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Abstract. 

Hall-Littlewood functions and Green functions associated to com
plex reflection groups W = G(r, 1, n) were constructed in [S1] by 
means of symbols, which are a generalization of partitions. In this 
paper, we consider such functions in the case where the symbols are 
of very special type, called "limit symbols". The situation becomes 
simple, and is close to the case of symmetric groups when the sym
bols tends to the "limit". In the case where W is a Weyl group of 
type Bn, we give a closed formula for Hall-Littlewood functions, and 
verify some of the conjectures stated in [S1] for the case of Green 
functions attached to limit symbols. 

§0. Introduction 

Green functions associated to symmetric groups Sn were originally 
introduced by Green [G] in connection with the representation theory of 
finite general linear groups GLn(lFq) over a finite field 1Fq. Later Deligne 
and Lusztig [DL] constructed Green functions for any finite reductive 
groups. The algorithm of computing Green functions, in particular in the 
case of classical groups, shows that Green functions are determined by 
the information on Weyl groups and some combinatorial data centering 
u-symbols. Note that u-symbols are combinatorial objects introduced 
by Lusztig [L] describing unipotent classes in G(lFq), which is a natural 
generalization of the notion of partitions in the case of GLn(lFq)· 

In [Sl], Green functions associated to complex reflection groups 
W = G(e, l,n) were introduced, and it was shown that there exists 
a combinatorial framework for such Green functions based on the the
ory of symmetric functions as in the case of symmetric groups. In par
ticular, the notion of u-symbols were generalized to a various type of 
symbols, and Hall-Littlewood functions associated to such symbols were 
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constructed. Green functions are essentially given by the matrix K±(t) 
of Kostka functions, which is defined as the transition matrix between 
the set of SchUI functions and Hall-Littlewood functions {both are asso
ciated to W). The set of symbols are divided into similarity classes, and 
accordingly, K±(t) is regarded as a block matrix. Then K±(t) has the 
lower triangular shape as a block matrix, with the identity matrix on 
each diagonal block. These results were generalized in [S2] to the case 
of complex reflection groups G(e,p, n). 

In this paper, we consider the case of limit symbols {see section 1 
for the precise definition). The limit symbol is, in some sense, a limit 
of the symbols discussed in [S1], and Hall-Littlewood functions turn 
out to be independent of the choice of symbols when it tends to the 
limit. In this limit, the situation becomes drastically simple, and is 
close to the case of symmetric groups. For example, each similarity 
class consists of one element, and so K±(t) is just a lower unitriangular 
matrix. We further restricts ourselves to the case where e = 2 (i.e., 
W is the Weyl group of type Bn), and give a closed formula for Hall
Littlewood functions, just as in the case of <Sn· This enables us {in the 
case where e = 2) to show that Hall-Littlewood functions and Green 
functions are polynomials with integral coefficients, which verifies some 
conjectUies in [S1] in this case. Note that even in the case where e = 2, 
Green functions given here {associated to limit symbols) are different 
from Green functions associated to BP2n(1Fq) or S02n+l{lFq)· 

It is likely that Green functions associated to limit symbols have 
rich structUies from geometric and combinatorial point of view. For 
example, one can expect that they are described in terms of Poincare 
polynomials of the quotient of the coinvariant algebras of W, just as 
in the case of symmetric groups {see 3.14 for details). Yamada [Y] has 
computed such Poincare polynomials in some small rank cases, which 
supports OUI conjecture. 

This paper grew up from the discussion with H.-F. Yamada. The 
author is very grateful to him. 

§1. Limit symbols 

1.1. We review some notations from [S1]. We denote by Pn,e the 
set of e-partitions o: = (a(o), ... , a<e-l)) such that Jo:J = E~:~ Ja(k) I = 
n. Let W be the complex reflection group G{e, 1, n) ~ <Sn IX (7!../e'lL.)n. 
The set of irreducible characters of W is in bijection with Pn,e· We 
denote by xa the irreducible character of W corresponding too: E Pn,e· 
In particular, the unit character corresponds to (n; -; ... ;-) and detv 
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corresponds to ( -; ... ; -; 1 n), where detv denotes the one dimensional 
representation arising from the complex conjugate of the determinant of 
the reflection representation V of W. 

Let mo, ... , me-l be positive integers such that mk ~ n, and put 
m = (m0 , ... , me_1). We denote by Z~·0 = Z~·0(m) the set of e-
partitions a E 'Pn,e such that each a(k) is regarded as an element in 

zmk, written in the form a<k) : aik) ~ · · · ~ a}!~ ~ 0. We fix an in
teger r > 0 and an e-tuple of non-negative integers s = (so, ... , Se-l) 
such that sk ~ r. Let us define an e-partition A 0 = A 0 (m,s,r) 
(A<0>, ... , A(e-l)) as follows. 

(1.1.1) 

for k = 0, ... , e -1. We denote by z~,s = z.;,:.S(m) the set of e-partitions 
of the form A= a+ A 0 , where a E Z~·0 and the sum is taken entry
wise. We denote by A= A(a) if A= a+ A 0 , and call it thee-symbol 
of type (r, s) corresponding to a. We often denote the symbol A = 
(A(o), ... , A(e-l)) in the form A = (A)k)) with A(k) : Aik) > · · · > A}!~ 
for k = 0, ... , e - 1. 

Put m' = (mo + 1, ... , me-l+ 1), and we define a shift operation 
Z~·8 (m) ---+ Z~·8 (m') by associating A' = (A~, ... , A~_1 ) E Z~·8 (m) 
to A = (Ao, ... ,Ae-1) E Z~· 8 (m), where A~ = (Ak + r) U {sk} for 
k = 0, ... , e- 1. In other words, for A= A( a), A' is obtained as A'= 
a+A0 (m', s, r), where a is regarded as an element of Z~·0(m') by adding 
0 in the entries of a. We denote by z~,s the set of classes in lim' Z~·8 (m') 
under the equivalence relation generated by shift operations. Note that 
'Pn,e coincides with the set Z~·0 • Also note that A0 is regarded as a 
symbol in z~,s with n = 0. 

