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An approach to the Cartan geometry
IT : CR manifolds

Masatake Kuranishi

Introduction

One of the prominent features in the post-Oka development of the
several complex variables is the extensive use of the Cauchy-Riemann
partial differential equations. We also note the development of the
CR geometry induced on the boundary. This geometry is introduced
by E. Cartan [3] in low dimensional cases. The general case is devel-
oped by N. Tanaka [9], S.-S. Chern-J. Moser [4], S. Webster [10], and
D. Burns. Jr.-S. Shnider [1]. This geometry will be the vehicle to set the
Cauchy-Riemann equation geometrically.

The CR geometry is a special case of the Cartan geometry, which is
regarded as a deformation of the Klein’s classical geometry. Namely, for
each classical geometry given as a homogenous space G/H we have the
Cartan geometries modeled after G/H. For example, Riemann geometry
is modeled after the euclidean geometry, which is the quotient of the
group of euclidean motions by the orthogonal group. On a space X we
have a Cartan geometry modeled after G/H when we have (1) a principal
H-bundle E formed by frames, i.e. ways to identify up to equivalence
(infinitesimally up to certain order) its neighborhood with open sets in
G/H. (2) A Cartan connection on E valued in the Lie algebra of G.

CR geometry may be regarded as the case of Cartan geometry when
the homogenous space is the unit ball in complex euclidean space acted
by the group of holomorphic automorphisms. We constructed CR geom-
etry in [6] from the above view point. However, we did not construct the
frame bundle directly. We first construct the bundle of the frames of the
first (infinitesimal) order and then we prolong it to the frame bundle.
In this paper, we construct CR geometry by defining frames directly.
We also write down the normal CR Cartan connections and discuss its
global aspect.
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§1. The Homogenous CR manifolds

We fix a non-degenerate hermitian n x n matrix
(1) (hap)) a,B8=1,.,n.

We consider, as our model, the CR-structure on the hypersurface M in
C"tl = {(2},...,2",w)}, given by

1 —
(2) Sw = §(z,z), (2,2) = hopz®2P.

A) We embed C"*! in the complex projective space CP™*! sending
(21,..., 2™ w) to the point with the homogenous coordinate [1, 2%,..., 2" w].
The subgroup G of the projective group which preserves the closure M
of M acts transitively on the closure. Thus M is the homogenous space
on which we model our CR geometry.

B) We find that G decomposes to the product of the translation
group and the isotropy group. Namely,

(3) G=L H,
(4)
1 0 0 ;
L={lzz)=]2 I 0 :z=(zl,...,z")tr,w=x+—(z,z)}
w 2 1 2

where (2*)q = Qagz_ﬁ.
‘H = H/center, where H is the group of (n + 2) X (n + 2) matrixes:

a v* b
(5) h=h(a,u,B8,s)=10 uw (B |, where
0 0 1/a

a is a non-zero complex number, u a complex n X n-matrix, 5 is a column
complex n-vector 8 , and s is a real number satisfying:

(6) w'u =1, detu=1, v=iau"g, Ezs—%w,ﬂ),
a

Qe

(u*)g = _}f‘:’@ﬂaﬁ, and I is the identity n x n-matrix. The center is the
finite group

() {r(e™,e™1,0,0) : m' = nT227T, m=0,1,...,n+1}.
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C) The Lie algebra g of G has the grading:

(8)

(9.5)

(9.6)

(9.7)

(10)

g =82 +8(-1) + 8o + 81 t+8p), where

g-2 = {{t}2 = (d—(l(((;;—sgb)))szo : & € R},

LUC) N,

g-1) ={{z}n = ( Is

go) = Rm+ Ry + {su(n)}, where for u € su(n)

.o dh(1,€*,0,0) _dh(e*,1,0,0)
(i} =T e, 7w = (R0,

dh(e's,e=%%1,0,0)
S

=0,

=

)s=07

: dh(1,1, 56,0 s
g0y = { (B = (PE2BO) o permy,

g — (i (P00

u € su(n) if and only if h,<ug + h,sug = 0.

h = g(o) + g(1) + g(2) is the Lie algebra of H.

For g € g we set

(11)

167

=192} 2 +{9-ut=1) + gxm + gup + {gsu} + {9} ) + {9121} 2)-

D) In terms of the decomposition (3) the action of g € G on
(z/,w’) € M is given by

(12)

Tz (7 0') = (2" + z,w' + w+i(z,2)), where(,z) = _hag(z’)az—ﬁ.

