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§1. ·Introduction 

The Ariki-Koike algebras first appeared in the work of Chered­
nik [30] who discovered these algebras in his study of the q-analogue 
of Drinfeld's duality between the degenerate affine Heeke algebra and 
the Yangians for g[N. Seven years later these algebras were rediscov­
ered by Ariki and Koike [8] who were interested in them because they 
are a natural generalization of the twahori-Hecke algebras of types A 
and B. At almost the same time, Broue and Malle [21] also attached 
to each complex reflection group a cyclotomic Heeke algebra which, they 
conjectured, should play a role in the decomposition of the induced cus­
pidal representations of the finite groups of Lie type. The Ariki-Koike 
algebras are a special case of Broue and Malle's construction. 

The deepest conjectures of Broue, Malle and Michel concerning the 
Ariki-Koike algebras have not yet been proved (see §2.5); however, many 
of the consequences of these conjectures have been established. Further, 
the representation theory of these algebras is beginning to be well under­
stood. For example, the simple modules of the Ariki-Koike algebras have 
been classified; the blocks are known; there are analogues of Kleshchev's 
modular branching rules; and, in principle, the decomposition matrices 
of the Ariki-Koike algebras are known in characteristic zero. In many 
respects this theory looks much like that of the symmetric groups; in 
particular, there is a rich combinatorial mosaic underpinning these re­
sults which involves familiar objects like standard tableaux (indexed by 
multipartitions), Specht modules and so on. 
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The cyclotomic Schur algebras were introduced by Dipper, James 
and the author [42]; by definition these algebras are endomorphism al­
gebras of a direct sum of "permutation modules" for an Ariki-Koike al­
gebra. This generalizes the Dipper-James definition [39] of the q-Schur 
algebras as endomorphism algebras of tensor space. We were interested 
in these algebras both as another tool for studying the Ariki-Koike alge­
bras and because we hoped that there might be a cyclotomic analogue 
of the famous Dipper-James theory [27, 39]. 

As with the Ariki-Koike algebras, the representation theory of the 
cyclotomic Schur algebras is now well developed. They are always cel­
lular algebras; indeed, they are quasi-hereditary. The cellular basis of 
these algebras is indexed by a generalization of semistandard tableaux 
and their representation theory looks very much like the representation 
theory of the q-Schur algebras. In particular, they have a highest weight 
theory; there is a cyclotomic Schur functor and a double centralizer the­
orem; the Jantzen filtrations of the cyclotomic Weyl modules satisfy a 
generalization of the Jantzen sum formula; and the cyclotomic Schur 
algebras have Borel subalgebras and admit a triangular decomposition. 

In the short time since its inception this theory has blossomed pro­
ducing many interesting results; largely this is because it generalizes the 
representation theories of the symmetric groups, th.e Schur algebras and 
the q-analogues of these. Many of the results in this article have the 
flavour of results from Lie theory; however, as yet, there are no known 
connections between the representation theories of the cyclotomic Schur 
algebras and the finite groups of Lie type except in the case where the 
underlying complex reflection group is actually a Weyl group. 

The aim of this article is to describe the representation theory of 
these algebras in detail. Throughout we have tried to give an indica­
tion of how the results are proved; unfortunately, in distilling one or 
more papers in to one or more paragraphs some of the finer details have 
inevitably been lost. 

§2. The Ariki-Koike algebras 

In this chapter we introduce the Ariki-Koike algebras by giving three 
different constructions of them. From the point of view of presentations 
it is clear that all three definitions agree; however, for motivation, and 
also for proving certain results, it is important to know the different 
contexts in which the Ariki-Koike algebras arise. 

We begin with a brief discussion of the complex reflection groups 
which underpin the Ariki-Koike algebras. In the final section we give a 
brief account of the conjectures of Brow§ and Malle [21] which describe 
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the role that the Ariki-Koike algebras should play in the representation 
theory of the finite groups of Lie type. 

2.1. The complex reflection group of type G(r, 1, n). 
Fix integers r ~ 1 and n ~ 0 and let Wr,n = 7Ljr7L I 6n be the 

wreath product of a cyclic group of order r and a symmetric group of 
degree n. Then Wr,n is the complex reflection group of type G(r, 1, n) in 
the Shephard-Todd classification [116]; in particular, Wr,n has a faithful 
representation on a complex vector space on which it acts as a group 
generated by reflections (see section (2.3) ). 