Two elements A and A' in z~,s ares said to be similar if there exist 
representatives in Z~·8 (m) such that all the entries ofthem coincide each 
other with multiplicities. The set of symbols which are similar to a fixed 
symbol is called a similarity class in z~,s. 

We shall define a function a : z~,s ---+ Z;:::o. For A E z~,s, we put 

(1.1.2) a( A) = L min( .X, .X') - L min(J.L, J.L1). 

A,A'E.A 

The function a on z~,s is invariant under the shift operation, and it 
induces a function a on z~,s. Clearly, the a-function takes a constant 
value on each similarity class in z~,s. 

Remark 1.2. The definition of symbols given here is slightly more 
general than the one in [81], where it is assumed that sis of the form 



446 T. Shoji 

(0, s, ... , s). The symbols of this type appear in [Ma] in parameterizing 
unipotent characters associated to W. However, the arguments in [81] 
can be applied without change to the setting as above (except the last 
paragraph of section 1, see Remark 3.2), and we shall refer to the results 
in [81] freely. 

1.3. From now on we assume that m is of the type 

mo = · · · =rna = m + 1, ma+l = · · · =me-l = m 

for some integers m :2:: n and 0 ~ a ~ e- 1. A symbol A = (AY)) is 
called special if it satisfies the relation 

A ~k) > A ~k+I) 
J - J 

A~e-1) > A~o) 
J - J+l 

for 1 ~ j ~ m, 0 ~ k ~ e - 2, 

for 1 ~ j ~ m. 

If A 0 is special, each similarity class in z~,s contains a unique special 
symbol, and the set of special symbols is in a bijective correspondence 
with the set of similarity classes in Z~·8 • 

We now assume that A0 = (AJk)) itself is special and satisfies the 
condition that 

(1.3.1) A~k) _ A~k+l) > 
J J - n, A (e-1) _ A(O) > 

i i+l- n. 

For example, we may choose that r = en, s0 = 0, sk = (e- k)n for 
k = 1, ... , e- 1. Symbols in z~,s determined by A0 satisfying (1.3.1) 
are called limit symbols. In this case any symbol is special, and so each 
similarity class consists of one element. The combinatorics concerning 
Hall-Littlewood functions and Green functions turn out to be drastically 
simple, and the situation becomes quite similar to the case of symmetric 
groups, though it is related to W. In the remainder of this section, we 
shall discuss Hall-Littlewood functions and Green functions associated 
to limit symbols. 

1.4. From now on, we assume that z~,s is the set of limit symbols. 
One can identify a symbol A E z~,s (resp. an e-partition a E Z~·0 ) with 

an element in Z~, where M = L: mi, by arranging A = (AJk)) as in 
1.3, 

(1.4.1) Al(o) . . . A (le-1) A2(o) . . . A2(e-1) Aa(o) ... 
' ' ' ' ' ' ' 

and similarly for a = (aJk)). In particular, symbols give rise to par
titions of M by this identification. For A = (Ai) E zM, we define an 
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integer n(.X) by 

n(.X) = I:(i- 1)-Xi. 
i 

If A is a partition, we have n(.X) = Ei#i min(.Xi, .X;). Then it is easy to 
see, by (1.1.2), that 

(1.4.2) a( A) = n(A)- n(A0 ) = n(a), 

where A, A0 , a are regarded as elements in zM under the above identi
fication. Let us introduce a partial order A ~ A' on z~,s by using the 
dominance order~ on zM, i.e., for A= (.X.),JL = (JLi) E zM, we define 
.X~JLif 

k k 

I:.xi ~ L:JLi 
i=l i=l 

for k = 1, ... , M. By (1.4.2), one can check that the partial order on 
Z~·8 is compatible with the a-function, i.e., we have 

(1.4.3) a(A) > a(A') if A< A'. 

Under the bijection Z~·0 ~ z~,s by a +-t A( a), the partial order on z~,s 
and a-function on it are inherited to Z~·0 ~ 'Pn,e· This partial order on 
Z~·0 is nothing but the order obtained from the dominance order on zM 
under the embedding Z~·0 c zM. Combining this with (1.4.2), we see 
that 

(1.4.4) a-functions and the partial orders on Z~·0 defined by limit sym
bols are independent of the choice of A0 as far as A0 satisfies (1.3.1). 

In the rest of the paper' we express the set of limit symbols Z~·8 

as z;::o' and always consider the a-functions and partial orders on Z~·0 

inherited from z;::o. 

§2. Hall-Littlewood functions attached to limit symbols 

2.1 For a given m = (mo, ... , me- 1 ), we introduce a set of inde

terminate xY> (0 :::; k :::; e - 1, 1 :::; mk)· We denote by x the whole 

variables (x)k>), and also denote by x(k) the variables xik), ... , x~~. For 
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an e-partition a = ( aC0), ... , aCe- 1) ), one can define the Schur function 
so:(x) and monomial symmetric function mo:(x) by 

e-1 

so:(x) =II S 0 (kl(x(k)), 
k=O 

e-1 

mo:(x) =II m 0 (k)(X(k)) 
k=O 

where S 0 (k) (resp. m 0 (k)) denotes the usual Schur function (resp. the 
monomial symmetric function ) associated to the partition aCk) with 
respect to the variables x(k). 