(13)
Th(Z',w")

= (5w’ +wp),

11
Alal?

w'), where A\ =1—i(uz’,B8) + =
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E) The 8,-operators of the CR structure on M is generated by
0 .. 0

o _ s o _ B
(14) pPe = == 128 3’ 2y = hga2".
We have

— o 0 0 0
15 e PBl=ihs—, ——— = — 4 —.
(15) (P2 POl =ihsazo—s 59 = 5w T 55

F) The Maurer-Cartan form w¢ has the expression:
(16) wa = Ad(h™)({0m} (-2 + {dz}-) +wa,
where wy = h~1dh is the Maurer-Cartan form of H and

i

(17) Opm =dz + %(z,dz) 2(dz,z).

It then follows by calculation that using the terminology in (11)

(18) (we)[-2) = |al20p4, (we)[-1 = au*(dz — aB0r).
Note that for matrix valued 1-forms a and

(19) [, Bl=aAB+BAca.

We then find that the structure equation : dwg + [wa,wg]/2 =0 is
rewritten in terms of the grading (8) as

(20.1)  d(we)[-2 — {(we) (-1}, (Wa)[-1) — 2(wG)x A (WG)[—2) = 0.

+2

d(we) -1 +H{(Wa)su — (W6)n + —i(we) )T} A (wa) 1]

+ (wa)y A (W) (-2 = 0,

(20.2)

(20.3) d(wg)r — I((we)[-11; (wa)p)) + (W) A (we)[-2) =0,
(20.4) d(we)u + R{(we)-1); (wa)y) =0,

0s) d(wa)sut(Wa)su A (Wa)su + i{we)p) A (Wa)[-y
20.5
~ i(we)i-n A (wa)fy + 2IR(w6) 1 (wa)) =0,
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(20.6)

d(wa) )+ (@6 )ou+ (W) — 2

i(wa) ) I Ay +Hwe) -yMNwe) ) = 0,

(20.7) d(wa)z) + i{(we) ) (wa)n)) + 2(we)x A (We)ig = 0.

G) Note by calculation that for g = I(zg, wg)h

== 1 0 1
TV (0) ==y o) — 2 Q3o
o PT5(0) ==uj, VL. (0) = =%,
Ly L N - YR S
P Tg (0) ah'yg Ug 205 80M Tg (0) |a|2 + a(ﬁ? ZO)'
0 o . 01 o . ol o
(22) 5w PYTS(0) = —osuf+ zﬂaﬂuvaﬁ BY.

H) We find by calculation that, setting

(23) Ad(r"H({}wy) = A(h, §,1), we have

A(h,&,-2)_q = |a®%, A(h,%,—2)-1) = —|a[*Tu*B,

A(h, &,—2), +iA(h, &, —2), = —abi,
(24.1) ) o . i 2 ]
A(h, &, =2)(su) = tlal*T(u*B) ® (B™u) + %—A(h,z,u)l
A(hviv —2)[1] = —ab"tU’*/B’ A(h,.’l?, —2)[2] = —|b|2i‘a

(24.2)
A(h, 2, ~1)_gy =0, A(h,%,(~1))-1) = au*2,

A(h, 2, 1) + 1A(h, 2, 1), = 1a(2, B),
A(ha Z'v _1)[su] = - za(u*z) ® (ﬂ*u) - Za(“‘*ﬁ) ® (Z*U) + %A(hﬂ Z,M)I,
A(h, 2, —1)y = bu*z —ia(B, u*B, A(h, 3,—1)pp = 2Rib(z, B),

(24.3) Ad(h_l)ﬂ' =7+ {u*ﬁ}(l) + {2%2}(2),

(24.4) Adh Y =p— {2 : zm*ﬂ}u) +{& : 2 (8,8)}2),
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(24.5) Ad(h'l){o} = {u*ou} +{u*oB}n) +{i(cB,8)}(2) (o € su(n)),
(246)  Ad) o) = (u'rdo) + 2R (1 A)}ey (v€ O,

(24.7) Ad(h ) {s}a) = {t—j—,g}@).

§2. CR coframes of infinitesimal order 1

A) Let M be a CR manifold with non-degenerate Levi-form, given
by a subbundle T)'M of 9, differential operators. We may identify M
with a hypersurface in C"*! passing the origin py defined by an equation:

(1) r=0.

