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On weighted-degrees
for algebraic local cohomologies associated
with semiquasihomogeneous singularities

Yayoi Nakamura and Shinichi Tajima

Abstract.

In this paper, a notion of a weighted-degree is introduced to
algebraic local cohomology classes associated with a semiquasihomo-
geneous function. Utilizing weighted-degrees, computations of a dual
basis of Milnor algebra and membership problems are considered as
applications.

§1. Introduction

Let X be a neighbourhood of the origin O of n-dimensional affine
space C". Let f be a holomorphic function on X and S the hypersurface
defined by the function f, i.e., S = {r € X | f(z) = 0}. We assume
that the function f has an isolated singularity at the origin, i.e.,

{reX | fo(x) = = fe.(2) =0}NS = {0},

where f;, = 0f/0z; and x = (z1, ..., z,). Let J be Jacobi ideal in
Ox, o of the function f, and H; the set of algebraic local cohomology
classes annihilated by 7, i.e.,

'-7: OX,O<fI1a ety fl'n> - OX,O7
Hy = {n € Hp(Ox) | gn=0, Vg€ T}

where Ox o is the stalk at O of the sheaf Ox of germs of holomorphic
functions and Hy, (Ox) is the sheaf of n-th algebraic local cohomology
groups, supported at the origin. Then, Hy and Ox o/J are finite di-
mensional vector spaces of the same dimension, i.e., Milnor number. H ¢
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is isomorphic to £ty (Ox,0/J, Ox,0) and thus there exists non-

degenerate pairing,
(1.1) reSo(-,-):Oxvo/JXHf—é(C

between them defined by Grothendieck local residues ([3], [4]).

As Hy is the dual space of Ox, 0/J, the space Hy reflects proper-
ties of a given singularity. Furthermore, these algebraic local cohomol-
ogy classes in H; and the associated holonomic systems exhibit some
characteristic features of the singularity ([5], [6]). This indicates there-
fore that further studies of Hy in the context of D-modules would be
of interest. In this paper, we study basic properties of H; for semi-
quasihomogeneous function and give a method for constructing a basis
of Hy. As applications, we consider a membership problem and a com-
putation of standard basis. We show that Grothendieck local duality
provides us with an effective method for these problem. Note that the
approach and the results presented in this paper have applications to the
study of holonomic systems attached to semiquasihomogeneous isolated
singularities.

In Section 2, we define a notion of weighted-degrees of algebraic local
cohomologies and study their properties. For semiquasihomogeneous
functions f, we clarify relations of these properties for H; to Poincaré
polynomial. In Section 3, by combining Grothendieck duality (1.1) and
the notion of the weighted-degree with respect to the weight vector of the
function f, we derive a method for constructing a basis of the space Hy
that gives rise to a dual basis of Ox o/J. In Section 4, as applications,
we study a membership problem for the ideal J and a computation of a
standard basis of J. By making the most of the dual basis, we give an
effective method for solving a membership problem for the ideal 7 and
illustrate a method for computing a standard basis of J with examples.

§2. Algebraic local cohomologies

We introduce a notion of weighted-degrees for algebraic local coho-
mology classes and study the dual space of Ox o/J associated with
semiquasihomogeneous singularities.

2.1. Definition of weighted-degrees

Let us fix a weight vector w = (wy, ..., w,) € N7} for a fixed
coordinate system = (z1, ..., ) € X. Put |w| = wy +--- + w, and
(W, A) = AMwy + -+ Adgwp, for A= (Aq, ..., Ay) €N
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Any algebraic local cohomology class 7 in Hfb](ox) can be ex-
pressed in terms of a relative Cech cohomology.

1
1= 2 o
AEA,
where ¢y € C, z* = 2} -+ 2 with A = (A1, ..., M) € Ap, Ay is a
finite subset of N7t. Then, we define the weighted-degree of an alge-
braic local cohomology class [1/z}] to be —(w, A). We call algebraic
local cohomology classes, represented by a single term, monomials. An
algebraic local cohomology class € H?O]((’)X) can be written in the
form
1 A
n= Z c>‘m—>\ where ¢y € C, zxlel---m;\l"
AEA,
with A= (A1, ..., An) €Ay,

A, is a finite subset of N and [ -] stands for a relative Cech cohomology.

