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A-topological triviality of map germs and Newton 
filtrations 
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Abstract. 

We apply the method of constructing controlled vector fields to 
give sufficient conditions for the A-topological triviality of deforma­
tions of map germs ft : (ICn, 0) --+ (ICP, 0) of type ft(x) = f(x) +th(x), 
with n ~ p or n :::; 2p. These conditions are given in terms of an ap­
propriate choice of Newton filtrations for On and Op and are for the 
A-tangent space of the germ f. 

For the case n :;::: p, we follow the technique used by M. A. S. 
Ruas in her Ph.D. Thesis [7] and construct control functions in the 
target and in the source to obtain, via a partition of the unit, a unique 
control function. We use the control function of the target to give an 
estimate for the case p ~ 2n. Moreover, in this case we show that 
if the coordinates of the map germ satisfy a Newton non-degeneracy 
condition, deformations by terms of higher filtration are topologically 
trivial. 

As an application we obtain for both cases, n ~ p and p ~ 2n, 
the results of Damon in [3] for deformations of weighted homogeneous 
map germs. 

§1. Introduction 

The determinacy of topological triviality for families of map-germs is a 
fundamental subject in singularity theory. As we see in the articles of 
Damon, [4] and [3] for example, the method of constructing controlled 
vector fields is a very powerful tool to compute the topological triviality. 
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M. A. S. Ruas in her PhD. Thesis gives an explicit order such that the 
A-topological structure of a polynomial map-germ f : (en, 0) --> (eP, 0), 
with n 2: p, is preserved after higher order perturbations. 

In this paper we apply this method to give sufficient conditions for 
the A-topological triviality of deformations of map germs ft : (en, 0) --> 

(eP, 0) of type ft(x) = f(x) + th(x), with n 2: porn :::; 2p. These con­
ditions are given in terms of an appropriate choice of Newton filtrations 
for On and Op and are for the A-tangent space of the germ f. 

First we generalize the results of M. A. S. Ruas [7], by considering 
different Newton filtrations Ak for On and Bk for Op, these results are 
given for the case n 2: p. We construct control functions in the target 
and in the source to obtain, via a partition of the unit, a unique control 
function. We remark that in [7] these control functions are homogeneous, 
since they are associated to the usual filtration, given by the degree of 
monomials. 

In the case p. 2: 2n we give an estimate in terms of the control 
function of the target. Moreover, if p 2: 2n, we apply the results of 
Gaffney in [6] to show that deformations by higher Newton filtration are 
A-topologically trivial if the map germs satisfy a Newton non-degeneracy 
condition. 

In both cases we also show that the results of Damon for the topo­
logical triviality of unfoldings of weighted homogenous map germs can 
be obtained from our results. 

§2. Newton filtration and control functions 

To construct controlled vector fields that guarantee the topological 
triviality we define a convenient control function in terms of a fixed 
Newton polyhedron. An analytic function p : en -. 1R is a control if 
there exist constants C and a such that p(x) 2: Clxla. 

First we construct a control function in the target, denoted by Pm 
and a function in the source, denoted by Pf· When n 2: p, the control 
function p is defined from these, via a partition of the unity. For p :::=: 2n, 
the control function is Pm. 

Fix coordinate systems x in (en, 0), y in (eP, 0) and denote by On, 
Op, the sets of holomorphic germs from (en, 0) to (e, 0) and from (eP, 0) 
to (e, 0). We identify these sets with the rings of convergent power series 
<C[[x]] and <C[[y]] respectively. 

To fix the notation we follow [1] and say that a subset r + ~ !Rf­
is a Newton polyhedron if there exist some k1, ... , kr E Qf_ such that 
r + is the convex hull in !Rf- of the set { ki + v : v E !Rf-, i = 1, ... , r} 
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and r + intersects all the coordinate axis. Denote by r the union of the 
compact faces of r + and consider the Newton filtration of On = Ao -;;::> 

A1 "2 A2 "2 ... , by the ideals Aq = {g EOn : supp g c:;; ¢r1(q + N)}, for 
all q EN, here ¢r is the Newton function of r. 

We fix a Newton polyhedron r + in JR.+. with its associate Newton 
filtration, then for any germ of function g = Lk akxk, denote d(g) = 

max{q: g E Aq} and by in(g), the polynomial in(g) = 'L:akxk such that 
¢r(k) = d(g). 

