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Estimates of maximal functions by Hausdorff 
contents in a metric space 

Hisako Watanabe 

Abstract. 

Let M be the Hardy-Littlewood maximal operator in a quasi­
metric space X. We give the estimates of M f with weak type and 
strong type with respect to the a-Hausdorff content. To do these, we 
use the dyadic balls introduced by E. Sawyer and R. L. Wheeden. 

§1. Introduction 

In analysis many operators are dominated by constant multiples of 
the Hardy-Littlewood maximal operators. In Rn the maximal function 
M f of f is defined by 

M f(x) =sup l~lllfldx, 

where the supremum is taken over all balls B containing x and IBI stands 
for then-dimensional volume of B. 

In 1988 D. R. Adams considered the estimates of the maximal func­
tions with respect to the a-Hausdorff content H~ and proved the fol­
lowing strong type inequality (cf. [1]). 

Theorem A. Let 0 <a< n. Then there is a constant c such that 

J MfdH~ ~ c J ifidH~. 
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In this theorem, the integral of a nonnegative function g with respect 
to H~ is in the sense of Choquet and is defined by 

J gdH~ := 100 H~({x ERn: g(x) > t})dt. 

In 1998 J. Orobitg and J. Verdera generalized Theorem A as follows (cf. 
[5]). 

Theorem B. Let 0 < a < n. Then, for some constant c depending 
only on a and n, 

(i) J(MJ)PdH~:::; c J lfiPdH~, ajn < p, 

(ii) H~( {x; M f(x) > t}) :::; ct-a/n J lfla/ndH~. 
To prove Theorem A and Theorem B, the authors considered the 

maximal function and the a-Hausdorff content restricted to dyadic cubes. 
More precisely, let us define M f and fi~ in R n. 

For each x 
- 1 r 

M f(x) :=sup TQT }q lfldy, 

where the supremum is taken over all dyadic cubes containing x and for 
a subset E of Rn 

00 

fi~(E) := inf L l(QiY', 
j=l 

where the infimum is taken over all coverings of E by countable families 
of dyadic cubes and l(Qj) stands for the side length of Qj. 

We see that Mf and H~(E) are comparable to Mf and fi~(E), 
respectively. So they used M and fi~ instead of M and H~. 

In [2] D. R. Adams defined a Choquet-Lorentz space Lq,p(Hfx,) of 
the Lorentz type with respect to the Hausdorff capacity Hfx, in R n and 
gave the estimates of the fractional maximal functions of order a in term 
of Lq·P(Hfx,) (cf. Theorem 7 in [2]). 

In this paper we estimate the Hardy-Littlewood maximal functions 
by Hausdorff contents in a quasi-metric space. 

Recall that (X,p) is called a quasi-metric space if the mapping p 
from X x X to [0, oo) has the following three properties; 

(i) p(x, y) = 0 if and only if x = y, 
(ii) p(x, y) = p(y, x) for all x, y E X, 

(iii) There is a constant K 2: 1 such that 

. (1.1) p(x, y) :::; K(p(x, z) + p(z, y)) for all x, y, z EX. 
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In addition, we assume that the diameter of X is finite and set 

diamX = R. 

Let M be the Hardy-Littlewood maximal operator and let H~ be 
the a-Hausdorff content. Furthermore we suppose that there are a non­
negative Borel measure p, on X and a positive number d such that 

(1.2) 

for all positive r :::; R, where 

B(x,r) := {y EX: p(x,y) < r}. 

In a quasi-metric space there is no dyadic cube. Instead of dyadic 
cubes E. Sawyer and R. L. Wheeden (6] constructed a family of balls as 
follows: 

Theorem C. Put .A = K + 2K2. Then, for each integer k, there 
exists a sequence {Bj}J (Bj = B(Xjk, .Ak)) of balls of radius ,xk having 
the following properties: 

(i) Every ball of radius ,xk-1 is contained in at least one of the 
balls Bj, 

(ii) Lj XBj :::; M for all k in Z, 
A k A k 0 0 A k k-1 

(iii) Bi n Bj = 0 for z -:f- J, k E Z, where Bj = B(xjk, .A ). 