In what follows we regard the variables x~k) defined fork E 7!./eZ ~ 
{0, 1, ... , e-1 }. We now introduce a new variable t, and define a function 

rt,kl (x; t) associated to + or -, for each 0 ::::; k ::::; e- 1 and an integer 
r ~ 0, by 

(2.1.1) 
IT (k) t (k=fl) 

:::{k) ( . t) = "'"'( (k))r+o j xi - xi 
qr,± X, L...J x, IT (k) (k) 

i?:1 #i xi -xi 
(r ~ 1), 

where o = mk - 1- mk±b In the product of the denominator, xY) 

runs over all the variables in x(k) except x~k), while in the numerator, 

xY±1) runs over all the variables in xCk±1). rt,~l is a polynomial in 

Z[x;t] if o ~ 0, and lies in Z[x,x-1 ;t] in general. We define q~~l(x;t) 
as follows. If o ~ 0 i.e., mk ~ mk±1 + 1, put q~~l = rt,~l. If o < 0, 

we add mk±1 + 1 - mk variables x' = x~~+1 , . .. , x~~±1 +1 to x(k), and 

consider the polynomial rt,kl for such variables with o = 0, and put 
(k) :::{k) I (k), [ l . (k) 

qr,± = qr,± x'=O· Hence qr,± E 7!. x; t In all cases, and we have q0 ,± = 1. 
For an e-partition a E Pn,e' we define a function qo:,±(x; t) by 

e-1 mk 

(2.1.2) qo:,±(x;t) =II II q(~~l (x;t). 
a. ,± 

k=Oj=1 1 

Remark 2.2. In [S1, 2.2], the function q~kl was defined by the formula 
(2.1.1). But since it is not a polynomial, its' definition should be modified 

as above. Then this q~kl coincides with the polynomial obtained from the 
generating function (2.3.1) in [S1], and the properties stated in Lemma 

2.3 in [S1] holds for q~~l. Accordingly, the definition of R~,dx; t), etc. 
in [S1, 3.2] must be modified appropriately. (However, the notations 
below have some discrepancies with [S1]. See Reamrk 5.7 in [S2] for 
details.) 
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23 ur d t b ~ 10\e-1'7?[ (k) (k)]l5m th • f • vve eno e ;y .::.m = IO!k=O ~ x 1 , ... , Xmk k e nng o 
symmetric polynomials (with respect to 6m = 6m0 X • · · X 6m._J 

with variables x = (x)k)). Bm has a structure of a graded ring Bm = 

EBi>O s:n, where s:n consists of homogeneous symmetric polynomials of 
degree i, together with the zero polynomial. As given in [S1, 3.15], one 
can define the ring of symmetric functions B = EBi;;~oBi as the direct sum 
of the inverse limit gi of s:n. The Schur function Sa.(x) with infinitely 
many variables xik), x~k), . . . is regarded as an element in gn with n = 
ial, and the set {sa.(x)} with a E Z~·0 forms a Z-basis of sn. It is also 
shown (see [S1, 3.15]) that {qa.,± I a E Z~·0 } gives rise to a basis of the 
Q(t)-space Q(t) ®z gn (according to + or -, respectively). A similar 
property holds if one replaces gn by B~. 

We now define a scalar product (, } on Q(t) ®z gn by the property 
that 

(qa,+(x;t),m,a(x)}= 6a,,a 

for a,/3 E Pn,e· Then we have(ma(x),q,a,+(x;t)}= 6a,,a by [S1, (4.7.2)] 
(But there are some discrepancies with the formulas in [S1] in the dis
cussion below because of some errors in [S1]. For this see Remarks 5.7 
in [S2]). 

Hall-Littlewood functions P_X(x; t) and Q~(x; t) associated to sym
bols were constructed in [S1]. {P_X}, {Q~} give bases of Q(t) ®z =:n. In 
the case of z~, { p_X} are characterized by the following two properties 
(cf. [S1, Proposition 4.7]). 

(2.3.1) For A= A(a) E Z~, P_X(x;t) can be expressed in terms of 
Schur functions s,a(x) as 

P_X(x;t) = sa(x) + L u!,,a(t)s,a(x) (u!,,a(t) E Q(t)), 
.B<a. 

(2.3.2) (P_t, P;t,} = 0 for A # A', 

Then Q~ are determined as the dual of P_X, i.e., we have 

(2.3.3) (P_t,QA:,}=(Q:;!i,P;t,)= 6A,A'· 

Here the partial order {3 < a in Z~·0 is the one given in 1.4. We note 
that P_X coincides with Q~ up to scalar by (2.3.2) and (2.3.3). So one 
can write it, for A= A( a), a.S 

(2.3.4) 
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for some b~(t) E Q(t). 
Let A be the subring of Q(t) consisting of functions which has no 

pole at t = 0. Then A is the local ring with the unique maximal ideal 
tA, and A* = A- tA is the set of units in A. Px(x; t) and Q~(x; t) 
are also characterized by the expansions in terms of s13(x) and q,B,±(x) 
as follows. 

Theorem 2.4 ((81, Th. 4.4]). (i) Px(x; t) are the unique 
functions having the following expansions. 

Px(x; t) = L c!,,B(t)q,B,±(x; t) 

Px(x; t) = sa(x) + L u!,13 (t)s13 (x), 
.B<a 

where c!,13 (t) E Q(t) in the first formula, and u!,13 (t) E tA in 
the second formula. 

(ii) Q~(x; t) are the unique functions having the following expan
sions. 

Q~(x; t) = qa,±(x; t) + L d!,13 (t)q,B,±(x; t), 
.B>a 

Q~(x; t) = L w!,13 (t)s13 (x), 
l3'5.a 

where da,,B(t) E Q(t) in the first formula, and w~,13 (t) E tA for 
/3 =f a and Wa,a E A* in the second formula. 

2.5 We shall give a closed formula for Q~ and Px in the special 
case where e = 2. So, in what follows we assume that e = 2. In this 
case, Q:;!t, P_.t, q~, etc. coincide with Q::t, PA, q;;, etc., and so we omit 
the signature± and express them simply as QA, PA, qa, etc. In order 
to obtain the closed forms of P A and Q A, we recall here another type of 
symmetricfunctions RA = R~ introduced in [81). Let M = {(i, k) I 0::;; 

k ::;; 1,1 ::;; i ::;; mk} be the set of pairs (i, k) corresponding to x~k). We 
define a total order on M compatible with the embedding Z:' c zM, 
as in (1.4.1), i.e., 

(1, 0) < (1, 1) < (2, 0) < · · · < (m, 1) < (m + 1, 0) < · · · . 