We regard po as the reference point and interested in the local aspect
near pg. Hence we may shrink M if necessary. We consider a chart
{(z},...,2",w)} of C"*1. By a holomorphic linear change of chart we

may assume
or or or
(2) 9w 8m 7 0t oo =0(1).

We set 7 = 8/02%, 7 = 0/9z%, etc. Our model is the case
1
(3) r=rm=c(w-10) - (2,2).
B) The space T,” M of the 0, differential operators of M is generated

by

0 re O
4 a:—=*‘—a-——.
(4) @ 0z% rgow Set

) 2 9 . 0,
Yow  Yow

) Y i—
8/80) is tangential to M. Q% Q,8/00 form a base of the complex
tangent space CTM.

C) For a differential form A on C"*! we also use the same letter
to denote its restriction to M. 9, operators and their bar generate the
subbundle of complex tangent space CT'M defined by

1 R
(6)  6m =0, where Oy = o(dw+dw + 2dzf + L )

w T
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dz®,dz*, 0y form a base of CT*M dual to the above mentioned base of
CT'M. T)'M is given by he equation:
(7) dz* =0, 6y =0.

Since T" M is closed under bracket, we see by the expression of Q%
in (2)

(8.1) [Q*, QP =0.
Because of the Definition of the Levi-form we may set

(8.2) 0%.0%) =ic*P-0_  (mod 0", 07).
00

In view of (15) §1 and (3) we may assume that

(8.3) ¥ (po) = hq-
Because of the above mentioned duality, when [ is a function on M,
- ol
(9) dl = (Qol)dz® + (Q1)dz* + — 0.
00

D) Consider a manifold N and a map f : N — M. Since f is also
a map into C™! we have in terms of the standard chart (2%, ..., 2", w)
the expression f = (f1,..., f*, f°). Note that for any vector field X on
N and a function | on M we have X (lo f) = (dl,df X) o f. Therefore
by (9)
(10.1)
ol

X(lof) = (Xf%) @)o f +(XT7) Q)0 f +(Rxf) g5—of, where

(10.2) RXf:-;—(Xf°+XF+:£iofoa+:_alofx‘fE).

w

Since df X is tangential to M,
(10.3) ruofXfl4rgofXfO4rao fXf*+r50 fXFE =0.
Therefore we also have the expressions:

1 rg —Tw

Rxf =§(

_1(
T2Y rerw

0 f) {(rw o IXF* + (ra o /)X f*}

ToTw

(10.4) o

o f) {(ra o £)XfO + (ra o f)XFo}.
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E) Let f : M — M be a map sending the origin 0 to py. Then by
(6)

(11) [ om = —(df° +dfo + o fdf? + o fdfP).
Apply (9) to the case N = M = M and | = fO as well as | = f@, .
We then find

fOm =Cr Opq +C° of dzjq + Qf dz%sq, where

1, 0f° 8f0 LT f rﬁ of8
t=5( of 57— of
2 900 B0 e ) B0 Te Y B0y

08 = 5(Paf0 4+ Pofo + 2 2o fPRff + 2o [ PRPP),

(12.1)

Coy = 3P+ PTT+ Lo f PopP 4+ Lo POR)

Similarly, we find
frdz” ZC'Y Om + Cgf dz5, + Cgf dz%

(12.2) , _ OfY

o = Bo. , Clp=Pafr, CL,=Pf.

Since r o f = 0, we also have

fO
(13.1) erfae +rgof —

af° fﬂ

fﬁ
80 +rgo f +1‘B f—=0.

00\

(13.2) ryofP*f'+rgof PYfO+rgof P*fP trgof P8 =0.

Set

0 o
(14.1) WZ%--}-:—ZO ggM.
By the Definition of Cy in (12.1) and (13.1) we find that
(14.2) W+W =20, ryofWHrgofW =0.
Hence (rg —rw) o f W = 2(rg o f)C. Therefore

0 8
(15) Op =T o fry 0 f o3 f o f —f->

2rw Tw
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F) We define the CR attaching maps of M as the maps which
preserve infinitesimally the defining equation (7) of our CR structure.
Namely,

(16) Definition. f : M — M is called a CR attaching map of order
m when f is a diffeomorphism near 0 and

(16.1) Co; =0(m), Cz,=0(m), Cf(0)>0.

o

(17) Proposition. Let f : M — M be a CR attaching map of order
m. Then

(17.1) Pfi =0O(m) forj=0,1,..,n; a=1,..,n.