To define a Newton filtration in Op we consider ~ fixed map germ 
g: (Cn,o) ___, (0,0), g = (g1, ... ,gp), call Di = d(gi) and say that 
D1 :::; D2 :::; ... :::; Dp. In this case we call d(g) = (D1, D2, ... , Dp)· 

Denote by M1 the determinant of the p x p minor of the matrix of the 
partial derivatives of g indexed by I= {i1, ... , ip} C {1, ... n}, with i1 < 
... < iP' We fix an order for these determinants calling M1, M2, ... , Mr 
in such a way that d(M1):::; d(M1+1) and call L1 = d(M1). 

Now, call D = m.c.m.{D1, D2, ... , Dp, L1, ... , Lq} and define the 
weighted homogeneous control function in the target, Pm : CP ---> JR. by 

The Newton filtration of Op = Bo -;;::> B1 -;;::> B2 -;;::> ••• is associate to 
the control function pm(y). Therefore any ideal Bk has a Newton poly­
hedron which only one compact face with normal vector w = (w1, ... , wp), 

where Wi =!!; and R = m.c.m.{r1, ... , rp}, for all i = 1, ... ,p. 

For any monomial y!3 = yf'yg2 ••• y~n E Op, denote dw(y!3) = 
wlf31 + ... + Wp(3p, and for any g E Op, dw (g) = min. dw (y!3) for all 
y!3 with nonzero coefficient in the Taylor series of g, then Bk = {g E 

Op;dw(g) 2: k}. 

Here we have dw(Pm) = 2R and as Pm(g(x)) = l91l 2r 1 + l92l 2r 2 + 
.. · + l9pl 2rp' d(Pm 0 g) = d (l9ll 2r 1 + l92l 2r 2 + ... + l9pl 2rp) = 2D. 

Now define the control function in the source 

r . . 

( ) _ "" 2v{ 2v;, Pv X1, ... ,Xn - ~Xl ... Xn , 

j=l 

with v1 = ( v{, ... , v~), j = 1, ... , r being the vertices of the Newton 
polyhedron r +(AD), therefore d(Pv) = 2D. 
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We also define the function Pf(g) : en -t ~. Pf(g)(x) = L IMj 1
2"'1 ) 

where O:j = f for all j = 1, ... , q. We remember that Pf(g) is not a 
J 

control function, however, under some conditions, it is important in the 
construction of the controlled vector fields. We remark that all these 
constructions are done to obtain d(Pf(g)) = d(Pm o g) = d(Pv) = 2D. 

Example: Let g(x, y) = (xy, x4 +y5 +xy2 ) and fix the Newton polyhe­
dron r +(g2). Call .6.1 the face with vertices {(0, 5), (1, 2)} and .6.2 the 
face with vertices { ( 4, 0), (1, 2)}, C(.6.i) denotes the cone with vertex at 
0 passing through .6.i. 

VI =(3,1) 

2 

4 

Fig. 1. The Newton polyhedron r +(92). 

The Newton filtration 'Pr +(g2 ) is 

{ 
24a + 8b, 

r.p(xayb) = 
lOa+ 15b, 

if (a, b) E C(.6.1) 

if (a, b) E C(.6.2). 

Then d(gl) = 25 and d(g2) = 40, therefore D = 200 = m.c.m{25, 40} 
and the control function in the target is Pm(Y) = IY1I 16 + IY2I 10 , and 
dw(Pm(Y)) = 80 = R. 

Now let M ( x, y) = 5y5 - 4x4 + xy2 , be the determinant of the 
Jacobian matrix of g, then d(M) = 40 and Pf(g) = (5y5 - 4x4 + xy2 ) 10 , 

with d(Pf(g)) = 2D = 400. 

Since d(g}6) = d(g~0 ) = d(pf(g)) = 2D = 400, the control function 
in the source Pv associate to r +(g~0 ) is Pv(x, y) = x40 + y32 + x 2Dy4° 
and d(Pv) = 2D = 400. 
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§3. A-topological triviality 

Denote by 

F: (en x e, (0, 0)) ____. (eP x e, (0, 0)), F(x, ,\) = (f(x, >.), ,\) 

a one parameter unfolding of a finitely determined map germ 

and call the family of map germs f>..(x) = f(x, >.) a deformation of the 
germ f. 