For a fixed a= (a)k)) E Z~·0 , we denote by v0 = (i0 , k0) the largest 

element in M such that a~~o) =f 0. We assume that m ~ io + 1. Put 

(2.5.1) ok =Hi I (i, k) < (i, k + 1)}- Hi I (i, k) < (j, k)}, 
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which is independent of the choice of i. We define a function Ii(k) (x; t) 
attached to a for 0 ~ k ~ e- 1,1 ~ i ~ mk by 

II 
1:5j:5mk+l-Ok 
(i,k)<(j,k+1) 

if (i,k) ~ vo, 

II (x~k) - tx)k)) if (i, k) > vo. 
1:5j:5mk 

(i,k)<(j,k) 

For a E z~,o, we define a polynomial Va(t) by 

e-1 

Va(t) =II V!Lk(t), 
k=O 

where J..Lk = U{j I (j, k) > v0 } and 

r 1- ti 
Vr ( t) = II 1 - t 

i=1 

for each r 2: 1. For a sequence (3 = ({31, ... , f3mk), we write as 

Finally, put 6m = 6m0 x 6m1 as before. We now define a function 
Ra(x; t) associated to a by 

(2.5.3) 

Ra(x;t) = Va(t)-1 X 

L w{ II (x(k)y>(k) II If~(x; t) I II II (x~k) - x)k)) }· 
wE6m k k,i k (i,k)<(j,k) 

Since Ra can be expressed as 

Ra(x;t) = Va(t)-1 II II (x~k)- x)k))-1 x 
k (i,k)<(j,k) 

L c:(w)w{ II(x(k))<>(k) II I~,~(x;t) }, 
wE6m k k,i 

it is a polynomial in x. 

Remark 2.6. R~ was defined in [S1, (3.1.2)] by using a slightly 
different formula. But the function defined there is a Laurent polynomial 



452 T. Shoji 

in general, and not necessarily a polynomial in x. So, it should be 
modified to the above form. The results in [S1, 3] remain valid for this 
R'! under an appropriate modification. 

2.7. We regard 6,.,.k as a subgroup of 6mk as a permutation group 
with respect to the letters {1 :::; j :::; mk I (j, k) > v0 }. In this way, we 
regard 6~ = 6,.,.0 x 6,.,.1 as a subgroup of 6m. It is shown in [S1, (3.2.1)] 
that Ro.(x; t) can be expressed in the following form also. 

(2.7.1) 
Ro.(x;t) = 

L w{ II(x(k))a(k) II <~(x;t) /II II (x~k)- x)k)) }· 
wE6m/6~ k k,i k (i,k)<(j,k) 

(i,k)~vo (i,k):5,vo 

We denote by 6o. the stabilizer of a in 6m. Let us define a function 
n : 6o. ----> Z~o by 

n(w) = H(v,v') E M 2 lv < v',w-1 (v) > w- 1 (v'),b(v') =/= b(v)}, 

and define a polynomial bo. ( t) by 

bo.(t) = L c(w)(-t)n(w)_ 
wE6., 

The following result gives an explicit description of Hall-Littlewood 
functions Q A and P A. 

Theorem 2.8. Assume that e = 2. The for each A = A(a) E 
z~, we have 

QA(x;t) = Ro.(x;t), 

2.9. The theorem will be proved in 2.12 after some preliminaries. 
We define an operator Rij on the set zM by Rij(A) = A', where if 
A= (At, ... ,AM) E zM, then A1 E zM is given by 

and A~= Az for l =!= i,j. A raising operator (resp. a lowering operator) 
Ron zM is defined as a product of various Rij with i < j (resp. i > j). 
In the following, we identify M with the set {1, 2, ... , M} via the total 
order on M and express the operator ~j as Rv,v' for v, v' E M. We 
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define the action of raising operators Ron qa,± by R(qa,±) = qR(a),±· 
Note that qf3,± makes sense for {3 E Z~, and we regard qf3,± = 0 if {3 
contains a negative factor. For v = (i, k) EM, we put b(v) = k. By (81, 
Cor. 3.7], Ra can be expressed in terms of raising operators as follows. 

(2.9.1) 

where the conditions (*) and (**) are given by 

(*) v = (i, k), v' = (j, k), v < v', 

(**) v = (i, k), v' = (j, k + 1), v < v', 1 ~ j ~ mk+l- 8k. 

Using this, we have 

Lemma 2.10. Ra(x;t) can be expressed as 

Ra(x; t) = qa(x; t) + L d13(t)q13(x; t) 
{3>a 

with d13(t) E Z(t] for {3 E z~,o. 

Proof. By (2.9.1), Ra(x; t) can be written as a Z(t]-linear combi
nation of R( qa) by various raising operators R. It is known (e.g. (M, I]) 
that R( a) ~ a for a raising operator R and a E Z~·° C zM. If R( a) is 
not an e-partition, we must replace R(a) by {3 E Z~·0 by permuting the 
entries of R(a). But then {3 ~ R(a), and so we can write R(qa) = q13 
for {3 E z~,o such that {3 ~ a. It is clear that {3 = a if and only if 
R = 1. The lemma follows from this. 0 

Next we show that 

Lemma 2.11. Ra(x;t) can be expressed as 

Ra(x; t) = L Wa,{3(t)s13(x), 
{35,a 

where Wa,{3(t) E tZ(tj for a=/:- {3 E z~,o, and Wa,a(t) = ba(t). Moreover 
ba(O) = 1. 

Proof. We shall prove the lemma by using a similar argument as 
in the case of usual Hall-Littlewood functions ((M, III, 1]). First note 
that the definition of Schur functions sa given in 1.5 can be extended 
to the case where a is not necessary an e-partition. If a]k) + (mk - j) 
are positive and all distinct for j = 1, ... , mk (for a fixed k), then sa 
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coincides with the usual Schur function s13(x) up to sign, where f3 = 

(f3Jk)) is obtained by permuting the sequence {a~k) + (mk- j)} (for a 

fixed k) in the decreasing order and by writing it as {f3Jk) + (mk- j)}. 