Conversely f : M — M satisfying (17.1) is a CR attaching map of
order m, provided Cy given by (15) is positive at the origin. We also
have

(17.2) rwo f PEfO 4 rg0 f Paff =0O().

Proof. Set for an arbitrary f : M —- M

1_pago T8 o B 2_pajo_ "B o« 7B

(181) Wi=Pf+-Lof PP, Wi=Pf0+ Lof P
w w

We see by (13.2) and (12.1) that
(18.2) rwo fWa+rgof W2=0, WL+W2=CY.
In the case f is a CR attaching map of order m, we have W} =
O(m), W2 = O(m). Therefore (17.2) holds. Since P*fY = O(m) by
(16.1) and W} = O(m), (17.1) also holds. The converse holds, because

(17.1) implies W1 = O(m) and by the 1st formula in (18.2) we have
W2 = O(m). Q.E.D.

(19) Proposition. For any p € M C C™*! there is an attaching map
of order 3.
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Proof. We may assume that p is the origin. In view of the theorem
of Chern and Moser we may assume that M is given by the equation:
r = 0, where

(201)  r= %(w —®) = (2,2) — F(w,2%), 12°= -;—(w + @)

where F = 0 (mod (z, 2)*). Then the map
(20.2) f:M>3(z,w)— (z,w+iF(z,~;—(w+'u")))

is a CR attaching map of order 3, because

(20.3) fP=w (mod (2, 2)%), f*=2* (mod (z, 2)%).
Q.E.D.

G) Let N be a manifold. We denote by J§(M, N) the space of I-jets
at the reference point 0 of maps of M into N.

(21) Definition. J € J{(M, M) is called a CR I-jet when there is a
CR attaching map f of order [ representing J. Denote by J5(M)cr the
space of CR -jets.

Since P*, P*,8/90p form a base of CTM, J}(M,C"*1) has

the standard chart (..,p(o)j,...,p&l)j,...,pg)j,...,pgl)j,...), where j =
0,1,...,n. Namely, for J € J}(M,C"*!) represented by a map f

M — Cntl

pOI(T) =fi(0), pMi(J) =Pasi(0),
afi

pa (1) =Pf(0), p67(]) = 55—(0).

(22)

JY M, M) C JH(M,C™1) is the submanifold defined by

(23.1) p(O) - (p(O)l, m’p(O)n’p(O)O) eM,
(23.2) R(rw(r©)pSP + 7y (p@)pV7) = 0,

_— _
(23.3) 7w ()P + o ()P + ()PP + 1y (0 O)pS" = 0.
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Note that the map
(24)
T € JAMC™Y) = (0O, ... o8 (7). ... R 0 ())p§° ()
+1a (0D (1)pE()), ooy (O ()PP (T) + 15 (0 (1)PP (), -..)
€ M x C*ntl) x R x C™

is of maximal rank. Note also that C3;(0) = 0 is a consequence of
&’ =0 and (23.2). In view of (17), it then follows that

(25) Proposition. J3(M)cg is the subspace of J}(M, M) defined by
the equations:

(25.1) PP =0, c®>o,

where CV) is defined by

26  OW = TEE RO fru(p ) + (0 e
w!'w

(27) Proposition. For any p € M, complex numbers C;-’ (y=1,...,mj = '
0,1...,n), and C > 0 there is unique J € J}(M)cg such that

T.
PO =p 5N =07, A ==L,
(28) iy

27‘1‘—,

P’ () = (p(0) € = Z(p(0)) 75" ().

Tw — Tw w

We thus have a chart (z, ..., C], ..., C) of Jg(M)ck, called standard.
H) Because of the duality we have for an attaching map f of order
latz e M

(foP%)e = C;(0)(@)e
(29) O\ o (ONTT). £ TN OM. 4 O (o) 2
(frgg 002 = Cor (0@ + Cip(0)(@M) + C1 (0)(55, )

We call (f.P%)g, ( f*g% )z the CR frame of order 1 associated to a CR
1-jet J = j¢f. The space of CR frame of order 1 is diffeomorphic to
JH(M)cr. The CR coframe ...,w?, ... of order 1 associated to CR 1-jet
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J at x € M is defined as the dual to a CR frame of order 1 associated
to J. We then find

1

(Om)z), w§= 5(3—)(91\4)1.