If r = 1 then w1,n ~ 6n is just the symmetric group 6n. If r = 2 
then W2,n = 7L/27L >l 6n is the hyperoctohedral group, or the group of 
signed permutations. In these two cases Wr,n is a Coxeter group or real 
reflection group; in fact, they are the Weyl groups of type An-1 and Bn 
respectively. 

The group Wr,n has the Coxeter like presentation given by the fol­
lowing diagram. 

0 • • ... ____ 
to t1 t2 tn-1 

The circle around the r indicates that the corresponding generator t0 has 
order r; otherwise, this should be read as a standard Dynkin diagram. 
Thus, as an abstract group, Wr,n is generated by elements to, t1, ... , tn-1 
which are subject to the relations 

t() = 1, 
t7 = 1, 

tot1tot1 = t1tot1to, 
t;tj = tjt;, 

t;ti+ 1 t; = ti+1 t;ti+ 1' 

for 1 ::; i < n, 

for 0 ::; j < i- 1 < n- 1, 
for 1 ::; i < n - 1. 

In particular, the subgroup (h, ... , tn-1) of Wr,n is isomorphic to the 
symmetric group 6n; hereafter, we identify 6n and (t1, ... , tn-1) via 
the map (i,i + 1)f------+t;, for 1::; i < n. 

Let h = to, l2 = htot1, ... , ln = tn-1 ... htoh ... tn-1· Then 
h, ... , ln generate a subgroup of Wr,n isomorphic to 7Ljr7L x · · · x 7Ljr7L 
(n copies), which is just the base group when we consider Wr,n as 
the semidirect product (7Ljr7L x · · · x 7L/r7L) >l 6n. Thus, as a set, 
Wr,n = { 1~ 1 •. • l~"w I 0 ::; a; < r and w E 6n} and these elements are 
all distinct. In particular, IWr,nl = rnn!. 

In general, Wr,n is not a Coxeter group so the familiar combinatorics 
of root systems and length functions cannot be used in understanding 
Wr,n and its representations. (Bremke and Malle [16] have defined a 
root system for Wr,n·) The theory of complex reflection groups is still 
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very much in its infancy; the major tool being used to understand these 
groups is the geometry of their reflection representation. 

2.2. The Ariki-Koike algebras 

The Iwahori-Hecke algebras of Weyl groups play an important role 
in the representation theory of the groups of Lie type. Two important 
special cases of these algebras are the Iwahori-Hecke algebras of the 
Weyl groups of types An-1 and Bn which are the groups G(1, 1, n) and 
G(2, 1, n), respectively. Ariki and Koike [8] observed that the defini­
tion of these algebras could be generalized to give a Heeke algebra, or 
deformation algebra, for each complex reflection group of type G(r, 1, n). 

Let R be an integral do~ain with 1 and let q, Qt, ... , Qr be elements 
of R with q invertible. Let Q = {Qt, ... , Qr }. 

Deforming the relations of Wr,n we obtain the Ariki-Koike algebra. 

Definition 2.1 (Ariki-Koike [8]). The Ariki-Koike algebrais the uni­
tal associative R-algebra £q,Q(Wr,n) with generators To, T1, ... , Tn-1 
and relations 

(To- Qt) ... (To- Qr) =0, 
(Ti- q)(Ti + 1) = 0, 

ToT1ToT1 = T1ToT1To, 
TiTi =TiTi, 

TiTi+1Ti = Ti+1TiTi+t. 

for 1:::; i < n, 

for 0 :::; i < j - 1 < n - 1, 
for 1 :::; i < n - 1. 

The three homogeneous relations are known as braid relations. 
Typically, we write .YE = £q,Q(Wr,n); when we wish to emphasize 

the ring of definition we will write .YE = .YER,q,Q(Wr,n)· 
Notice that if R contains a primitive rth root of unity ( and we set 

q = 1 and Q 8 = (8, for 1:::; s:::; r, then .YE ~ RWr,n, the group algebra 
of Wr,n (because the relations collapse to give those of Wr,n for this 
choice of parameters). 