If a)k) + (mk- j) are not all distinct for a fixed k, then Scx = 0. 

In the description of Rcx by (2.7.1), the product It k I}k)(x; t) gives 
a contribution ' 

II (x~k)t"•"' ( -tx)k+l)t.,'•" 

vo~v,v'>v 

where v = (i, k), v' = (j, k+1). Here (rv,v') is an integral matrix indexed 
by M consisting of 0 and 1 satisfying the relation 

(2.11.1) rv,v' + Tv',v = { ~ if v :$; vo, v' E Mv 
otherwise. 

where for each v = (i, k), Mv is defined by 

Mv = {v' = (j, k + 1) I v < v',1 :$; j :$; mk+l- 8k}· 

Put, for a fixed choice of the matrix (rv,v') as above, 

(2.11.2) A~k) = a~k) + L Tv,v' 
v'EM 

for v = (i, k). Then thee-composition..\= (.X~k)) yields the "Schur func
tion" a>.,/a6, where a>.,= L::wESrn c(w)w(x>..) and 6 = (8<0>,8<1>) with 
8(k) = (mk -1, ... ,1, 0). Rcx can be written as a Z-linear combination of 
( -t)da>../a6 attached to various matrices (rv,v' ), where d = L:v<v' rv',v-

Now a>.,(x) = 0 if the composition _x(k) is not all distinct for some k. 
Hence we may assume that all the entries of _x(k) are distinct. Then by 
rearranging its entries in the descending order, we can write as 

,(k) - (3(k) + ( - ") 
/\wk(i) - i mk z 

with some Wk E 6mk for 0 :$; k :$; 1. Then f3 = (f31k)) E Z~·0 and a>../a6 
coincides with c(w)s13. Thus Rcx is written as a sum of c(w)(-t)dsf3 for 
such {3. We shall show that 

(2.11.3) 
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Let us define a matrix (sv,v') by 811, 11' = rw(v),w(v')• where w(v) = 
(wk(i), k) for v = (i, k) EM. Hence w(v) EM, and the matrix (sv,v') 
satisfies a similar condition as in (2.11.1). We can write 

(2.11.4) 

We want to show that 

(2.11.5) 

for 0 :$ p :$ 1 and 1 :$ t :$ m. Note that (2.11.5) implies (2.11.3) since 
w(a) :$a for any wE Sm. Now by (2.11.4) we have 

where 

1 t p 

L: L: f3ik) + L: (3;~1 
k=Oi=1 k=O 

1 t p 

- ""'""' a(k) + ""'a(k) - L...J L...J Wk(i) L...J Wk(t+l) 
k=0i=1 k=O 

1 t p 

- L: L:(mk - i) - L:(mk- (t + 1)) 
k=Oi=1 

+ L: Sv,v' 
vEB,v'EM 

k=O 

B = {(i, k) 11 :$ i :$ t, 0 :$ k :$ 1} u {(t + 1, k) I 0 :$ k :$ p }. 

Hence, in order to show (2.11.5), it is enough to see that 

1 t p 

(2.11.6) L: S 11,v' :$ L: L:(mk- i) + L(mk- (t + 1)) 
vEB,v'EM k=Oi=l k=O 

p 

=tM+ L:mk-(t+l)(t+1+p), 
k=O 

where M = m0 + m 1 as before. First we note that 

(2.11.7) 
if k = 0, 

ifk=l. 
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One can write 

(2.11.8) L Bv,v' = L Bv,v' + L Bv,v' · 

vEB,v'EM v,v'EB vEB,v'EM-B 

We shall compute the right hand side of (2.11.8). On the one hand, we 
have 

(2.11.9) L Bv,v' = U{(v,v') E B2 1 b(v) = O,b(v') = 1} 
v,v'EB 

=(t+1)(t+p) 

by (2.11.1). On the other hand, if p = 0, we have 

(2.11.10) 

L sn,v' ~ (m1 - bo- t)(t + 1) + (mo- 81- (t + 1))t 
vEB,v'EM-B 

= tM + m 0 - (t + 1)(2t + 1) 

by (2.11.7). Then it is easy to see that the sum of (2.11.9) and the right 
hand side of (2.11.10) coincides with the right hand side of (2.11.6). If 
p = 1, we have 

1 

(2.11.11) L Bv,v' ~ L(mk- bk-1- (t + 1))(t + 1) 
vEB,v'EM-B k=O 

= (t + 1)M- (t + 1)- 2(t + 1)2 , 

and again the sum of (2.11.9) and the right hand side of (2.11.11) coin
cides with the right hand side of (2.11.6). Hence (2.11.6) holds and we 
have proved (2.11.3). 

The above computation shows that {3 = a if and only if w = 
( wo, wl) E 6a and that Bv,v' = 1 for allv < v' such that b(v') =/= b(v). 
Then we have d = n( w) since 

d = L rv',v = L Sw-l(v'),w-l(v)> 

v<v' v<v' 

and Wa,a(t) is given as Wa,a(t) = l:::wES., c(w)( -t)d = ba(t). Now 
it is easily checked by the definition that Ra(x; 0) = sa(x) (see [81, 
(3.13.2)]). This implies that Wa,a(O) = ba(O) = 1 and that Wa,{3(t) E 
tZ[t] for {3 =/=a. The lemma is now proved. D 
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2.12. We are now ready to prove Theorem 2.8. By Lemma 2.10 
and Lemma 2.11, Ra(x; t) satisfies the condition in Theorem 2.4 for 
Qa(x; t). Also (ba)- 1 Ra(x; t) satisfies the condition for Pa(x; t). Hence 
Theorem 2.8 holds. 

Remarks 2.13. (i) Theorem 2.8 together with Lemma 2.10 implies 
that QA(x;t) E Z[x;t]. It is shown in the next section that PA(x;t) E 

Z[x; t] also. 
(ii) It is known by [S1, (3.13.1)] that the expansion of R~ by Schur 

functions has an interpretation in terms of lowering operators. Hence in 
view of Theorem 2.8, we have 

v<v' ,v<vo 
b(v')#b(v) 

v<v',v>vo 
b(v')=b(v) 

for A = A(a), where R(sa) is defined as aR(a+6)/a0 for a lowering 
operator R. 