An unfolding F(x, >.) off is A-topologically trivial if, for small val­
ues of>., there are germs of homeomorphisms H : (en x e, (0, 0)) ____. 
(en x e, (0, 0)), of type H(x, >.) = (h(x, >.), >.), with h(O, >.) = 0 and 
K: (cP x e, (0, 0)) ____. (eP x e, (0, 0)) of type K(x, >.) = (k(x, >.),>.)with 
k(O, >.) = 0 such that K oF o H- 1 = (fo(x), >.). 

In this case we say that the deformation f>..(x) is A-topologically 
trivial, since for small values of>., the families of homeomorphisms h>. : 
(en, 0) ____.(en, 0), with h>.(x) = h(x, >.) and k>. : (eP, 0) ____. (eP, 0) with 
k>.(x) = k(x, >.)give 

k>. of>.. o h). 1 = fo. 

Let g: (en,o) ____. (eP,O) be a finitely determined map germ satisfy-
ing 

From the above constructions we have the following: 

Proposition 3.1. 
(1) If n ~ p, suppose that in a neighborhood V of 0 in en, there 

exist constants a e f3 such that pr(g(x)) ~ f3Pv(x), for all x E 

V n {x; Pm(g(x)) < apv(x)}. 

(2) lfp~2n, suppose that Pm(g(x)) ~CPv(x), 'Vx in a neighborhood 
V ofO. 

Then deformations g>. = g+>.h of g, with d(hi) ~ Di, 'Vi= 1, ... , p, 
are A-topologically trivial for small values of>.. 

In the next Lemma, essential in the proof of this Proposition, we 
show that it is possible to extend the filtration condition of the equation 
(1) to the tangent space of an unfolding of the germ g. 
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We call m1 the maximal ideal in 01 and A2D+D1 the ideal in On+l 
generated by the monomial.:\ and the ideal A2D+D1 • 

Lemma 3.2. Let G(x, .:\) = (g>.(x), .:\), with 9>-(x) = (gn(x), ... 9n.A(x)) 
be an unfolding of go ( x) = g( x), such that 9i>.. - 9io E m1.AD; ea for all 
i = 1, ... , n and l.:\1 < E for small values of E. If the equation (1) holds, 
then 

Proof: Since 

A2D+Dl ea A2D+Dl eg + .:\A2D+Dl ea 

c tg(A2Den) + wg(B2R+l·ep) + AA2D+Dl ea, 

and 

tg(A2Den) + wg(B2R+l·ev) 

~ tG(A2Den+l) + wG(B2R+l·ev+d + .:\A2D+D1 8a 

it follows that 

Let E be the finitely generated On+l-modulo defined as 

E _ tG(A2Den+d + wG(B2R+l·ev+l) + A2D+D1 8a 

- tG(A2Den+d + wG(B2R+l·ev+d · 

We remark that Eisa G*(Ov+d-modulo and (.:\).E = E since 

(.:\).E 

+ (.A)[tG(A2DIIn+i)+wG(B2R+l·llp+l)+A2D+D1 11c] 
tG(A2DIIn+l)+wG(B2R+l·llp+l) 

= tG(A2DIIn+d+wG(B2R+l·llp+l)+A2D+D111c = E 
tG(A2DIIn+i)+wG(B2R+l·llp+i) . 

Therefore if we show that E is finitely generated as G* ( Op+l )­
modulo we apply the Nakayama's Lemma to obtain E = 0, or 
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We show now that E is finitely generated as G*(Op+I)- module. 

Let E' be the finitely generated On+l-module 

E' = tG(A2DOn+I) + A2D+Dt Oa. 
tG(A2vOn+I) 

Then we need to show that E' is finitely generated as a G*(Op+I)­
module. 

From the Malgrange's Preparation Theorem, E' is a finitely gener­
ated G*(Op+1)- module if, and only if dime a•cr!!~t)E' < +oo. 
Write 

E' 
tG(A2DIJn+t)+A2D+DtiJG 

tG(A2D9n+t) 
G• (I'Tip+t)[tG(A2DIJn+t)+A2D+DtiJa]+tG(A2DIJn+t) 

tG(A2DIJn+t) 

tG(A2vOn+l) + A2D+D1 Oa · 

denoteS= A2D+D1 0a and T = tG(A2DOn+I) + G*(mp+l)A2D+D1 0a. 

. . . T+S S 
Therefore by the lSOmorphtsm theorem we obtam --y;- ~ T n s· 

From 

tG(A2DOn+I) + wG(B2R+l·Op+I) + .AA2D+D1 Oa 
~ tG(A2vOn+l) + G*('Tnp+I)Oa 

and by the equation (2) we conclude that 

tG(A2vOn+1) + G*('Tnp+l)Oa 2 A2D+D1 0a. 