Let w E 6n. Then w = ti1 •.. tik for some ij with 1 :::; ij < n. If k 
is minimal we say that ti1 ••• tik is a reduced expression for w and define 
Tw = Ti1 ••• Tik. Since the braid relations hold in .YE it follows from 
Matsumoto's monoid lemma (see, for example, [103, Theorem 1.8]), 
that Tw is independent of the choice of reduced expression for w. 

Mimicking the definition of the elements lk in Wr,n, fork= 1, ... , n 
set Lk = q1-kTk-1 ... T1ToT1 ... Tk-1· (The renormalization by the 
unit q1-k is there to make the combinatorics more natural later on.) 
Using the relations it is straightforward to see that L 1, ... , Ln generate 
an abelian subalgebra of .YE and that the symmetric polynomials in 
L1, ... , Ln belong to the centre of£. 
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A priori there is no reason to expect that the presentation above 
will yield an interesting algebra. The first indication that £ is worth 
studying is the following theorem. 

Theorem 2.2 (Ariki-Koike [8]). The Ariki-Koike algebra £ is 
free as an R-module with basis { L~' ... L';;nTw I 0::; ai < r and w E 6n }. 

In particular, notice that£ is R-free of rank rnn! = IWr,nl for any 
choice of R, q and Q. Furthermore, the subalgebra of£ generated by 
T1, ... , Tn-1 is isomorphic to the Iwahori-Hecke algebra J%(6n) of the 
symmetric group 6n. Hereafter, we identify the two algebras J%(6n) 
and (T1, ... , Tn-ll· 

Using the relations it is not hard to show that £ is spanned by 
the elements L~' ... L';"Tw; there are IWr,nl such elements. To prove 

. linear independence Ariki and Koike explicitly constructed the simple 
£-modules using a generalization of Young's seminormal form for the 
Ariki-Koike algebras when R = C(q, u 1 , ... , ur); see Theorem 3.2 below. 
This shows that £/ Rad £ has dimension at most I Wr, n I· Hence, £ 
is semisimple and Theorem 2.2 is proved when R = C(q,Ql, ... ,Qr)· 
The general case now follows by a specialization argument. 

There are now other proofs of Theorem 2.2 available. Brow~, Malle 
and Rouquier [24, Theorem 4.24] have given a geometrical argument 
which results from thinking of £ as a quotient of the group algebra of 
the braid group of Wr,n and studying its monodromy representation; this 
is the topic of the next section. Sakamoto and Shoji [113] also proved 
Theorem 2.2 as a consequence of an analogue of Schur-Weyl reciprocity 
for £ and a particular quantum group; we will return to this in §5.4 
below. Another proof, using the affine Heeke algebra Hn below, can be 
extracted from related arguments of Brundan and Kleshchev; see the 
proof of [28, Theorem 3.6]. 

Finally, we remark that Shoji [117] has given a different presenta­
tion of£ when R = C(q,Q1 , ... ,Qr). Shoji's presentation is very 
interesting and deserves further study. 

2.3. The braid group of Wr,n and the Heeke algebra 

At almost the same time that Ariki and Koike introduced their alge­
bra, Brow~ and Malle [21] associated to each complex reflection group W 
a cyclotomic Heeke algebra; for the group Wr,n· Brow§ and Malle's cy­
clotomic Heeke algebra is precisely the Ariki-Koike algebra. Brow§ and 
Malle's motivation was that they expected that the cyclotomic Heeke al­
gebras should play a role in the representation theory of the finite groups 
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of Lie type similar to, but more complicated than, that played by the 
Iwahori-Hecke algebras (see §2.5). 

In this section we briefly describe Brow~ and Malle's definition in 
the case of Wr,n and some of its consequences. 

Let V be the complex vector space with basis { €1, ... , En} and let 
( E <C be a primitive rth root of unity. The symmetric group 6n = 
(h, ... , tn- 1) acts on V in the natural way; extend this to an action of 
Wr,n by letting t0 act via then x n matrix diag((, 1, ... , 1). This defines 
a faithful representation of Wr,n· Observe that each of the generators 
of Wr,n acts as a reflection (that is, fixes a space of codimension 1), so 
this shows that Wr,n is a complex reflection group. 

