce­
dure, we can compute a standard basis of the ideal .J. Note that the 
method described below is also applicable to the case where the given 
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function f contains parameters. Let us illustrate a procedure for com­
puting a standard basis of .:1 by using examples. Following notations 
will be used in examples, 

K., = {~~: E Nn j~~: + 1 EA.,}, ~ = L K.,.,. 
'Y/EH\Hu 

Let >- be the lexicographical ordering, and >-w defined by 

X 0 >-w x 13 {:::} ( (w, a) < (w, /3)) or ( (w, a) = (w, /3) and X 0 >- x/3). 

Example 2. Let us compute a standard basis of .:1 for the same 
function f with Example 1. As seen in Example 1, three algebraic local 
cohomology classes 

[ 1 1 1 1] [1 1] 'f/1- --6-- -a-- 'f/2- -- -5a-
- xy6 x4y 3 x3y2 ' - x2y5 x4y 

and 

[ 1 17111 721] 
'T/3 = x2y6 - 6 x5y - ga xy7 - 3a x4y2 + 27a x3y3 

together with HM constitute the dual basis of E. Then, 

and 

K.,1 = {(2, 1), (3, 0), (0, 5)}, K.,2 = {(3, 0), (1, 4)}, 

K.,3 = {(2, 2), (3, 1), (4, 0), (0, 6), (1, 5)} 

~ = {(2, 1), (3, 0), (2, 2), (3, 1), (4, 0), (0, 5), (1, 4), (0, 6), {1, 5)}. 

Put G = ~. 
(1) The exponent (2, 1) is the smallest one in~ with respect to >-w· 

Since (2, 1) is only in K.,.,1 , take the biggest one (0, 5) from (K., 1 n 
G)\ {(2, 1)}. 
Since (2, 1) >-w (0, 5), put p(x, y) = x 2y + sy5. 

By the conditions res0 (p(x, y), ry1 ) = 0, we have p(x, y) = x 2y + 
(1/3)ay5 E .:T. 
Put G=G\(Gn{(i,j)ji~2,j~1}) 

= {(3, 0), (4, 0), (0, 5), (1, 4), (0, 6), (1, 5)}. 

(2) The exponent (3, 0) appears both in K.,1 and Km· 
Take the biggest ones (1, 4) from (K., 1 n G) \ {(3, 0)} and (0, 5) 
from (K.,2 n G) \ { (3, 0)} respectively. 
Since x 3 >-w y5 >-w xy4, put q(x, y) = x 3 + sy5 + txy4. 
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By the conditions res0(q(x, y), ryl) = reso(q(x, y), '172) = 0, we 
have q(x, y) = x 3 + 6y5 + 5axy4 E :J. 
Put G=G\(Gn{(i,j)li2:3,j2:0}) 

= {(0, 5), (1, 4), (0, 6), (1, 5)}. 

(3) While the exponent (0, 5) E K'71 is the smallest one in G, y5 can 
not become the leading term of any generator of :J because (K'71 n 
G)\ {(0, 5)} = 0. 
Put G = G \ {(0, 5)} = {(1, 4), (0, 6), (1, 5)}. 

(4) While the exponent (1, 4) E K'72 is the smallest one in G, xy4 

can not become the leading term of any generator of :J because 
(K7)2 n G)\ {(1, 4)} = 0. 
Put G = G \ {(1, 4)} = {(0, 6), (1, 5)}. 

(5) The exponent (0, 6) E K'73 is the smallest one in ~ and the other 
exponent (1, 5) in G is also belong to K'13 • 

Since (0, 6) >--w (1, 5), put r(x, y) = y6 + sxy5 . 

By the condition res0 (r(x, y), ry3 ) = 0, we have r(x, y) = y6 + 
(7 /9)ax5 . 

By the condition of the weighted-degrees, we have y7 E :f. Then, we 
have constructed a standard basis 

of the ideal :J with respect to >--w. 

Example 3. Let us consider a plane curve defined by x = t 5 and 
y = t 16 + t 54 . The defining equation of this curve is 

This is a semiquasihomogeneous function with a weighted homo­
geneous part f 0 (x, y) = x 16 - y5 of the weighted-degree 80 with re­
spect to the weight vector w = (5, 16). Then, the dual basis H 10 
of Eo = { xiyj I 0 ::; i ::; 14, 0 ::; j ::; 3} is given by monomials 
{[1/xky1]11::; k::; 15, 1::; l::; 4}. 

Since, HM = Hto \ {[1/x15y3], [1/x14y4 ], [1/x15y4 ]}, in order to con­
struct the dual basis of E( = Eo), it suffices to find cohomology classes 
with terms [1/x15y3], [1/x14y4], [1/x15y4] respectively. By direct com­
putations, we obtain algebraic local cohomology classes [(1/x15y3 ) + 
3(1/xy5 )] and [(1/x14y4)- (35/8)(1/x16y)] that belong to H1. It is easy 
to verify that [(1/x15y4)- (35/8)(1/x17y) + 3(1/xy6 )] belongs to H1. 
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Then, cohomology classes 

'f/1 - [-1- + 3-1 ] 'f/2 - [-1- - 35 _1_] 
- x15y3 xy5 ' - x14y4 8 x16y ' 

[ 1 35 1 1 ] 
'f/3 = x15y4 - 8 x17y + 3 xy6 

together with HM constitute the dual basis of E. 
In order to construct a standard basis of .:J, it suffices to use 'f/1 and 

'f/2· It is easy to see that 35x13y3 + 8x15 and 3x14y2 - y4 constitute a 
standard basis of .:J with respect to the total lexicographic ordering. 
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