(iii) Lemma 2.11 (i.e. the property that {3 ~ a ) does not hold in 
general for R~ if e 2: 3. For example, assume that e = 3, and consdier 
W = G(3, 1, 2). Then for a= (12 ; -;-) E P 2,3 , we have 

R+- t2 t2 t3 
at- 8(!2;-;-)- 8(1;-;1)- S(-;12;-)- S(-;1;1)' 

and (1; -; 1) > (12 ; -;-)=a. Hence R"t, does note coincide with Q1 
in this case. 

§3. Green functions attached to limit symbols 

3.1. Although we shall treat the case where e = 2 in later dis
cussions, first we review some results from [S1, 5] for general e. Let us 
define K±(t) = (K,!',,a(t)) as the transition matrix M(s, p±) between 

the basis s = {sa ( x)} of Schur functions and the basis p± = { P_X ( x; t)} 
of Hall-Littlewood functions in Q(t) ®z sn, i.e., 

(3.1.1) sa(x) = L K,!',13 (t)PX(,a)(x; t). 
,13 

We fix a total order on z~,o ~ Pn,e which is compatible with the partial 
order {3 ~ a on it. Then K±(t) is a lower unitriangular matrix with 
entries K,!',,a(t) E Q(t), and K±(O) is the identity matrix. We define the 

matrix K±(t) = (K,!',13 (t)) by 

j(± (t) = tn(,13) K± (t- 1 ), 
at,,l3 at,,l3 
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where n(f3) = a(A(f3)) is the function given in (1.4.2). K;,13 (t) (resp. 

K!,13 (t) ) are called Kostka functions (resp. modified Kostka functions). 
Green functions are defined as a linear combination of modified Kostka 
functions. The determination of Green functions is equivalent to that 
of Kostka functions once we know the character table of W. Here we 
concentrate ourselves to (modified) Kostka functions rather than Green 
functions themselves. 

Let 

(3.1.2) 

By Corollary 4.6 in [81], combined with (2.3.4), fl(x, y; t) has the follow
ing expansion in terms of Hall-Littlewood functions. 

(3.1.3) n(x, y; t) = L b-;;. (t)P1(a) (x; t)PA.(a) (y; t) 
a 

= L P1(a) (x; t)QA(a) (y; t), 
a 

where a runs over e-partitions of any size. Let N* be the number of 
complex reflections in W. We define a polynomial G(t) E Z[t] by G(t) = 
(t-1)ntN* Pw(t), where Pw(t) is the Poincare polynomial associated to 
W (see. [81, 1.1]). We denote by A'(t) the diagonal matrix indexed by 
Z~·0 , whose aa-entry is given by b;t:(t-1 ). We put A(t) = t-nG(t)A'(t). 
Let !1' = (w' a.,) be the matrix defined by B ,,_, 

w~,/3 = tN* R(xa ® x/3 ® detv ), 

where xa is the irreducible character of W associated to a. In general, 
we denote by R(f), for a class function f of W, the graded multiplicity 
off in the coinvariant algebra R = tJJRi of W, i.e., 

(3.1.4) R(f) = L (!, Ri)w ti 
i;::>:O 

(see [81, 1.1]). Then it is known by [81, Th. 5.4] that i(±(t) and A(t) 
are determined as a unique solution for the following matrix equation. 

(3.1.5) 

Remark 3.2. Let n = (wa,/3) be the matrix defined by 

Wa,/3 = tN* R(xa ® x 13 ® detv). 



Green functions 459 

In [Sl, 1.4, 1.5] it is shown that the equation P' A' tp" = 0' such as 
(3.1.5) is equivalent to the equation PA tp = n with P' = P, P" = u Pu, 
where u is a permutation matrix arising from the complex conjugates of 
irreducible characters of W. Although it is not written explicitly there, 
we note that this equivalence works only when m = (m + 1, m, ... , m) 
and s1 = · · · = se_1 for s = (s0 , ... , Se-d in 1.1. So a simple relation 
between K+(t) and K_(t) as given in [Sl, 1.5] can not be found in our 
situation. 

We now restrict ourselves to the case where e = 2, and write K±(t), 
etc. as K(t), etc. as before by omitting the signature±. The following 
fact holds. 

Proposition 3.3. Assume that e = 2. Then Ka,fJ(t) E Z[t], 

which is a monic of degree n(/3)- n(a), and so Ka,fJ(t) E Z[t]. More
over, we have PA(x;t) E Z[x;t]. 

Proof. We remark that q = {qa,±(x; t)} and m = {ma(x)}, Q = 
{QA(x; t)} and P = {P(x; t)} are dual bases of each other with respect 
to the scalar product (, } on Q(t) ®z sn. It follows that 

M(Q,q) = M(P,m)* = (K(t)- 1K)* = tK(t)K*, 

where K = M(s, m) is the Kostka matrix, and K* denotes the trans
posed inverse of K. In view of Lemma 2.10 and Theorem 2.8, M(Q, q) 
are the matrices with entries in Z[t]. Since K is a matrix with entries 
in Z, we see that K(t) is a matrix with entries in Z[t]. Since K(t) is 
unitriangular, K(t)-1 is also a matrix with entries in Z[t]. This implies 
that PA(x;t) E Z[x;t]. 