Let n = {t:i-(kt:1 11::;j::;i::;nandmax(j-i,-1)<k<r}. 
Then nisin one-to-one correspondence with the set of reflections in Wr,n, 
where the correspondence attaches to each reflection its unique eigen­
vector in 0 with non-trivial eigenvalue; see [16, §3]. For each w E 0 
let Hw be the hyperplane orthogonal tow, let .A = V \ UwEfl Hw be the 
associated hyperplane complement and .A /Wr,n its quotient by Wr,n· 

Definition 2.3. The braid group of Wr,n is the group 

!Br,n = 1r1 (.A /Wr,n' xo), 

where Xo E .A /Wr,n· 

Here, 1r1 (.A /Wr,n, xo) is the fundamental group of the quotient 
space .A /Wr,n with base point x0 • Because .A is connected !Br,n is 
independent of the choice of x 0 . 

If r > 1 then !Br,n is a braid group of type Bn and as an abstract 
group it is generated by elements s0 , •.• , sn_ 1 subject to the relations 

where 1 ::; i < n- 1, 0 ::; j < n and li - jl > 1. In particular, observe 
that Wr,n is a quotient of !Br,n (via the map which sends Si to ti for 
0 ::; i < n). 

The generators of !Bn,r can be chosen as generators of the mon­
odromy around the hyperplanes. Bessis [12] has now given a general 
argument for the existence of such presentations for the braid groups of 
complex reflection groups. 

Broue and Malle considered the algebra R!Br,n/ lq,Q, where lq,Q is 
the ideal of R!Br,n generated by (so -Q1) ... (so -Qr) and (si -q)(si +1), 
for 1 ::; i < n; evidently, .Ye ~ R!Br,n/ Iq,Q· One consequence of this 
definition is that we can use the monodromy representation of the braid 
group !Br,n to analyze£. This leads to a more conceptual proof of the 
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fact that£ is always free as an R-module of rank IWr,nl (a corollary of 
Theorem 2.2). Moreover, it yields the following important result. 

Theorem 2.4 (Broue-Malle-Rouquier [24, Theorem 4.24]). Let 
K = CC(q, Q1, ... , Qr)· Then the monodromy representation of ~"Br,n 
induces an isomorphism of K-algebras £oc,q,Q ~ KWr,n· 

Here, KWr,n is the group algebra of Wr,n over K. That £oc,q,Q 
and KWr,n are isomorphic algebras can be established by a general Tits 
deformation theory argument (see, for example, [34, §66]). The main 
point of this result is that the isomorphism is canonically determined. 

Lusztig [96] has proved a similar result for the Iwahori-Hecke alge­
bras of Weyl groups; however, his argument is less elementary relying on 
a deep property of the cells of Weyl groups. For Weyl groups, Lusztig's 
isomorphism and that of Theorem 2.4 are different. 

2.4. The affine Heeke algebra of type A 

The Ariki-Koike algebras should really be considered as affine ob­
jects because they are quotients of the (extended) affine Heeke algebra of 
type A (i.e., the affine Heeke algebra of GLn(CC)). The affine Heeke alge­
bra Hn is the R-algebra with generators T1, ... 'Tn-1 and Xr1' ... , X~1 

and relations 

(Ti- q)(Ti + 1) = 0, TiTi+lTi = Ti+1TiTi+1• 
TiTk = TkTi, xixk = xkxi, 

TiXiTi = qXi+1 
TiXk = XkTi 

and xixi-1 = 1 = xi- 1 xi for all sensible values of i, j, k with li- k 1 > 1. 
In particular, abusing notation slightly, notice that there is surjective 
algebra homomorphism Hn - £ given by sending Ti f-------+ Ti and xj f-------+ 

L1, for 1 -:; i < n and 1 -:; j -:; n respectively. It is easy to see that 

£q,Q(Wr,n) ~ Hn/((X1- Q1) ... (X1- Qr)). 
It follows from the relations that T1, ... , Tn-l generate a subalge­

bra of Hn isomorphic to £q(6n) and that Xr\ ... , X~ 1 generate a 
Laurent polynomial ring. Therefore, as an R-module, Hn ~ £q(6n) ® 