Definition. We define the weighted-degree deg,(7) of a cohomol-
ogy class

(2.1) n= [Z céx

AEA,

by the smallest degree of monomials [1/z*] for \ € Ay
degy (n) = min{—(w, X) | A € Ay},

where A, is a set of all exponents A = (A1, ..., Ap) € N} with non-zero
coefficients ¢y in the above expression (2.1) of the cohomology class 7.

2.2. Basic properties

Let w = (w1, ..., wn) € N} be a weight vector. A polynomial f(x)
is said to be weighted homogeneous of degree d with weight w if f(z) is
a sum of weighted homogeneous monomials of weighted degree d, i.e.,

fa)= Y e

(w, k)y=d .
where ¢, € C, z" = z’fl <o-xknoand (w, k) = wiky + -+ + wpky, for
k= (ki, ..., ky) € N". We define a weighted degree of a holomorphic
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function hA(x) to be the smallest degree of monomials z* constituting
h(z);

deg,, (h) = min{(w, &) | h(z) = Z cxx”, ¢k # 0}.
ce#0

Definition. A polynomial f is said to be semiquasihomogeneous
of weighted degree d if f is of the form f = fy+ g where fy is a weighted
homogeneous polynomial of weighted degree d defining an isolated sin-
gularity at the origin and ¢ is a function of weighted degree strictly
greater than d.

Let f be a semiquasihomogeneous function with respect to a weight
vector w = (wy, ..., w,) € N?. Let Jy denote Jacobi ideal of the
weighted homogeneous part of the function f and Ej the canonical
monomial basis of Ox o/Jp. It is known ([1]) that Eo also gives a
monomial basis of Ox o/J. We use the notation E when we regard Ey
as a monomial basis of Ox o/J.

Let us recall the following result (see [1]):

Lemma 2.1. There exists exactly one basis monomial in E of de-
gree n-deg (f) —2|w|. Monomials % belong to the ideal J if (w, k) >
n - degy, (f) — 2|wl.

Based on these results, we have the following:

Proposition 2.1. Any cohomology class n € Hy\{0} satisfies the
following inequality:

—n - deg,, (f) + |w| < deg,(n) < —|w|.

And there exist cohomology classes in Hy of degree —|w| and —n -
degy, (f) + [wl.

Proof. Since the set A, of exponents for the cohomology class 7
is a subset of N}, we have deg, (n) < —(w, 1) = —|w| where 1 =
(1,...,1) € N?. The equality holds if and only if A, = {1} which
corresponds to Dirac’s delta function § = [1/(zy---z,)]. It is evident
that § is in Hy.

Assume, for the moment, that there exists a cohomology class n €
H; satisfying deg, (n) < —n - degy(f) + |[w|. Put deg,(n) = —n -
deg,, (f) + |w| — r for some positive integer 7 € N,. Then there exists
A= (A1, ..., Ap) € Ay, such that (w, A\) = n-deg, (f) — |[w| + . Then,
for an exponent K = A-1 = (A1 —1, ..., A\,—1) € N*, we have 2" = c§
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where c is a non-zero constant. On the other hand, since

degy, (z7) = (w, &)
= (W, A) —(w, 1)
= n-degy(f) — |w|+7 —[w|
— n-degy(f) — 2lw| +1 > n-deg, () — 2|w,
we have " € J, i.e., z"n = 0, which is a contradiction.
Let e € E be a monomial with the weighted-degree n-deg,, (f)—2|w/|.

There exists a cohomology class 7 € Hy such that e € Hy \ {0}. Then
we have

degw(e) + degw(T) = n: degw(f) - 2‘W| + degw(T)
deg,, (e7)
—[wl.

INIA

Thus deg,, (1) < —n - deg,, (f) + |w|. On the other hand, since 7 € Hy,
deg, () > —n - deg,(f) + |w|. Therefore we have deg, (1) = —n -
deg,, (f) + |wl. Q.E.D.