They call these balls Bj dyadic balls. Denote by Bd the family of all 
dyadic balls. Using dyadic balls, we give the estimates of the maximal 
operator M in a quasi-metric space X by the integral with respect to 
H~, corresponding to the results of Orobitg-Verdera. 

Theorem 1. Let (X, p) be a quasi-metric space with diam X< oo. 
Suppose that there are a positive number d and a Borel measure p, on X 
satisfying (1.2) for every ball B(x, r) c X. Furthermore, let 0 < a < d. 
Then 

H~({x: Mf(x) > t}):::; cca/d J 1f1a/ddH~ 
for every f and t > 0. 

Theorem 2. Assume that X and p, satisfy the same conditions as 
Theorem 1. Let a/d < p. Then 

j(Mf)PdH~:::; c j lf1PdH~ for every f. 
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We note that, for a nonnegative function g and a subset G of X, 

lagdH~ := 100 H~({x E G: g(x) > t})dt 

and 

fa gdf..l := 100 
f..l( {x E G: g(x) > t} )dt. 

If g E L1 (J.l) and G is J.l-measurable, then the integral with respect to 
the measure J.l coincides with the usual one. 

§2. Dyadic balls in a quasi-metric space 

Throughout this paper let (X, p) be a quasi-metric space. The func­
tion p is called a quasi-metric. We assume that the diameter of X is 
finite and diam X = R. Furthermore we assume that there exists a 
positive Radon measure J.l on X with J.l(X) < oo and satisfying (1.2) for 
some d. We note that, if (1.2) holds for all positive r ::; R, then (1.2) 
holds for all positive r ::; 2(K + 2K2 ) 2 R by changing the constants. So 
we may assume that (1.2) holds for all positive r ::; 2(K + 2K2 ) 2 R. 
Consequently J.l satisfies the doubling condition, i.e., there is a constant 
c > 0 such that 

J.l(B(x, 2r)) ::; CJ.l(B(x, r)) 

for x E X and r ::; 2(K + 2K2 ) 2 R. So X is a space of homogeneous type 
(See [3] on more precise properties on a space of homogeneous type). 

For any quasi-metric p there exists an equivalent quasi-metric p' 
such that all balls with respect top' are open (cf. [4]). Consequently we 
may assume that all balls B(x, r) in X are open. 

Let B = B(x, r) be a ball and b be a positive real number. The 
notation bB stands for the ball of radius br centered at x and r(B) 
stands for the radius of B. We often use the following value A defined 
by 

>, = 2K2 + K, 

where K is the constant in (1.1). 
We begin with the following lemma. 

Lemma 2.1. Let B be a ball and { B1 } be a sequence of disjoint 
balls. Put 

Then #E::; N, where N is a constant independent of B and {B1}. 
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Proof Case 1. We first consider the case where there exists Bi E 
{Bj }j satisfying B n >.. - 1 Bi "1- 0 and r(B) ~ >.. - 1r(Bi)· 

Let w E B and Xi be the center of Bi. Then, for z E B n >.. - 1 Bi, 

p(w, xi) < K(p(w, z) + p(z, xi)) 

< 2K2r(B) + K >.. - 1r(Bi) ~ r(Bi)· 

Hence B C Bi· Noting that {Bj} are disjoint, we conclude that #E = 1. 
Case 2. We next consider the case where r(B) > >.. - 1r(Bj) for all 

j E E. Let x be the center of B. Since Bj C B(x, 2>..Kr(B)), we have 

UjEEBj C B(x, 2>..Kr(B)). 

Note that {Bj} are disjoint and r(B) ~ r(Bj) for all j E E. 
Let #E = n. From (1.2), we deduce 

np,(B(x, 2K>..r(B)) ~ nb2(2K>..r(B))d ~ : 2 (2K>..)d L p,(Bj) 
1 jEE 

b2 d b2 d 
b1 (2K>..) p,(UjEEBj) ~ b1 (2K>..) p,(B(x, 2K>..r(B))). 

Thus n ~ ~(2K>..)d. This leads to the conclusion. 0 

We have the following lemma for dyadic balls. 