R[Xr1' ... 'X~ 1 ]; so, Hn is a twisted tensor product. 
Let P = E9~= 1 Zt:i be the free Z-module with basis E1, ... , En; so, P 

is the weight lattice of GLn(CC). The symmetric group 6n acts on P by 
permuting the Ei· 

If .X E P set X>. = X : 1 .•. X~". Then the two commutation rela­
tions for the Ti and the X 1 can be replaced by the relation 
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where .X E P, ai = Ei - Ei+l and 1 :::; i < n. A quick calculation shows 
that X A- xt;A is divisible by 1 - xa, so the right hand side does make 
sense. Notice that when q = 1 this relation becomes tix>- = xt;Ati; 
this is what we expect because the extended affine Weyl group is the 
semidirect product P ><1 6n. 

Now suppose that R is an algebraically closed field. Bernstein 
showed that the centre of fin is the set of symmetric polynomials in 
xl, ... , Xn (Theorem 5.4). Consequently, fin is finite dimensional over 
its centre; therefore, by Schur's Lemma, every irreducible fin-module is 
finite dimensional (with dimension at most n! since dimR fin/Z(fin) = 
(n!) 2 by Theorem 5.4 below). 

As remarked above, each Ariki-Koike algebra £q,Q(Wr,n) is a quo­

tient of fin, so every irreducible £-module is also an irreducible fin­
module. Conversely, suppose that R is algebraically closed and that M 
is an irreducible fin-module. If CM(X1 ) is the characteristic polynomial 
for the action of X 1 on M then £M := fin/(cM(X1 )) is an Ariki-Koike 
algebra (with parameters the eigenvalues for the action of X 1 on M) 
and M is an irreducible £M-module. (More generally, M is an irre­
ducible module for any Ariki-Koike algebra obtained by quotienting out 
by the ideal generated by any polynomial in xl which is divisible by 
CM(Xl).) Thus the irreducible fin-modules are precisely the irreducible 
£q,Q(Wr,n)-modules as Q ranges over the elements of (Rxt for r :2: 1. 

2.5. The conjectures of Brow~, Malle and Michel 

The conjectures which we now discuss grew out of the attempts 
of Brow~ and others to understand Brow~'s [18] conjectures for blocks 
with abelian defect groups in the case of the finite reductive groups. 
We consider only a very special case of these conjectures; for references 
and further details see the original papers [21, 22, 25] and Brow~'s [19] 
comprehensive survey article. 

Let G be an algebraic group defined over iFq, where q is a prime 
power, and let W be the Weyl group of G. Let F: G -----+ G be a 
Frobenius map and let G = GF be the F-fixed points of G. We assume 
that W is F-split. The simplest example is to take G = GLn(iFq) and 
F(aij) = (a;1); then G = GLn(q) and W = 6n. 

Let B be an F-stable Borel subgroup of G and set B = BF. It 
is well-known that the irreducible constituents of Ind~(1) are in one­
to-one correspondence with the irreducible representations of W; see, 
for example, [29]. The Iwahori-Hecke algebras of Weyl groups play an 
important role in this theory; indeed, £q(W) ~ Enda (Ind~(1)) and 
this explains why the dimensions of the irreducible representations in 
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the unipotent principal series, the constituents of Ind~ (1), are given by 
evaluating certain polynomials Dx.(x) at x = q. The conjectures which 
follow attempt to explain other "generic" features of the representation 
theory of finite reductive groups. 

Let Bw be the Braid group of W and for w E W let 1!1. E Bw be the 
lift of w (under the canonical embedding of W into the positive braid 
monoid Bit.). Brieskorn and Saito [17] showed that the centre of Bw 
is generated by 1r = w5 (or wo if w0 is central in W), where w0 is the 
unique element· of maximal length in W. 

Call an element w E W good if 1r = wd for some d. Note that w has 
order d since w5 = 1 in W. Every conjugacy class of regular elements 
in W contains a good element. Assume that w is good. Then Broue and 
Michel [25] have shown that every good element is regular; so Cw(w) is 
a complex reflection group by Springer [118]. Let Bw = B(Cw(w)) be 
the braid group of Cw(w). It is conjectured that Bw = CBw (1!1.); this 
has now been proved in almost all cases [13, 14]. 