Multiplying by A2D+Dt we obtain 

tG(A4D+D1 On+ I)+ G*(mp+l)A2D+D1 Oa 2 A4D+2D1 Oa. 

On the other hand, 

H d. s < d" A2D+DtiJG ence, tmc Tns _ tmc A A " 2D+Dt 2D+Dt UQ 
< +oo. 
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Proof of the Proposition 3.1: Let G(x, >.) = (g.x(x), >.) be an un­
folding of g, with g.x(x) = g(x) + >..h(x) and h = (h~, ... , hp) with each 
hiE An;· 

From the general hypotheses, since An; C An1 for all i = 1, ... , n 
we obtain 

From the Lemma 3.2. we conclude that there exist analytic vector 
fields ~ E A2nOn+l and 'T/ E B2R+10p+l such that the above inclusion 
holds for deformations, i.e. 

(3) h.pm(Y.>.) = tG(~) + 'T/ o G. 

From the equation (3) we construct the vector field controlled by 
Pm· Define w in (CP x C, 0 x 0) as: 

{ 
ry(y, >.) if y =I= 0 

w(y, >.) = Pm(Y) ' 

0, if y = 0. 

Since dw('T/) ~ 2R + 1 > dw(Pm) = 2R we apply Lemmas (1) e (2) 
of [9] to conclude that the vector field w is integrable. 

Proof of the case n ~ p. In order to define the vector field controlled 
by the function Pf• for each I = { i1, i2, ... , ip} C {1, 2, ... , n} write 

i; Mh. = tG('·'(I), with 'YI = L'Yia~; and each 'Yi is defined as 

(4) 

where Nji"' is the (p- 1) x (p- 1) cofactor of 889i . 
x,"' 
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E M"'I-1-u--"'I 
therefore h = tG ('l/J), with 1/J= "'I I"'( ) I"' 

Pf 91\ 

Denote 'YR.= L'YIMJ';.I- 1Mh 0 I, then d('YR.) = d(Pf(gA)) +r, with 

· { M k} r = ~~n l(vk) .vi . 

The integrability of the vector field 'l/J = 'Y(R ) , follows from the 
Pf 9A 

hypotheses of the following: 

Lemma 3.3. There exist positive constants a 1, f3 and a neighborhood 
v of the origin in en such that 

Pf(9>.(x)) 2: alPv(x), V X E V n {pm(gA(x)) < f3pv(x)}. 

Proof: Since gA = g+>..h, and d(hi) 2: d(gi) for all i = l, ... ,p we 
obtain 

Pf(gA) 2: Pf(g)- >..O(x, >..),with d(O) 2: d(pf(g)). 

By hypotheses Pf(g) 2: apv(x) for x E V n {x; Pm(g(x)) < f3Pv(x)} 
hence there exists a constant c > 0 such that >..O(x, >..) :::; cpv(x). Since 
Pm(gA(x)) < Pm(g(x)), for each x E V n {x; Pm(gA(x)) < Pm(g(x)) < 
apv(x)}, we obtain · 

Pf(gA(x)) > Pf(g(x))- >..O(x, >..) 

> (a- c)pv(x) 

alPv(x). 

To finish the proof of the Proposition 3.1., consider the following 
partition of the unity. 

Let H = (V xI)- (0 xI), with I= ( -t:, t:) and the following sets 

Fl = ({(x,>..);gA(x) = 0}- (0 X <C)) n H, F2 = {(x,>..);pm(gA(x)) 2: 
apv(x)} n H, 

E1 = {(x, >..); Pm(gA(x)) < alPv(x)} n H and E2 = {(x, >..); Pm(gA(x)) < 
a2Pv(x)}nH, 

with a1 < a < a2. 

We remark that F1 and F2 are closed and disjoint from H. 
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Define ((x) 
{E2, (EI)c}. 

(1(x) + (2(x), a partition of the unity related to 

and 

{ 
1, 

(I(x, .A)= 
0, 

{ 
1, 

(2(x, .A)= 
0, 

if (x, .A) E F1 

if (x, .A) E F2 

if (x, .A) E E1. 

{ 
P~~;~~~)), if (x, .A) E F1 c 

Call v2(x, A) = 

0, if (x, .A) E F1, 

where ~(x, .A) is given in equation (3), and define· 

{ 
Pfd:-(x)), if (x, A) E F2 c 

v1(x, .A)= 
0, if (x, .A) E F2. 