Co(J)

(30) w§ = (ISR ~ B

5

where ((C~1)%(J)) is the inverse matrix of the matrix (C7(J)).

We may regard w]J. as a 1-form €/ on J}(M)cg. Hence using the
standard chart

N e cy 1
(31) Q* = (C™H%(dz, — FﬂeM), Q0 = oM

Remark. In the case M = M we see by (17)-(18) §1 that Q* =
We)fy), 9° = (wa) (-2

I) Note that the isotropy group H at 0 acts on M as a CR isomor-
phism group. Hence, when f is a CR attching map of oder [ and h € H,
foTh (cf. (13) §1) is a CR attaching map of order . Therefore we have
the action of h on J}(M)cr, which we denote by Rj,. We then find by
(21) §1 and calculation that for J € J3(M)cr

(32) Ca(RnJ) = CZ(J)%ug, CJ(RnJ) = C(J)—5 + C’}(J)%ﬁ",

laf?

1

(33) CBad) = CU) 1

§3. CR coframe of infinitesimal order 2

A) Let f : M — M C C"*! be a CR attaching map of order m.
Then

(1) f*0nm = Csbr + O(m). Hence

frdbn =Cf dOpm +dCf A B +O(m— 1)

2
@ =10y <dzp,dzp > +dCy N Oy +0(m—1).

Since f*dz* = C_; dz}, + Cg; 61 + O(m), we find that

3) dz}y = CYH{f*dz™ — Cgy Opa} + O(m),
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where (C2f) is the inverse matrix of (C34)- Therefore

” frdfas = iCsh,,CY CFT {7z A f* &P + Cy f7d2P
— CP.F*dz*) A Ops} +dCs Nag +O(m — 1),

For a function [ on M we have by taking d of (9) §2

I — [
(5) —8—d9M = —d(Q) Ndz® — d(Q*l) Ndz® - di— ABy.
891\4 06 M
Applying (9) §2 again when [ is replaced Q%I, etc. we find that
ol 5
——dfy =[Q7, Q%I dz* A dZP
00

©®) o 5
—{[QF gl 4=+ [Q% 5L 4 A b,

Applying the above in the case | = (w + @)/2, we find by (8.2) §2 that

(7) dOy = icP%dz* A dzP + (CBdz® + c*dz®) A Oy,

where

(8) = L[N QRw +w), = 2o, Q°)(w + ).
21 200

Hence

© f*dOy =icP% o f f*dz* A f*dzP

+ (%o f f*dz*+c%o f f*dz%) A f*Op.

Comparing the above with (4), we find that

(10) 88 o f = Cth,,CY C5T + O(m — 1),
(11) Cre®o f =ic*P o f CF; + CETPAC; + O(m - 1).

B) Denote by JZ(M) the space of 2-jets of maps f of neighborhoods

of 0 in M into M. When J = j3(f), we set
(12)

p& (Jy=P= PPfI(0), p2(J)=P*PBf(0), p’(J)=P fJ(O)

WD) =g 10), CED)=PC5(0) 0&2><J):7ﬁcf<o>-
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Denote by JZ(M)cr the space of 2-jets of CR attaching map to M
of order 2. We set

(13) Ey = pi(J§(M)cr) C Jo(M)cr-
Let (cga) be the inverse matrix of (c?®). We have by (10)-(11)

14) Proposition. For J = p3(J?) € E; with J? € J3(M)cr
0

(15) AR ) = an5O)

(16)  CP (%) = pi7 (N){ic*? (p @ (1))p{* (7)) + (PO ()C (D)}

The action of H on J}(M)cr (cf. (35)-(36) §2) preserves E;. We
find by (36) §2 that H acts transitively on the subspace of J}(M)cr
defined by the equation: In terms of the standard chart (z, ..., Cf, ..., C)

of J{(M)cr
(17) C® K7CE = C cga(a).

In view of (16) we conclude that

(18) Proposition. E); is the subspace of J}(M)cgr defined by the
equation (17).

C) We also find that the subgroup H; of H which acts as the identity
transformation is given by

(19) a=1, u=1, pB=0.

Hence H; is a 1 dimensional subgroup parametrized by
b

(20) s=R-.
a

Therefore E; is a principal bundle with the structure group H/Hj.
We wish to define the CR frame bundle E by the following diagram:

JY(M)er « J?