Lemma 2.2. Let {Bj} C Bd and Bj = B(xjk, >..k). Then there is 
a constant N1, independent of j and k, such that 

Proof Assume that X E nj=1 >..Bj. Then Bj c B(x, 2K >..k+1 ). 
Similarly B(x, >..k) c B(xjk,K>..k(l + >..)). Hence, by (1.2), 

p,(B(x, 2K>..k+1 )) < c1p,(B(x, >..k)) ~ c1p,(B(xjk, K>..k(l + >..))) 
k 1 'k < C2P,(B(Xjk,).. - )) = c2p,(Bj) 

for j. Noting that { Bj} are disjoint, we have 

n 

!!:_p,(B(x,2K>..k+l)) ~ L~-t(Bj) = p,(U'J=1Bj) ~ p,(B(x,2K>..k+1)), 
C2 j=1 

whence n ~ c2 • Thus we have the conclusion. 0 
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A sequence { Bj} of balls is called maximal by inclusion if each Bj 
includes no B; for i =1- j. 

Lemma 2.3. Let {B1} C Bd. If {A2 B1} is a maximal sequence by 
inclusion, then there is a constant N 1 such that 

Proof. Let { B~ }t be the subfamily of { B1} having radius .>..k. Lemma 
2.2 yields that 

"""'X>.Bk .:::; Nl. ~ Jt 

l 

We next consider two balls B1 = Bj and B; = B1, l < k, in {B1}. If 

.>..Bj n .>..Bi =1- 0, then we pick z E .>..Bj n .>..Bi. Let wE .>..2 Bi. Writing 
Bj = B(xjkl .>..k) and Bi = B(x;z, .>..1), we have 

p(Xjb w) < K(p(Xjk, z) + K(p(z, xil) + p(xil, w))) 
< K.>..k+l + 2K2.>..l+2.:::; .>..k+2, 

whence .>..2 BJ C .>..2 Bj. This contradicts that { .>..2 B1} is maximal. There­

fore we conclude that .>..Bj n .>..Bi = 0. 0 

Using this lemma, we have 

Lemma 2.4. Let {Bj} C Bd such that {A 2 B1} 2s a maximal se­
quence by inclusion. Furthermore let B E Bd· Put 

F = {j: B n B1 =1- 0, r(B).:::; r(B1)}. 

Then #F.:::; N1. 

Proof. If j E F, then B c .>..Bj· Lemma 2.3 yields 

LXAB,.:::; Nl. 
j 

Hence #F.:::; N1. 
0 

Let { B1} be a (finite or infinite) sequence of subsets of X. Using it, 
we can construct a maximal sequence by inclusion. Indeed, we consider 
{B1, B2} and, if B1 C B 2 or B 2 c B1, then we remove the less one from 
{ B1, B2} and denote by Bi the big one. Otherwise, put 

B~ = B 1 and B~ = B 2 • 
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We next assume that { Bi, · · · , B;,} has been constructed by using { B1 , 

· · · , Bn}. Then we consider { Bi, · · · , B;,, Bn+l}, remove all sets which 
are included by the other sets and make a new family { Bi, · · · , B[} of 
all balls which remain. Thus we inductively construct a subsequence 
{ B 1 , B 2 , · · ·} of { B1}, which is a maximal sequence by inclusion, and 
call it the maximal sequence of { B 1 } . 

We are ready to prove our main lemma. 

Lemma 2.5. Let {B1} C Bd and a> 0. Then there exists a (finite 
or infinite) subsequence { B1k} of { B1} having the following properties: 

(i) 

2:= r(B1k )" :::; 2r(B)" for each B E Bd, 
j,,ESB 

where SB = {jk : B 1, n B -=1- 0, r(BJ,) :::; r(B)}. 
(ii) For a positive number b there is a constant c such that 

H':o (U1bB1) :::; c 2:= r(B1k )", 
k 

where c is independent of { B 1}. 