Since all functions defined above can be extended in such a way that 
they are zero at 0 x A, let v be the vector field in (en x e, 0 x 0) defined 
as 

{ 
(I (x, .A)v1 (x, A) + (2(x, .A)v2 (x, .A), if x =1- 0 

v(x,.A) = 
0, if X= 0. 

Then the vector field vis continuous, integrable and h=tG(v(x, .A))+ 
w(G(x, .A)). 

From the integral curve solutions of v e w we construct the germs 
of homeomorphisms 

H: (en X e, 0 X 0) --+ (en X e, 0 X 0), H(x, A) = (h(x, A), A), h(x, 0) = x, 

and 

K: (eP X e, 0 X 0) --+ (eP X e, 0 X 0), K(y, A) = (k(y, A), A), k(y, 0) = y 

to obtain K o Go H~1 = (g, ide). 

Proof of the case p ~ 2n: From the equation (3) we have 

h = tG ( ~ ) + 'Tl 0 G . 
Pm(g>..) Pm(g>.) 
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By the general hypotheses~ E A2D and 'f/ E A2R+l, from (2) we see 
that 

Pm(9>.)(x) ~ c.pv(x), therefore the vector field ~ ) is integrable, 
Pm 9>. 

and also the vector field _!}_, then the homeomorphisms H and K are 
Pm 

obtained as above. 

§4. The non-degenerate case when p ~ 2n 

In this section we are interested in the topological triviality of fam­
ilies 9>. : (Cn, 0) ~ (CP, 0) of type g>. = g + >..h, with p ~ 2n and 
g = (91. 92, ... , gp) being an A-finitely determined map germ. 

We show the A-topological triviality of the family g>. in terms of 
the filtration of the map germ h, if the ideal I generated by the system 
{91, g2, ... , gp} satisfies some non-degeneracy conditions with respect to 
its Newton polyhedron. 

We recover the basic definitions needed for these non-degeneracy 
conditions. 

Let g = L:k akxk in On, denote supp g the set of points k E 7LP with 
ak =/:- 0. If I is an ideal in On, define I = UgEJSUpp g. 

Fix an ideal I, consider its Newton polyhedron r +(I), the convex 
hull in JR+. of {k + v : v E JR+., k E supp (I)} and its induced Newton 
filtration. 

For each compact face A of f(I), call C(A) the cone with vertex 
at the origin and passing through A and AA denotes the sub-ring with 
unity of On, AA = {g EOn : supp g ~ C(A)}. The Newton filtration of 
On induces a filtration on AA in a natural way. 

For any germ g E On, denote 9A = L: akxk with k E supp g n A, 
and inA (g), the polynomial 

Definition 4.1. The ideal I is Newton non-degenerate if there exists 
a system of generators {/!, ... ,Is} of I such that for each compact face 
A ~ r' the ideal generated by the system {/lAl' ... '!sAl} has finite 
co length in AA1 , for all sub faces A1 of A. 
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Definition 4.2. A system of generators {h, ... , fs} of an ideal I is 
non-degenerate on r +(I) if, for each compact face ll s;;; r, the ideal of 
A~ generated by in~(h), ... , in~(fs) has finite colength in A~. 

Now we consider the ideal I = (g1 , g2 , ... , gp), for each generator gi 
of I, denote d(gi) = Di and consider D 1 :::; D2 :::; ... :::; Dp· 

In the case that the ideal I is non-degenerate on some Newton poly­
hedron r + we have the following: 

Proposition 4.3. Suppose that I is non-degenerate on some Newton 
polyhedron r +. Then, deformations of g of type g>-. = g + A.h, with 
d(hi) ~ Dp, for all i = 1, ... ,pare A-topologically trivial. 

When the ideal I is Newton non-degenerate we obtain the following: 

Corollary 4.4. Suppose that I is Newton non-degenerate. Then, 
deformations of g of type g>-. = g + >.h, with d(hi) ~ Di, for all i = 
1, ... , p are A-topologically trivial. 

Since p ~ 2n any map germ g = (g1 , ... , gP) is A-finitely determined 
if, and only if, g is £- finitely determined, where C denotes the £-group 
of Mather. 