(21) T !
E1 — E
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where JZp, is a suitable subspace of J2(M)cg. (22) §1 and (20) suggest
that we use as the above downward arrow the map

(22) 5 PP =~ RO,

o

D) We justify the above choice.
Since p§2) may be regarded as a small deformation of R(b/a) by (22)
81, p is a projection. It remains to show that H acts on E making F a
principal H-bundle. We define jc' g s the space of 2-jets representable

by a CR attaching map of order 3. We need to show that p (RhJ ) is

a function of p( )(J) and of h , provided J € J?(M)cr.
We find by (16) §2 that for f : M — M

P(se = 0 PYT? Do fa

+ (PYIY) (@) 55— {(P7 %) 0 Th }(2).

00 m

We apply (16) §2 to 8 {(P° f*)oTy}(z) in the case N = M = M and
(X,1,f) is (8/89M,P"f”‘,Th). We then find by (21)-(22) §2
(24)
1 @ N P
Por " (Bn) == {| Pl () + 2692 (J) + iy 2 FECE()))

b1
+{—55u: -H_Wu“ ﬂ",@’”}C’a( ).

Therefore it is enough to show that p( o (J) is a function on E1, provided

J is represented by an attaching map of order 3.
By (10) we have for a CR attaching map f of order 3

(25) Ct cpao f = PVfO R PV 4+ 0O(2).

Applying P°, we find that
(26)
(P°Cf)epa o f + CrPo(cpa © f)

= (P PYf)R™ (PVF9) + (PTf*)R"(PTP"f?) + O(1).

Hence we see by (16)
(27)

PE(NRTCE(T) = CO(J)esa(z)+C(I)CHINQeou(x) +C(I)CH(]).
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)% is a function on FE; and

In view of (16) we now conclude that p(
consequently H acts on the space E.
We write down the formula for the operation of H on péz)

CS(RpJ) = C3(J)us/a, we find

. Since

(C™Y(RRT)P* (R T) = (0—1)3<J>{|-j—|5p§?“<i>

(28) .
+= ﬂ" )O‘(J)+z_w—ﬁ"C{,"(J)}—nE+i <B,8>.

Since C(C™1)%, = h"7Cgc?F we have on the other hand
(29)

PERUNCIV) = 5O CHONE Tera(a) i e,

We then find after some cancellation

(30)

- (2) L )
pt(iz)(R J)—‘ |2 (2)(J)+§R__ ﬂa{ca((t)])—|—%Cg(])(Q’ngﬂ(iE))CU“(III)}.
Therefore
60) 1Y = opf” + Ry~ RLFCUF +i7 L + e (@ ean)}

84. The normal CR Cartan Connections

Let w : TE — g be a Cartan connection on the CR frame bundle
E.
A) w is called a CR Cartan connection (cf. (31) §2) when

(1) wf‘_ll = Qa, Wi-2] = QO.

Let U = {(z)} = {(2,2°)} be a chart open set of M. In terms of a
local trivialization U x H of E we have an expression :

(2) w = Ad(h™Hw + wg,

where w is a g-valued 1-form on U and wg is the Maurer-Cartan form of
H regarded as a h-valued 1-form. Its curvature form has the expression:

3) K=dQ+ %[Q,Q] = Ad(h™ ')k, where k=dw+ %[w,w].
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B) A local trivialization of E over U is given, using a section J :
U— E, by
(4) UxH>(z,h) > R J(z) € E.

We find by (31) §2 that w in (2) is a CR Cartan connection when
(5)

wft (@) = (C71)3(@)(de”

_Gi(@)
C(x)

1
Om), w[_Q]:WGM, where

(6) J(@) = (... C2 (), ..., C(2), P} ()

is the standard chart expression of J(z). We see by the above that we
have to determine wy, w,, Wsu, wp), wiz) (cf (11) §1) to determine a CR
Cartan connection. We put curvature conditions so that we have CR
Cartan connections unique up to isomorphism.