Let Xw be the Deligne-Lusztig variety associated to w; so Xw is 
the variety of Borel subgroups B' of G such that B' and F(B') are in 
relative position w. Fix a prime£ not dividing q and consider the etale 
cohomology groups H~(Xw, IQ£) of Xw. The finite group G = GF acts 
on Xw and hence also on H~(Xw, IQ£)· By [25,35] there is also an action 
of CBw (1!1.) on H~(Xw, IQ£) (this comes from an action of the positive 
braids in CBw (1!1.) on Xw)· In many cases the action of QfCBw (w) is 
known to factor through a cyclotomic Heeke algebra. Conjecturally, the 
action of CBw (1!1.) should generate Endij,G (H~(Xw, !Qt)); this is one of 
the key unsolved problems and it appears to be very hard. 

Let 1-l(G, F, W, w) be the image of QtCBw (1!1.) in the (graded) endo­
morphism algebra of ffii>OH~(Xw,Qt)· Then 1-l(G,F, W,w) is a finite 
dimensional algebra and the following conjecture is expected to be true. 

Conjecture 2.5 (Broue,Malle,Michel [19, 21, 22, 25]). 
Suppose that w is a good element of order d. 

(i) If i =I j then the QtGF -modules H~(Xw, IQ£) and Hg(Xw, IQ£) 
have no irreducible constituents in common. 

(ii) There is ad-cyclotomic Heeke algebra Jr;(Cw(w)) of the com­
plex reflection group Cw ( w) such that 

1-l(G,F, W,w) ~ £ij,,q(Cw(w)) ~ En~,GF ( ffiH~(Xw,Qt)). 
i~O 

(iii) There is a one-to-one correspondence x ~ Xq between the irre­
ducible representations of Cw ( w) and the irreducible constituents 
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of the QcGF -module ffii>O H~(Xw, Qc)· Moreover, for each irre­
ducible character X of C~(w) there is a polynomial Dx(x), de­
pending only on x, such that the degree of Xq is equal to Dx(q). 

We now explain the term d-cyclotomic Heeke algebra when Cw ( w) = 
Wr,n· Let ~ E C be a root of unity and x an indeterminate over Z[~] 
and let (d be a primitive dth root of unity. An Ariki-Koike algebra 
£x(Wr,n) = £R,v,Q(Wr,n) is d-cyclotomic if R = Z[~][x, x- 1 ] and the 
parameters of £x (Wr,n) are of the form v = (a" xb" and Q 8 = (a, xb,, 
for some rational numbers av, bv and a8 , b8 , such that: 

(a) ~,z = £x(Wr,n) 0R R/(x- (d)~ Z[~]Wr,n; and, 
(b) £q = £x(Wr,n) 0R Rj(x- q) is semisimple over its field of 

fractions. 

For example, take parameters v = xd and Q8 = xs-l (with~= 1); then 
~d ~ Z[(d]Wr,n· 

Thus, part (ii) of the conjecture together with (b) implies that the 
irreducible representations occurring in EBi H~(Xw, Qc) are in one-to-one 
correspondence with the irreducible representations of £q ( Cw ( w)); in 
turn, by (a) these representations are in one-to-one correspondence with 
the irreducible representations of Cw(w). Importantly, nothing here 
depends upon the choice of q or£. Conjecturally, these correspondences 
come from a derived equivalence, so they are really perfect isometries 
("bijections with signs"). The polynomials Dx(x) in part (iii) are the 
generic degrees of £x(Cw(w)); see the remarks after Theorem 3.6. 

In fact, part (iii) of the conjecture is already known. The key fact 
needed to establish this is that the virtual module ffii>o( -1)i H~(Xw, Qc) 
is a Deligne-Lusztig representation (specifically, it is-R£,(1), where Tw 
is the maximal torus associated to the conjugacy class of w in W), so its 
irreducible constituents are known. Parts (i) and (ii) of the conjecture 
are known in only a small number of cases. 

We also mention that everything above is compatible with the de­
composition of the unipotent characters of GF into d-Harish-Chandra 
series [22]. For these details, and stronger forms of the conjecture, we 
refer the reader to Brow~'s article [19]. 