Let G(x, >..) = (g>., >..) be the one parameter unfolding of g. Since g 

is £-finitely determined we can choose an integer number s and a vector 
field rJ E mpOp+l, such that 

8g>-. ( 2D/Dl + 2D/Dz + + 2D/Dp)s _ G a>. gl g2 . . . gp - rJ a . 

Consider the control function in the target p : CP --+ JR., defined by 

f}Og 
To prove that the vector field (p(g) )28 is integrable, it is sufficient to 

show that there exists a constant C > 0 such that I~ ( >., Yl, ... , Yp) I :::; 
Cp(y), (see Gaffney in [6] p.482 and Fukui-Paunescu in [5], p.87). 

We can compose the terms of this inequality with G to get an equiv­

alent inequality on en, ~~(>.,x1 , ... ,xn)l:::; Cp(g>-.). 

Proof of the Proposition 4.3: 
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From the proof of the Theorem 3.6 of [1] we see that the ideal I is 
non-degenerate on r + if, and only if, the ideal 

is Newton non-degenerate. In this case, if a germ h satisfies d(h) 2: Dp, 
then r +(hD/Dv) E r +(J), since J is Newton non-degenerate we obtain 
hDfDv E J. Now we can use the valuative criterion for the integral 
closure (see [12] p. 288), to obtain that 

and the result follows. 

Proof of the Corollary 4.4: 
If the ideal I is Newton non-degenerate, we obtain from the Theorem 

3.4 of [10] that any germ h with r +(h) c r +(I) is in the integral closure 
of I. i,From the condition d(hi) 2: d(9i), since r +(9i) c r +(I) we obtain 

r +(hi) c r +(I). 

4.1. An example in C2 ---? C4 

91(x, y) 

92(x, y) 

93(x, y) 

94(x,y) 

o:1x5 + o:2y5 + a1x3y + a2xy3; 

f3lx 7 + f32Y 7 + b1x3 y2 + b2x2y3 ; 

81x11 + 82y11 + C1X5 y 3 + C2X3 y 5 ; 

'Y1Xl2 + 'Y2Yl2 + dx4y4; 

We see in the example 2.1 of [2] that 9 is A-finitely determined for 
generic values of O:i, {Ji, Bi and '"'fi, With ai, bi, Ci and d being all distinct 
prime numbers. 

Here we fix the Newton polyhedron r +(94), with vertices (12, 0), 
(0, 12), ( 4, 4) to obtain that I is non-degenerate on r + (94 ), therefore any 
deformation of type 9>-. = 9 + >..h with d(h1) 2: d(94) for j = 1, 2, 3, 4 is 
topologically trivial. 
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§5. The weighted homogeneous case 

Damon in [3] investigates the topological triviality of unfoldings of 
A-finitely determined map germs which are weighted homogenous. His 
theorem 1. shows that polynomial unfoldings of non negative weights of 
these map germs are topologically trivial. 

From the results shown above we obtain similar results for one pa­
rameter linear unfoldings of any weighted homogenous A-finitely deter­
mined map germ. We remark that in the weighted homogenous case, the 
results of Damon are for any pair of dimensions ( n, p) while the results 
shown here are only for n 2: p and p 2: 2n 

Definition 5.1. Given (w1, ... , Wni d1, ... , dp) with wi, dj E ~+• a map 
germ f : (en, 0) --+ ( (CP, 0) is Weighted homogeneOUS 0 f type 
(wb···,wn;dl,···,dp) ifforall .XEK-{0} 

f(.Xwixb _xw2X2, ... '_xwnxn) = (.Xdl ft(x), _xd2 h(x), ... '_xdp fv(x)). 

For a fixed set of weights w = ( W1, ... , Wn) consider the Newton 
filtration of On = Ao ;:2 A1 ;:2 A2 ;:2 ..• , by the ideals Aq = {g E On : 
dw(g) 2: q}. 

Proposition 5.2. Let g be an A-finitely determined map germ which 
is weighted homogenous of type (w1, ... , Wni d1, ... , dp)· Then defor­
mations of g>. = g + .Xh of g, with dw(hi) 2: di, V i = 1, ... ,p, are 
A-topologically trivial for small values of .X. 

Proof: To show this result we follow the proof of the Proposition 3.2. 