It remains to show the formula for degKa,fJ· The following argu
ment is similar to [Sl, Cor. 6.8]. By [Sl, (6.7.3)], K* coincides with the 
matrix of the operator Ilv<v' IJb(v')=b(v)(I- Rv,v' ). This fact together 
with (2.9.1) implies, by a similar argument as in [M, III, (6.3)], that 
Ka,fJ(t) is the coefficient of Sa in 

(3.3.1) II 
v<v' b(v')'!b(v) 

= II II (1 + tRv,v' + t2 R~,v' + · · · )s{!J. 
v<v' b(v')'!b(v) 

Let Cl, 0 0 0 ,eM be the standard basis of zM. We denote by R+ the 
set of positive roots of type AM-b i.e., R+ = {ci - ci I 1 ~ i < j ~ 
M}. For any e = (e~, 0 0 0 ,eM) E zM such that Eei = 0, we define a 
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polynomial P(e; t) in t by 

P(e;t) = L tEm-v, 
(m-y) 

where (m-y) runs over all the choices such that e = L:-yER+ m-y"( with 
m-y E Z;:::o- We also define P*(e; t) by a similar formula as P(e; t), but 
this time, (m-y) runs over only the expression such that e = L:'Y m-y"( 

and that 'Y = ei -e3 corresponds to the raising operator Rv;,v; occurring 
in the expression in (3.3.1). Then P(e; t) is non-zero only when e = 
L: 71i(ei- ei+l) with 71i 2:: 0, and in that case, P(e; t) is a monic of degree 
L:77i = (e,8). (See [M, III, 6, Ex.4], here 8 = (M, ... , 1,0) E zM and 
(,}denotes the standard inner product in zM.) Clearly deg P*(e; t) $ 
deg p ( e; t) and since the choice (m-y) = ( 71i) is allowed, we see that 
degP*(e;t) = degP(e;t). 

Hence, by a similar argument as in [loc. cit.], we see that Ka,~(t) 
coincides with 

L e(w)P*(w-1(a+8)-(.8+8);t), 
wE6zn 

where a + 8, .8 + 8 are sums as elements in zM. We have 

(w-1(a + 8)- (.8 + 8), 8} =(a+ 8, w(8)}-(.8 + 8, 8} 

$(a+ 8, 8}-(.8 + 8, 8} 

= n(.8)- n(a). 

The equality holds only when w = 1. This proves the proposition. 

0 

We shall now compute certain values of K~.~(t). The following fact 
holds for any e 2:: 1. 

Proposition 3.4. Let ,80 = ( -; · · · ; -; 1 n) be the smallest ele
ment in Z~·0 . (Hence x~o coincides with the charocter detv of W.} 
Then we have 

K~.~o (t) = R(x0 ), 

(See (3.1.4} for the definition of R( ). Note that R(x0 ) coincides with 
the fake degree of a). 

Proof. Although the argument is similar to, and much simpler than 
the proof of Lemma 7.2 in [81], we give it below for the sake of complete
ness. We consider the equation {3.1.5). Let b~0 be the first entry of the 
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diagonal matrix A(t). Since n(/30 ) = E~=l (ei- 1) = N*, the equation 
(3.1.5) implies that b130 = 1. Again by (3.1.5), we have 

j(- (t)br.o tn(f3o) = w' .. = tN* R(x"') a,f30 ~-'O a,,..0 • 

and so K;;_ .. (t) = R(x"'). Similarly, we have 
>folD 

tn(f3oft; .. i(+ (t) = w::. = tN* R(X"" ® (detv)2). ,..o a,/30 ,..o,a 

0 

Next we shall show that 

Proposition 3.5. Assume that e = 2, and let /31 = (n;-) be the 
largest element in Z~·0 • (Hence x/31 is the unit character of W ). Then 
for any a E Z~·0 , we have 

In particular, we have Kf31 ,a(t) = 1. 

3.6. The proof of Proposition 3.5 will be done in 3.9. We consider 

the substitution of t = (1, t, t 2 , • • ·) into the variables y = {y?) I 1 :::; 

j:::; mk,O:::; k:::; 1} by yt) = t 2Ci-l)+k. Then we have 

Lemma 3. 7. Ra(y; t)ly=t is a polynomial in t of the form tn(a)+ 
higher degree terms. 

Proof. We consider 6m = 6m.0 x 6m.1 as a subgroup of 6 M along 
the total order in Min 2.5. Suppose that v0 = (i0 , k0 ) EM corresponds 
to a number b (1:::; b:::; M). We define a subset X of 6m as follows. If 
mo = m 1 + 1, put X= 6~ (see 2.7). If m 0 = m 1 , put 

2 b ~) 2a+2 2a+b * 

lw E 6m, 1 :::; 2a + b:::; M} U 6~. 

Then it is easy to check by the definition (2.5.2) that 



462 T. Shoji 

unless wE X. If wE X, we see that 

w{II (y(k)t(k)} I = tn(w(a)). 
k y=t 

(3.7.1) 

Moreover, w(a) = a if w E S?x. If w fj. S?x, then w(a) < a, and so 
n(w(a)) > n(a). We also note that 

w{ III},~(x;t) /II II (x~k)- x3k)) }I = 1 
k,i k (i,k)<(j,k) y=t 

~~s~ ~~s~ 

for w E X. It follows, by [M, III, 1.4], that 

Then one can write as 

where 

A(t) = 

L w{ II(y(k))a(k) II I}k)(y;t) I II II (y~k)- y;k)) }I . 
wEX\6?,. k k,i k (i,k)<(j,k) y=t 

One can check that A(t) has an expansion as a formal power series 
of t whose initial term is strictly bigger than tn(a) by (3.7.1). Since 
Ra(Y; t)iy=t is a polynomial in t, A(t) is a polynomial divisible by va(t). 
This implies that va(t)-1 A(t) is a polynomial in t whose lowest degree 
term is strictly bigger than tn(a). The lemma is proved. 0 

We now consider the substitution oft = (1, t, t 2 , ... ) into the infin

itely many variables y = {yt> I j = 1, 2, ... }. Then we have 

1 
Lemma 3.8. n(x, y; t) iy=t= II (0). 

j 1- Xj 

Proof. We consider the second expression of O(x,y;t) in (3.1.2). 
For each i,j ~ 1, we have 
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by substituting y = t. It follows that 