Proof. We construct a subsequence { B 1k} of { Bj} by induction. 
First, put j 1 = 1. The set { B11 } has the property (i). Next, assume 
that {j1, · · · ,jm} (j1 < · · · < Jm) have been chosen so that (i) holds 
for { Bj1 , • • • , Bj'"}. We set Jm+l the first number j such that Jm < j 
and { Bj1 , • • • , Bjrn, Bj} satisfies (i). We note that, if SB = 0, then the 
left-hand side of the inequality in (i) is regarded as 0. Thus we construct 
j1, · · · ,jn, · · · · 

We next show that { B)k} also satisfies (ii). Let j' be a number 
satisfying Jm < j' < Jm+1· Then there is a ball CJ' E Bd such that 
BJ' n CJ' -=1- 0, r(BJ') :::; r(CJ') and 

2:= r(Bjk)" +r(Bj')" > 2r(CJ')". 
)k EScJ' 

From this it follows that 

(2.1) 2:= r(Bjk)">r(CJ')". 
]kESc.i, 

To prove (ii), we may suppose that L:k r(B)k )" < oo. We denote 
by {Di} the maximal sequence of {>.2C1, }. Since BJ' n c1, -=1- 0 and 
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r(BJ')::::; r(Cj'), we have Bj' C A.Cj'. Hence Bj' C Di for some i. 
Noting that 

we have 

UjbBj C UkbBJk U (UJ'bBj') C UkbBJk U (UibDi), 

H~(UjbBj) ::::; bOIL r(B}• )01 + bOI )..201 L r(A. -2 Di)OI. 
k 

The inequality (2.1) implies 

L r(A. -2 Di)OI < L L r(B}k )01 

i )kESA-2D; 

Fix a natural number k. We see by Lemma 2.4 that the number of 
).. - 2 Di satisfying Bjk n).. - 2 Di -!=- 0 and r(Bj,) ::::; ).. - 2 r(Di) is at most 
N1. Hence 

H~(UJbBj) < b01 L r(Bj,Y + b01 A.201 N1 L r(BJk) 01 

k k 

b01 (1 + N1A.201 ) L r(Bj. )01 • 

k 

We may put c = b01 (1 + N 1 A.201 ). Thus we have the assertion (ii). D 

§3. Maximal functions and Hausdorff contents with respect 
to dyadic balls 

In this section we introduce maximal functions and Hausdorff con­
tents with respect to dyadic balls. We begin with maximal functions. 
For a function f we define 

- 1 r 
Mf(x) =sup J-l(B) JB ifidJ-l, 

where the supremum is taken over all dyadic balls containing x. Here 
we note that, for a nonnegative function g, 

J gdJ-l := 1= J-l({x: g(x) > t})dt. 

Using the properties in Theorem C, we can show the following 
lemma. 
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Lemma 3.1. Let f be a function on X. Then there is a constant c 
independent off such that 

Mf(x)::::; Mf(x)::::; cMf(x) 

for all x EX. 

Fix a satisfying 0 < a < d. Similarly we define, for E C X, 

fl~(E) = infL r(Bj)a, 
j 

where the infimum is taken over all coverings {Bj} of E by dyadic balls 
Bj. Similarly we can show the following lemma. 

Lemma 3.2. Let 0 < a < d. Then there is a positive constant c 
such that 

cH~(E)::::; H~(E) ::::; fl~(E). 

§4. Proofs of Theorem 1 and Theorem 2 

In this section we will prove Theorem 1 and Theorem 2. To do these, 
we estimate the integral of a nonnegative function f with respect to the 
measure 11 by the integral of f with respect to H~. 

Lemma 4.1. Let 0 <a::::; d and f be a nonnegative function on X. 
Then J fdfl ::::; c (/ r/ddH~) d/a, 

where c is a positive constant independent off. 

Proof. Noting that 11 satisfies (1.2), we can prove this lemma by 
the same method as in the proof of Lemma 3 in [5]. 0 

We note that H~({x: f(x) > t}) is abbreviated to H~({f > t}) in 
the proofs of Theorem 1 and Theorem 2. 