Proposition 2.2. Let 7 be an algebraic local cohomology class be-
longing to Hy. Then the following conditions are equivalent:

(1) degy(n) = —n-degy(f) + |w|.
(2) n generates Hy over Ox, o.

Proof. It is obvious that a generator of H; over Ox o has a degree
—n - deg,, (f) + |w| since a degree of any holomorphic function in Ox o
is greater than or equal to 0 and the smallest degree of classes in H is
—n-degy, (f) +|w|. Let o be a generator of H. There exists a function
h = h(z) € Ox, o satisfying n = ho. Since both 1 and ¢ are of degree
—n - degy, (f) + |w|, we have deg,, (h) = 0 equivalently h(0) # 0. Thus,
the function 1/h is in Ox, o and o can be represented by o = (1/h)n.
This completes the proof. . Q.E.D.

Corollary 2.1. For any basis monomial e € E, there ezxists a
cohomology class n € Hy satisfying the following condition:
(i) en = cd, where § is the delta function with support at the origin
and ¢ is a non zero constant.

(i) degy () = —|w| — degy,(e).

Proof. Put d = n - deg,(f) — 2|w|. Let e € E be a monomial
with the weighted-degree w. It is known that the number of the basis
monomial of weighted-degree w is the same with that of d — w. Let
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e’ € E be a monomial with weighted-degree d — w. Then a monomial
ee’ isin Ox o/J. For a generator o of Hy over Ox, o, we have

deg, (ee’'c) = d+deg,(o)
(- degy, (f) — 2/w]) + (=1 - de,, (£) +Iw])

= —|wl.

Il

Since the only element in H; with the weighted-degree —|w/| is the delta
function 6, we have ee’c = ¢6 with some non-zero constant ¢. Thus the
algebraic local cohomology class n = €’o satisfies the conditions (i) and

(ii). Q.E.D.
The next corollary is obvious from Corollary 2.1.

Corollary 2.2. Let xg(t) = 3_5_; pta,;t% be Poincaré polynomial
of Jo where pg, €N, j =1, ..., L. There is a basis of Hy consisting of
pd; classes of the degree —d; — |w].

For instance, for any generator o over Ox o of Hy, the set {eio, ...,
eu,o} with e; € E gives a basis of Hy enjoying Corollary 2.2.

In general, weighted-degrees of basis monomials of Ox o /J depend
on representatives and thus some monomial bases do not meet the con-
dition of Poincaré polynomial. In contrast, the semiquasihomogeneity of
f always warrants the existence of a basis of Hy as claimed in Corollary
2.2.

§3. Computation of the dual basis

In this section, we give a method for constructing relative Cech coho-
mologies that constitute the dual basis of F with respect to Grothendieck
local residues.

Let fo be the quasihomogeneous part of the semiquasihomogeneous
function f € Ox, o. Let Ky be the set of exponents x of basis monomials
in Eo;

Ko={xkeN"| 2" € Ey}.

For an exponent k € N”, let I',c be a set of multi indices A € N} satisfying
A—1¢ Ky and {w, A) = (w, &) + |W|;

Fe={AeN} | A-1¢& Ky, (W, \) =(w, &) + |w]|}.

We have the following:
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Proposition 3.1.
(1)  For every exponent k € Ky, there erists an algebraic local coho-
mology class 1o, in Hy, of the form

1 1
(3.1) Mo,x = [F—l + Z C’\;X]'
AET.
(2) For Ko ={k1,...,ku}, algebraic local cohomology classes g .,

cev Mok, 0 (3.1) constitute the dual basis of Ey with respect
to Grothendieck local duality between Ox o/Jo and Hy,.

Let Ho = {n0,x;> -+~ » Mo, , } be the dual basis given in Proposition
3.1 of Ey. Since the basis Ey for Ox,0/Jo also gives a basis E of
Ox. 0/J, we have the following:

Proposition 3.2. For each 0, . € Hy, there exists algebraic local
cohomology class 7, satisfying A, NTw = 0 and deg,, (1) > degy, (10, «)
or 7. = 0 such that the algebraic local cohomology class

(3.2) Nk = Mo,k + Tr

belongs to Hy.