0 

3.9. We shall prove Proposition 3.5. By substituting y = t in the 
both sides of (3.1.3), and by using Lemma 3.8, we have 

where A= A(a). By taking the degree n parts on both sides (cf. [M, 
I, (2.5)]), 

(3.9.1) hn(x(O)) = L QA(y; t)iy=tPA(x; t), 
lal=n 

where hn(x(0)) is a complete symmetric function of degree n with respect 
to the variables x(O). Since hn(x(0 )) = S(n)(x(0 )), we see that hn(x(o)) co
incides with s~1 (x). Comparing (3.9.1) with (3.1.1), we see that K~1 ,a(t) 
is obtained as the limit of the polynomials QA(Y; t) with finitely many 

variables y = (yt>) under the substitution y = t. (Here the limit of 
QA(Y; t) is taken in the sense of [81, 3.15].) On the other hand, QA = Ra 
by Theorem 2.8. Hence by Lemma 3.7, we see that K~10cc(t) is obtained 
as the limit of the polynomials of the form tn(a)+ higher terms. But 
Proposition 3.3 implies that degK~1 ,a = n(a) - n(/31 ) = n(a). This 
shows that K~1 ,oc(t) = tn(a), and Proposition 3.5 follows. 

As a corollary, we have 

Corollary 3.10. Assume that e = 2. Let the aa-entry of the 
diagonal matrix A(t) in 3.1 be bcc(t). Then we have 

~ - 2N* L..J ba(t) = t . 
aE'Pn,r 
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Proof The equation {3.1.4) together with Proposition 3.5 implies 
that 

a 

= tw R(xf31 ® xl31 ® e) 

= tN* R(e) 

= t2N*. 

D 

Remark 3.11. Let G{IFq) be a (split) finite reductive group over a finite 
field of q elements and Wits Weyl group. To each irreducible character 
x of W, Green function Qx.(q) of G{IFq) is associated by Deligne-Lusztig 
(DL). They are determined as a solution of the matrix equation of the 
form P A tp = n. It is known that A is a block diagonal matrix, and the 
sum of the 11-entries of each block is equal to q2N*, which coincides with 
the number of unipotent elements in G {IF q). In the case of G Ln {IF q), the 
matrix A is a diagonal matrix indexed by partitions of n, and the AA
entry of A coincides with the number of elements in the unipotent class 
in G{IFq) corresponding to A. 

In (GM), Geck and Malle formulated a different matrix equation 
PA tp = n for each G{IFq) by making use of parameter set of unipotent 
characters of G{IFq) instead of unipotent classes. They conjectured that 
the sum of 11-entries {which correspond to special characters of W) of 
each block of A is again equal to q2N*, and verified it in the case of 
exceptional groups. 

In our situation, limit symbols are related neither to unipotent 
classes nor to unipotent characters. Corollary 3.10 shows that, even 
so, a similar fact holds in our case. 

3.12. Here we give some examples of Green functions associated 
to limit symbols in the case where e = 2. Below is the tables of modified 
Kostka functions K(t) = (Ka,{3(t)). In each of the tables, first column 
denotes double partitions f3 E Pn,2 , under the order compatible with the 
values of a functions. 

Our Green functions associated to limit symbols are different from 
original Green functions associated to u-symbols, even in the case of 
Weyl groups of type Bn· We give below the table of modified Kostka 
functions associated to u-symbols in W(B2 ) which is related to the orig
inal Green functions of S05 {1Fq) for the sake of comparison. 
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Table 1. K(t) for W(B2) 

( -; 1 ) 
(12;-) t2 t2 
( -; 2) t2 t2 
(1; 1) t3 + t t t t 
(2;-) 1 1 1 1 1 

Table 2. K(t) for W(B3) 

( -; 1 ) 
(13;-) t6 t6 

( -; 21) e +t5 t5 
(1; 12) tB + t6 + t4 t4 t4 t4 
( -; 3) t3 t3 t3 
(12; 1) e +t5 + t3 t5 + t3 t3 t3 t3 
(1;2) t6 + t4 + t2 t2 t4 + t2 t2 t2 t2 t2 

(21;-) t4 + t2 t4 + t2 t2 t2 t2 t2 
(2; 1) t5 + t3 + t t3 + t t3 +t t3 + t t t t t t 
(3;-) 1 1 1 1 1 1 1 1 1 1 

Table 3. K(t) for W(B2), the case of u-symbols 

(-; 1 ) 
(12;-) t2 t2 
(1; 1) t3 + t t t 
( -; 2) t2 t 
(2;-) 1 1 1 1 

3.13. Let {J[n be the Lie algebra of GLn(C), and t the Cartan 
subalgebra of £Jln consisting of diagonal matrices. Let 0>. be the nilpotent 
orbit in £J[n corresponding to a partition>. of n. We consider the scheme 
theoretic intersection t n o >. of t with the closure o >. of o >.. Then the 
coordinate ring C[tno>.] is a finite dimensional C-algebra, equipped with 
a structure of graded 6n-modules. We denote it by R>. = ffii Rt. De 
Concini and Procesi [DP], and Tanisaki [T] showed that the polynomial 

Rf3(xa) = 2)xa, Rf)6 n ti 
i 
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coincides with the modified Kostka polynomial Ka,{3(t) associated to 
6n· R>. is also interpreted as the quotient ring of C[x] = C[x1, ... , xn] 
by h, where I>. is the ideal generated by p(x) E C[x] such that p(8)f = 0 
for any f E V>., (here v>- is the Specht module of 6n realized in C[x]). 
Note that the map C[x]--+ R>. factors through the surjection C[x]-+ R 
(R is the coinvariant algebra of 6n) and we have a surjective algebra 
homomorphism R --+ R>.. 

This latter construction of R>. makes sense even in the case of com
plex reflection groups W = G(e, 1, n), and we get the graded W-module 
Rf3 for {3 E Pn,e· One might expect that Rf3(XOt) coincides with our 

modified Kostka function K0t,{3(t) associated to limit symbols. (Note 
that this does not hold in the case of original Green functions of type 
Bn since the counter part of the map R --+ ROt for Green functions is 
no longer surjective). H.-F. Yamada (Y] has computed some examples 
of Rf3(xOt) for small rank cases, which supports our conjecture. 
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