Proof of Theorem 1. We may assume that f 2': 0. Put 

Et = {X : M f (X) > t} 

for t > 0. For each x E Et there is a ball Bx E Bd such that 

(4.1) (~ ) r fd11 > t. 
f1 X J Bx 
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By Theorem (1.2) on p.69 in [3] we can choose a countable family 
{ABj} C {ABx}xEE, such that {ABj} (Bj = B(xj,rj)) are disjoint and 
EtC UjB(xj, h>..r1) for some h 2:: 1. Then, by Lemma 4.1 and (4.1), 

Applying Lemma 2.5 to the sequence { Bj }, we choose a subsequence 
{ B1.} satisfying (i) and (ii) in Lemma 2.5 for b = >..h. Writing Bj. 
B(xk,rk), we have, by (4.2), 

H~(Et):::; H~(UjB(xj, >..hrj)):::; Cz L r'k :::; C3 L ra/d 1. r/ddH~. 
k k ~. 

We claim that 

(4.3) 

Indeed, if J j"'lddH~ = +oo, then it is clear that (4.3) holds. Assume 
that J j"'lddH~ < +oo. Since 

we have 
H~({fa/d > 7}) < oo for a.e. T 

and hence, by Lemma 3.2, 

fl~ ( {fa/d > T}) < 00 for a. e. T. 

Fix T satisfying fl~ ( ua/d > T}) < 00. For E > 0 we take balls Qi E Bd 
such that 

and 

( 4.4) 

Since {>..Bj.} are disjoint, we see, by Lemma 2.1, that for each Qi the 
number of B1• satisfying Qi n B1• =/=- 0 and r( Qi) :::; >..r(B1.) is at most 
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N. Hence 

3 L r(Qi)a = 2 L r(Qi)a + L r(Qi)a 
i i 

> I; ( I; r(B;,)" + >r(Q;)") 
• Q,nBh#0 

r(Q;)>r(Bh) 

> I; ( I; r(B;, )"+ ~ I: r(Q;)•) 
k Q,nB;;k#0 Q,nB:ik#0 

r(Qi)>r(B:ik) r(Q;)~r(Bh) 

> ~ Lif~(B1k n (UiQi)) 
k 

> ~ .L:ii~(B1k n{fa/d > r}). 
k 

Hence, by (4.4), 

if~({fa/d > r}) + E ~ 3~ Lif~(Bjk n {fa/d > r}). 
k 

Thus, by Lemma 3.2, we have the claim (4.3). Therefore 

This is the desired inequality. 

We next prove Theorem 2. 

Proof of Theorem 2. Define 

fi(x) = {
0
f(x) if(x)l > !, 

otherwise. 

Then 

if(x)i:::; lfi(x)l + t/2 and Mf(x):::; Mfi(x) + t/2. 

387 

0 
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Hence, by Theorem 1, 

H~({x: Mf(x) > t}) < H~({x: Mfi(x) > t/2}) 

< clca/d 1 lfla/ddH~. 
lfl>t/2 

Therefore we write 

where 

j(Mf)PdH~ = 100 H~({(MJ)P > t})dt 

=p 100 H~({Mf > t})tP-1dt 

:::; CIP {oo tp-lca/ddt 1 lfla/ddH~ 
Jo lfl>t/2 

:s;h+h 

h = c1p 100 tp-lca/ddt 100 H~( {lfl > sd/a} )X{sd/"~t/2}ds, 

h = c1p 100 
tP-lca/ddt 100 H~ ({If I > t/2} )X{sdl"<t/2}ds. 

Using Fubini's theorem, we have 

00 2sd/a 
h < CIP 1 H~({IJI > sd/a})ds 1 tp-l-ajddt 

C21oo(sdfa)p-ajdH~({IJI > sdja})ds. 

Putting t' = sdpja, we have 

h:::; c31= H~({IJIP > t'})dt' = c3 J lfiPdH~. 
We next estimate h. Note 

= (t/2)"'/d 
h < c1p1 tp-l-a/dH~({Ifl>t/2})dt1 ds 

CIP 1= tp-l-a/d(t/2)afdH~({IJI > t/2})dt. 

Put t' = t/2. Then 

/2 :::; c41= (t')P-l H~( {III > t'} )dt' = cs j lfiPdH~. 
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Thus we have the conclusion. 0 
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