Let us discuss a method for constructing algebraic local cohomology
classes 7, based on the above proposition.

There are monomials 7, in H that are determined by the conditions
fz;nx =0 for all j =1, ..., n. Note that such monomials also belong
to Hy. Denote the set of these monomials 7, in Ho by Hjs:

1 1
x x

Let Ag be the set of multi indices defined by {A € N} | A—1 € Ko}
Let L, = {A € N} | A € Ay, (W,A) < —degy(n)} for an algebraic
local cohomology class 7 € Hp. Then, in order for 7, given in (3.2) to
constitute the dual basis of F, we may take 7, for ng , € Ho \ Hy by a
linear combination of monomials [1/z*] with A € L,, ,.

We give a procedure for constructing the dual basis of E with respect
to Grothendieck duality among Ox,0/J and Hy. Put Ap s, = Ay, n.
Let R, denote a set of multi indices defined by

R, = {I/ eN|3je{1,...,n} st, An,acj ﬂA[l/Iu]’Ij # @}

where N is a given set of multi indices.
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Procedure 1. Put H = Hys. For each g = 1o,k € Ho \ Hu,

(1) Putn=mno and N = Ly,.

(2) Until R, =0,
compute R,
put n =0+ ¢ R, Cv[1/2"] with undetermined coeffi-
cients ¢, and
put N := N\ R,.

(3) Determine coefficients ¢, in 7 by the condition

fz;m=0forallj=1,...,n.
(4) Put H=HU({n}.

Theorem 3.1. The set H of algebraic local cohomology classes
constructed by Procedure 1 gives rise to the dual basis of E.

Proof. It is obvious that each 7,; constructed by the above proce-
dure satisfies the condition

.. 1, i=j

It completes the proof. Q.E.D.

Example 1. Let f = 23y + y® + axy® with a parameter a. This
is a normal form of Z;3 type semiquasihomogeneous function with the
weighted-degree deg,, (f) = 18 with respect to the weight vector w =
(5,3) € N_Zl_. The quasihomogeneous part of the function f is fy =
23y + 4% and thus '

E={1,y,z y% zy, ¥* 2% 2% zy?, °, 2yt 2y°}.

) 5] (] (5] () ) 5 ()

1 1 1 1 1 1 1
[a:y5] [12y4] [a:yﬁ iyl Lz2y5 1’ Lz2ys 2y € Mo

The partial derivatives of the function f are f, = 3z%y + ay® and f, =
2% + 6y® + Saxy?. Then, the set Hys is given by the following ten

monomials:
&) w2 =) ) (=) (]
zyl’ ley2l’ lz2yl’ Loy3 1’ La2y2]” Loyt )’
1 1

() (=) () [z

w
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Thus, in order to construct the dual basis of F, it suffices to compute
other three cohomology classes in H; with quasihomogeneous parts

2 o) () [ o))
zyb  ziyl L2250 (226 T Vasyl

(1) Let o = [(1/xy®) — 6(1/z%y)]. Then L,, = {(3, 2), (4, 1)}

Put n =no. Then A, » = Ay, = {(1, 1)}

Put N = {(3, 2), (4, 1)},

Since R, = {(3, 2)}, put n = no + c[1/23y?].

By the condition fyn = fyn =0, we have ¢ = —(1/3)a.
(2) Let ng = [1/2%y°]. Then L, = {(3, 2), (4, 1), (3, 3)}.

Put 7 =no. Then A, , =0 and A, , = {(1, 1)}.

Put N ={(3, 2), (4, 1), (3, 3)}.

Since R, = {(4, 1)}, put n = no + c[1/z%y].

By the condition fyn = fyn = 0, we have ¢ = —5a.

(3) Let no = [(1/2%y®) — 6(1/z%y)]. Then
L770 = {(37‘2)1 (41 1)7 (37 3)» (17 7)s (47 2), (37 4)’ (5’ 1)}

Put n =mno. Then A, o = {(2, )}, Ay,y ={(2, 1), (1, 2)}.
Put N = Ly,.
Since R, = {(1, 7), (4, 2), (3, 3)}, put

n =m0+ s[1/zy"] + t[1/z*y?] + u[1/zy?].