We should prove that the germ g satisfies the equation 1, however 
the main purpose of this equation is to guarantee that 

hpm(g) E tg(A2nOn) + wg(B2R+10p) 

and them from the Lemma 3.2. we obtain that this condition also holds 
for deformations, i. e., 

In the case of weighted homogenous map germs, we see in the item 
ii of the proposition 7.4 of [3] p.319, that it is possible to obtain vector 
fields 'f/ and 'ljJ satisfying the condition 

h.pm(g>.) = tg>.('l/J(x, .X))+ ry(g(x, .X)). 
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and as g and Pm are weighted homogeneous, we may assume that the 
vector field 1/J is in A2vOn+1 and 'f/ is in B2R+10p+l· 

In the case p 2:: 2n we use the fact that each germ Yi is weighted 
homogeneous of type (WI. ... , Wn; dj), then we consider the ideal I gen­
erated by the system {g~r1 , ••• ,g;rp}, where Tj are integers such that 
ridi = D for some D and each grj is weighted homogenous of type 
(WI. ... , Wni 2D). 

Since g is A-finitely determined it is also £-finitely determined and 
the ideal I is Newton non-degenerate. 

Therefore we obtain the inequality pm(g(x)) 2::cpv(x), Vx in a neigh­
borhood V of 0. 

In the case n 2:: p we need to show that there exist a neighborhood 
V of 0 in en, and constants a e f3 such that Pf (g ( x)) 2:: f3 Pv ( x), for all 
x E V n {x; Pm(g(x)) < apv(x)}, but in this case this condition follows 
from the lemma 7.7, p.319 of [3]. 

Therefore, we are ready to follow the final part of the proof of the 
Proposition 3.1. to obtain the result. II 

§6. Examples 

Example 6.1. ([7], p. 102.) Let f : (C3, 0) ---+ (C2 , 0), f(x, y, z) = 
( x2 + y2 + x3 + z3, x2 + y3 + z2). 

We remark that it is not possible to apply the Proposition 5.2 for 
this case since the map germ f is not weighted homogenous. 

The best filtrations to choose for On and Op in this example are the 
usual filtrations given by the degree. 

Here we have tf(m~On) + wf(m;ep) = m~Of, moreover we see that 
tf(m~On) +wf(m;ep) = tf(m~On) + f*(mp)m~- 1 0! = m~Of, hence this 
germ is (k- 1) - 0° - K- determined. From this condition we show 
that this germ satisfies the conditions of the Proposition 3.2., therefore 
deformations by order higher than 2 are A-topologically trivial. 

Example 6.2. Let f: (C2 ,0)---+ (C2 ,0), f(x,y) = (xy,g(x,y)), with 
g(x, y) = x4 + xy2 + y5. . 

This is a special case of a pre-weighted homogeneous map germ 
which is in the K-orbit of the A-finitely determined weighted homoge­
nous map germ k(x, y) = (xy, x4 + y5), therefore it is also A-finitely 
determined. See [11] for more details about the A-finite determinacy of 
pre-weighted homogenous map germs. 
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We fix the Newton polygon r +(9) and are interested in the topolog­
ical triviality of families of type g;>,.(x, y) = (xy, x4 +xy2 + y5 + A.h(x, y)), 
with d(h) 2:: d(g). 

The main difficulty with this type of example is to show that the 
equation 1 holds, or if we follow the proof for the weighted homogenous 
case, we need to show that it is possible to obtain vector fields Tf and '1/J 
satisfying the condition 

h.pm(9:>..) = tg:>..('I/J(x, >..)) + Tf(g(x, >..)). 

in such a way that the vector field '1/J is in A2DOn+l and Tf is in B2R+1 Op+l· 

In fact, in this case we can show that for each germ h it is possible 
to find an specific vector field '1/J, which depends of the cone C(~) that h 
belongs, such that '1/J is not in A2D, however it is in an appropriate level 
of filtration in such a way that we obtain the integrability of the vector 
field v1 (x, >..) given in the proof ofthe Lemma 3.3. 

Therefore we can follow the method of the proof of the Proposition 
3.2. to show that any deformation of this type is topologically trivial for 
small values of>... 

This example is a particular case of the following: 

Proposition 6.3. [8] Let f: (C2 ,0)--+ (C2 ,0), f(x,y) = (xy,g(x,y)), 
with g(x, y) = xa +xrys +yb, be a pre-weighted homogeneous map germ 
in the /C-orbit of an A-finitely determined map germ k(x, y) = (xy, xa + 
yb). Then deformations of type f(x,y) = (xy,xa +xrys +yb+>.h(x,y)) 
with r + (h) c r +(g) are topologically trivial for small values of >... 
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