To conclude this section we remark that if w = 1 then X 1 = G / B 
is the flag variety; so, H2(X1 , Qc) ~ Ind~(l) and all higher cohomology 
groups are zero. Thus, in this case the conjectures recover the well­
known results for the principal unipotent series of GF. (According to 
our definitions, w = 1 is not a good element of W; however, we have 
discussed only a special case of the general conjectures.) 
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§3. The representation theory of the Ariki-Koike algebras 

3.1. The semisimple representation theory of .Yf' 

271 

Because Wr,n is the wreath product 'll/r'lll 6n, its ordinary irre­
ducible representations are indexed by r-tuples of partitions of n. In 
this section we see that the same is true of the irreducible representa­
tions of .Yf' when .Yf' is semisimple. 

A partition of n is a sequence a = (a1 ~ a 2 ~ · · ·) of non-negative 
integers ai such that Ia I = Li>l ai = n; we write a = (ab ... , ak) 
if ai = 0 for i > k. A multipartition of n is an ordered r-tuple >. = 
(>. {l), ... , >. (r)) of partitions with 1>. {l) I+···+ 1>. {r) I = n. We write >. f--- n 
if >. is a multipartition of n. 

The multipartitions form a poset under dominance~. where>.~ J..L if 

t=l j=l t=l j=l 

for s = 1, 2, ... , r and all i ~ 1. If>. ~ J..L and >. =/= J..L we write >. 1> J..L· 

The diagram of>. is [>.] = { (i,j, s) 11 $_ j $_ >.~s) and 1 $_ s $_ r}. 
The elements of[>.] are called nodes; more generally, a node is any triple 
(i,j,s) where 1 $_ s $_rand i,j ~ 1. . 

A >.-tableau is a bijection t: [>.]----* {1, 2 ... , n }, which we consider 
as an r-tuple t = (t{ll, ... , t<rl) of labeled tableaux where t<s) is a >,(s)_ 

tableau for each s; the tableaux t<s) are the components of t. If t is a 
>.-tableau we write Shape(t) = >.. 

A tableau t is standard if, in each component, its entries increase 
from left to right along each row and from top to bottom down each 
column. For example, 

(3.1) 

are two standard ((3, 1), (1 2 ), (2, 1))-tableaux. Let T'X>.) be the set of 
standard >.-tableaux. 

If tis a >.-tableau and w E 6n let tw = tow be the tableau obtained 
from t by replacing each entry in t by its image under w. This defines 
a right action of 6n on the set of all >.-tableaux. For example, t = 

t>•(1,4,6,8,5)(2, 7)(3,9) in (3.1). 
If tis a tableau and k an integer, with 1 $_ k $_ n, theri the residue 

of k in t is defined to be rest(k) = qi-iQ8 , if k appears in row i and 
column j of t<sl; that is, t(i,j, s) = k. 
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The last ingredient that we need is something like the Poincare 
polynomial of a Coxeter group; however, be warned that it is not true 
that IWr,nl = PYe(q,Q) when R = C, q = 1 and Qs = (s-l, where 
( = exp(27ri/e) (that is, when .Yt' = RWr,n)· Let 

n 

i=l l~i<j~r -n<d<n 

We can now describe the irreducible representations of .Yt' when 
P£(q, Q) is invertible. (Note that if R is a field then P£(q, Q) is 
invertible if and only if P£(q, Q) 1:- 0.) 

Theorem 3.2 (Hoefsmit [76], Cherednik [30], Ariki-Koike [8]). 
Suppose that P£(q, Q) is invertible in R. 

(i) For each multipartition A let v>- be the R-module with basis 

{ Vt I t a standard A-tableau}. 

Then v>- becomes a right £-module via VtTo = rest(1)Vt and, 
for 1 -::; i < n, if 5 = tti is not standard then 

if i and i + 1 are in the same row oft, 

if i and i + 1 are in the same column oft, 

and if 5 is standard then 

,.,., (q- 1) rest(i) q rest(i)- res5 (i) 
Vt.Li = Vt + Vs. 

rest(i)- res5 (i) rest(i)- res5 (i) 

(ii) If R is a field then v>- is an irreducible £-module for each mul­
tipartition A. 