C) As we obtained (20) §1 we find that & in (3) has the expression:

(7.1) k‘[_g] = dw[_Q} - i<1U[_1], w[_1]> — 2w, A Wi_a).

n+2,
ki1 = dwi_yH{wsu — (wr + dwy, )T} A wp_q

(7.2)
+ Wi A w2,
(7.3) kr = dw, — C\\Y(w[_l], w[1]> + wig) A wig,
(7.4 By = du, + (w1, wi),
ksu = dwsy + Wsu A Wsu + 1w[1y A wr_l]
(7.5)

) . 2
— zw[-1] A U)[l] + ;ZéR(Uq_l]a 'U)[l]>7

n+ 2

(7.6) k= dwpy + i(wsu + (wr — iwy)I) Awfy + wi-gy A wp),

(7.7) k[g] = dw[gl +1 < wp), W > +2w, A Wig)-

D) In order to carry out the program mentioned at the end of B),
we set

(8) C = the matrix (C§(z)), C=(.,C8x),..).
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We also omit z in C(x), etc. We see by (7) §3, (10) §3, and (5) that
9) dfy = iC(“’[—l]v'w[—l]) — 2%(1'076‘06! —Cc")dz7 A W[—g]-

We then find that
(10)
d’w[_g]—i<’w[_1], 'UJ[_1]>—q0/\’w[_2] =0, dw[_1]+q/\w[_1]+q[1]/\w[_2] =0,

¢ Z%(—éc“‘cg‘ +c")dzY — -;—dlog C,
(11) q =Q_1dQ—iQ_IC'®wf.1],
(o 10

) = C162R(— ~ e AeCg + P)dzP + Cd=

(12) Lemma. We can find a unique set of a complex valued 1-form b°,
an su(n)-valued 1-form bsy, a C"-valued 1-form byy), such that

(13.1) bo, bsu, b[l] =0 (mod w[_l],w[_ll),

dw_g)—i(w_1}, wi_1)) — 2R6° Aw_g) =0,

(13.2) .
dwi—1) + (bsu — 0" I) A wi_y) + by Awj_g = 0.

Proof. By using the type with respect to w[_1}, W], we check the
uniqueness. To show the existence, note by (10) that d(wj_1j, w|_y)) —
@A (wi—1p, wi—q)) =0 (mod w[_g)). We then find

(141) (doft )@ — BPh,ul oy ATut )~ (@) Ay =0,
where (¢7)" = ¢} w [ ;- On the other hand we see by (10) that
(14.2) (dwfe )Y + ggp wi ) Awfy =0.

Therefore we find that (13) is valid when we set

(b u)»y = aw[ 1) ﬁaﬂﬁw%wf_l],
as) (Ol = 005 = (w155 B = (@) + (b7,
, 0C
by =g — 1o % (mod wj_y).

C— 00y 86, -1
QE.D.
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E) For a differential form a we set
(16) a=at+a®A wi_y, whereat, o do not contain wi_g]-

By the Lemma we find the followings:
(17) Proposition. ki_y =0 if and only if w} = R b°.

18) Proposition. Assume that kj_q = 0. Then k;_y; = 0 if and only if
{-2] (-1]

n
n+2

Wy = bew, Wi = S, wify = by + (0Q) — (6°) O Dwp_yy.

From now on we consider only CR Cartan connections satisfying the
conditions in (17) and (18). We next examine conditions k, = 0, k, = 0.

By taking the exterior derivative of the first equality in (13.2), we
find that

(19) (dR8° — S (wi-1},bpy))) A wi—g) =0.
Therefore, we have the expression:
(20) AR’ — S (wpoyp,bpy) + by Awpog =0, bpy = by
Hence we find that

ke =S(wi—1), by = wp) + P i{wiy, wi-y)

(21)
+ (d’wgro) + wpg — b[g] + ngo)%bo) AW[_g].

(22) Proposition. Assume that k[_y = kj_;) = 0. Then k, = 0 if and
only if

w{g] = b[z] - (d’wgro))_l_ — 2U}.Sr0)§RbO — S<w[_1],w[({)])>.

_n
 n+2
+ iwLO)(w[_l], wi-q)) + (dw‘(lo) + R(w—q), w[(f])) + wL0)29?b0) Awl=2,

n+2,
d(Sb°) + (w1, by + (wl® — Tzwg))l)w[_lp
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By taking the exterior derivative of the 2nd formula in (13.2), we find
by (20) that

(24)

{(dbgu — id§b01)+ — \s(w[ 1] b[l]>I+ b;'_u A b:u + lb-'i] ®’U){ 1 A wi—q = 0.

Then it follows that

(25) —5 (A3 - <b[(f] D, wi_y) = 0.