Then A, » = {(2, 1), (1, 2)} and A, , = {(2, 1), (1, 2)}.

Put N ={(3, 2), (4, 1), (3, 4), (5, 1)}.

Then, R, = 0.

Now, n = [(1/2%y°)=6(1/2%y)+s(1/zy")+t(1/z*y*)+u(1/z°y%)].
By the condition f,n = fyn =0, we have s = —(7/9)a,

t = —(1/3)a and u = (7/27)a.

Thus, the dual basis of E with respect to Grothendieck pairing between
Ox,0/J and H; is given by

{[1][1}[1][1}[1][1][1} 1]
oyl Lzg2 ] Lz2yl Loyl L222] Loyt ) 3yl L22g3 )
[L] [L] [L_ﬁL_laL]
oyl Lz2ydl Lzy®  “zty 3 x3y2l)

[1 61_7al 1a1+7a21}
z2y8 dy 9 xy" 3 zty? 27 x3ydlf”
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§4. Applications

We give two applications of results in Section 3; one is a method for
solving a membership problem for Jacobi ideal 7, the other is a method
for computing a standard basis of 7.

4.1. A membership problem

Let us recall the following result which immediately follows from
Grothendieck local duality (1.1):

Proposition 4.1. Let p(z) € Ox, 0. Then, reso(p(x), n) =0 for
all n € Hy is a necessary and sufficient condition for p(x) to be in the
ideal J .

By using the dual basis H of E constructed by Procedure 1, we can
find whether a given p(x) is in J based on Proposition 4.1. For the dual
basis H of E, let

K=Upcu{keN'|k+1eA,}

and Ky = {k € K | [1/z""1] € Hps}. Then,
(1) if there are monomials z* in p(z) with k € K, p(z) does not
belong to the ideal 7.
On the other hand, Proposition 4.1 assures that
(2) linear combinations of monomials z* with exponents & satisfying
k &€ K belong to J.

Let K(p) = {x € N" | p(z) = > axz"®, a, # 0} for a function p(z)
and K’ = K\ Kjs. Then, after testing the above two conditions (1)
and (2), it suffices to find if the part ¢(x) of a given function satisfying
K(q) C K’ belongs to J or not. By following the procedure below, one
can solve the membership problem for the ideal 7.

Procedure 2. For a given function p(x),
If K(p)N Ky # 0, then p(z) € J.
Else, let g(z) be the part of p(x) given by the linear combination
of monomials z* with x € K, i.e., p(z) = q(z) + 3 o CuT™
if ¢(z) satisfies resp(g(z), n) =0 for all n € H\ Hyy, then
p(x) € J.
else, p(z) ¢ J.

4.2. A standard basis

Making use of the dual basis of E' constructed by the above proce-
dure, we can compute a standard basis of the ideal 7. Note that the
method described below is also applicable to the case where the given
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function f contains parameters. Let us illustrate a procedure for com-
puting a standard basis of J by using examples. Following notations
will be used in examples,

Ky={seN'|ck+1ecA,;}, A= Z K.
n€H\Hy

Let > be the lexicographical ordering, and >, defined by
T =y 27 & ((w, @) < (w, B) or ({(w, a) = (w, §) and z* = z).

Example 2. Let us compute a standard basis of J for the same
function f with Example 1. As seen in Example 1, three algebraic local
cohomology classes

[ 1 1 1 1 ] [ 1 5 1 ]
= _ —_—— - N = —_— - a4
m 7y iy~ 393y2 2 245 4y

and

[ 1 17t 11 7a2‘ 1 }
pre=ed —_— —_———_-—— — = —— —_—
s 28 oy 9 xy"T 3 xty? 27 x3y3

together with Hp; constitute the dual basis of E. Then,

Kﬂl = {(27 1)5 (37 O)a (07 5)}5 an = {(3’ 0)3 (17 4)}7
K’ﬂs = {(2’ 2)7 (3a 1)7 (4a O)v (07 6)7 (17 5)}

and
A={(2,1),(3,0),(2,2),(3,1), (40), (0, 5), (1, 4), (0, 6), (1, 5)}.