Therefore we find the following: Set

(26)

(d(S6%)) V) = (dS60) qpwf ) AwByy,  RD® = (RB)qwi™ ;) + (RO°) ﬁw L

B
[

(d(\bo)(o) = bO w[ 1] + b ’I.U[ 1] bﬁ] = bﬁhw[_ll + bﬁmw -1

2 roposition. Assume that k;_o = kj_11 = kr = 0. en =01
P iti A hat kj_g =kj_yy =k 0. Then k, =0 if
and only if

1 n4+2 ) 5
w® =-_""° (& oy v peBrggp®y
Yu 2n(n+1)( ba + 2(n+ 1)~ (d36%)ag,
@ 1 KY (o7 1 ok
(wi)g = ——h Y(dS°) 55 — 1 7(dSb°) 505 + sh bl
1

§bﬁ1m + g(gbm)%% :
with dw(?) = DL ) + Dyl 1],
wi)® == 20 {15 + w® (RH)5 + b o).

Finally we put the condition:
(28) tr kpg = 0,

where for a 2-form ¢

(29) tr g =h%pe5 6TV = populy Awl .

(30) Proposition. tr kjy) = 0 if and only if

0 1.
w[(2]) = —ﬁ{ztr d'w[z] — tr (wpy, wyyy) + 2itr (w A w[Q])}
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F) Note by (23)-(24) §1 that

(31) ki_g) = k(—1] =kx = ku = tr kjg) = 0 if and only if
K[-2] = K[—l] =K, = Kl‘ = tr K[Q] =0.

(32) Definition. A CR Cartan connection is called normal when its
curvature satisfies the above conditions.

Clearly the normality condition is a globally defined condition. We
also see

(33) Proposition. When we fix a chart (z,z°) and a local cross-section

(4), for arbitrary choice of wsro) there is a unique normal CR Cartan con-

nection. The isomorphism class of the normal CR Cartan connections
is unique.

G) We next discuss the global aspect of the normal CR Cartan

connetions.
Fix a chart = (2,2°). Beside the local cross-section J(z) given in
(4)-(6) consider a new cross-section

(34) J(z) = Rp(z)J(z) for a H-valued function h(z).

J(z) induces a chart (z, h), which is related to the original chart (z, h)
by

(35) h = h(z)h.

A Cartan connection (2) has the two expressions:

(36) w = Ad(h ™ Hw(z) + h~tdh = Ad(h™w(z) + b~ dh.
Therefore

(37) w(z) = Ad(h(z) ) (w(z) + h(z)~'dh(z)).

From now we omit (x) for simplicity. By the above and by (23) §1
we find that

(38.1) wi_y = |affwi_g).
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(38.2) wi = a(u'l)ﬁw[v_l] - |a|2(u_1ﬂ)°‘w[_2].

(39) W, = wy + Ria(wi_y), B) — |a|? s wi—g) + dlog|al.

For a 1-form ¢ set
(40) ¢ = ¢awﬁ. 1]+¢0‘sz1_ 1]+¢(0)w[—2] = &a_ulil_ 1] ‘Hf)dﬂfl_ 1]+¢~5(0)_“-_’[..2]-
Then

1 30 - 1 40y Loga 4 15g
(41) ¢ = ¢, Ul, Pt = |a|2¢ +d)aaﬂ +¢aaﬂ .

Setting w. w(o) = @Sro) for simplicity, we then find

1
w? = o |2w‘°>_s+zmwm—ﬁ“+2% B%(dloglal)a
(42)
P |2(dlog ).

On the other hand we see by (30) §3, (11), and (17) that

(43) péz) T |2p§2) +s— 2§Riﬁ°‘{wm + %(dlog Cla + %c”‘—’z)_“cﬁ}.
Therefore

(44) (0) +p(2) = | 1'2( w® +p ) + R, where

(45)

R:2%£ﬂ°‘{(dlog|a|)a—%(dlog0) -—C”c”"Q cw}—}-' |2(dlog|a|) 0,

Note that we have the standard chart (C, Cf,CY) induced by the
local cross-section J. We find by (32)-(33) §2 and (30) §3 that

1 1 1 1
(46)  C=1nC Cf=[pCs+ A5, €= C5u,

(47) U = (dlogC)® — C&cQocy 5.
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Then we see by calculation that

1

U-rm

(48) U-R.

Therefore thé condition: w2+ p§2) +U = 01is a globally defined condition.

We conclude
(49) Proposition. When we choose

™

(50) w® = —p¥ - U,

the normal CR Cartan connection is globally defined.
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