Put G = A.
(1) The exponent (2, 1) is the smallest one in A with respect to > .
Since (2, 1) is only in K, , take the biggest one (0, 5) from (K,, N
G\ (2, D}
Since (2, 1) =w (0, 5), put p(z, y) = 22y + sy°.
By the conditions resg(p(z, y), 71) = 0, we have p(z, y) = 2y +
(1/3)ay® € J.
Put G =G\ (GN{(i, )22 721}
= {(37 0), (4, 0), (Oa 5), (1, 4), (0, 6)7 (1, 5)}

(2) The exponent (3, 0) appears both in K,, and K,,.
Take the biggest ones (1, 4) from (K,, N G) \ {(3, 0)} and (0, 5)
from (K,, NG) \ {(3, 0)} respectively.
Since 7% >~ y® =w xy?, put q(z, y) = 2% + sy° + tzyt.
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By the condmons reso(q( Y), m) = reso(q(z, y), 12) = 0, we
have q(z, y) = z° + 6y° + 5azyt € J.
Put G =G\ (GN{(,)]i>3,j>0}

= {(0, 5), (1, 4), (0, 6), (1, 5)}.

(3) While the exponent (0, 5) € K,, is the smallest one in G, y° can
not become the leading term of any generator of J because (K,, N

G)\{(0,5)} =0.
Put G = G\ {(0, 5)} = {(1, 4), (0, 6), (1, 5)}.

(4) While the exponent (1, 4) € K,, is the smallest one in G, zy*
can not become the leading term of any generator of J because
(Kn NG\ {(1, 4)} = 0.
Put G = G\ {(1, 9} = {(0, 6), (1, 5)}.

(5) The exponent (0, 6) € Ky, is the smallest one in A and the other
exponent (1, 5) in G is also belong to Kp,.
Since (0, 6) =w (1, 5), put 7(z, y) = y® + szy®.
By the condition reso(r(x, y), 13) = 0, we have r(z, y) = y® +
(7/9)az®.

By the condition of the weighted-degrees, we have y” € J. Then, we
have constructed a standard basis

{y", ¥ + (7/9)azy®, 2° + 6y° + Bazy?, z%y + (1/3)ay®}

of the ideal J with respect to ».

Example 3. Let us consider a plane curve defined by z = t> and
y = t16 4 54, The defining equation of this curve is

fx, y) = 2% — ¢ + 5xy3 — 5228y + 254,

This is a semiquasihomogeneous function with a weighted homo-
geneous part fo(z, y) = x'® — ¢° of the weighted-degree 80 with re-
spect to the weight vector w = (5, 16). Then, the dual basis Hy,
of B = {z'y? | 0 < i < 14,0 < j < 3} is given by monomials
([1/a*!] | 1<k <15,1<1<4}.

Since, Hy = Hy, \{[1/z'593], [1/zy4], [1/2%y4]}, in order to con-
struct the dual basis of E(= Ejy), it suffices to find cohomology classes
with terms [1/z'%y3], [1/zy%], [1/2'%y*] respectively. By direct com-
putations, we obtain algebraic local cohomology classes [(1/z'%y3) +
3(1/zy®)] and [(1/z'y*) — (35/8)(1/x'%y)] that belong to H;. It is easy
to verify that [(1/z'5y*) — (35/8)(1/z'"y) + 3(1/zy®)] belongs to H;.
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Then, cohomology classes

7)12[#4-3 ! ],772:[L‘35 ! ],

T15y3 Eg Tliyl gm
_[ 1351 .1 ]
BT TEya T g gity gy

together with Hps constitute the dual basis of E.

In order to construct a standard basis of 7, it suffices to use 7; and
n9. It is easy to see that 35x13y3 + 815 and 3x'%y? — y* constitute a
standard basis of 7 with respect to the total lexicographic ordering.
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