(iii) If R is a field then { v>- I A f- n} is a complete set of pairwise 
non-isomorphic irreducible .Yt' -modules. 

The general case follows from the type A case (r = 1); this is due 
to Hoefsmit who, in turn built upon Young's seminormal form for the 
symmetric groups. Cherednik does not state the result in this form; it 
is necessary to do some work to see that his result is equivalent. 

Part (i) is proved by a brute force calculation to show that the action 
of the generators on v>- respects the relations in .Yt'. The remaining 
parts can be proved by looking at how the commutative subalgebra 
2 = (L1, ... , Ln) of .Yt' acts on V >-. From Theorem 3.2(i) it follows that 
VtLk = rest(k)vt for all standard tableaux t, for 1 -::; k -::; n. Hence Rvt 
is an irreducible £-module; in fact, Ariki and Koike [8] show that every 
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irreducible £-module is of this form. Moreover, because P.Ye(q, Q) /=- 0 
if .5 and t are standard tableaux then .5 = t if and only if rest ( k) = res5 ( k), 
for 1 ::; k ::; n; this implies that Rvs 9:' Rvt as £-modules only if .5 = t. 
Therefore, v>- and V~' have a common composition factor only if>.= J.L; 
hence (ii). Part (iii) now follows by counting dimensions because 

dim£~ dim(£/Rad£) ~~)dim v>-) 2 = rnn! = IWr,nl ~dim£. 
>.f-n 

(The third equality follows from the Robinson-Schensted correspondence 
which implies that the sum of the squares of the number of standard >.­
tableaux, as>. runs over all multipartitions of n, is equal to IWr,nl-) As 
we have equality throughout, this also proves Theorem 2.2 (indeed, this 
is how Ariki and Koike first proved it). 

Corollary 3.3 (Ariki [2]). Suppose that R is a field. Then£ is 
semisimple if and only if P.Yt'(q, Q) /=- 0. 

Sketch of proof By Theorem 3.2 if P.Ye(q, Q) /=- 0 then£ is semi­
simple. For the converse, when P.Yt'(q, Q) = 0 the ideal of£ generated 
by 

n r-1 

(IT IT(Lk -Qs))( L Tw), 
k=l s=l wES,. 

is nilpotent. (This ideal affords the "trivial" representation of £.) D 

Halverson and Ram [75] have generalized the Murnaghan-Nakayama 
rule of the symmetric groups to give a method for computing the char­
acters of the irreducible representations v>-. (In fact, they also compute 
the characters of the irreducible representations of the cyclotomic Heeke 
algebras of type G(r,p, n); the irreducible representations of these alge­
bras were constructed by Ariki [3].) See also Shoji [117]. 

As remarked earlier the symmetric polynomials in £ 1, ... , Ln belong 
to the centre of£. In the semisimple case this is a complete description 
of the centre. 

Theorem 3.4 (Ariki-Koike [8]). Suppose that R is afield and that 
P.Yt'(q, Q) /=- 0. Then the centre of£ is equal to the set of symmetric 
polynomials in L1, ... , Ln. 

Graham [63] has recently announced that the centre of £R,q(6n) 
is always equal to the set of symmetric polynomials in £ 1, ... , Ln when 
R is an integral domain (this is the case r = 1). Ariki [4] has given an 
example which shows that the centre of £ can be larger than the set 
of symmetric polynomials when r > 1. 
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When q of. 1 and Pye(q, Q) of. 0 the author [104] has explicitly 
described the primitive central idempotents as symmetric polynomials 
in £1, ... , Ln (see also Shoji [117]); this gives a second proof of The­
orem 3.4. In addition, [104, 117] construct the primitive idempotents 
and a Wedderburn basis of £ in the semisimple case. 

Define T : £---+ R to be the R-linear map determined by 

if a1 = · · · =an = 0 and w = 1, 
otherwise, 

for 0 ::; ai < r and w E 6n. Notice that if q = 1 and Qs = ( 8 , where 
( = exp(2rri/r) E C, then T is the natural trace function on the group 
algebra CWr,n· The definition ofT looks quite ad hoc; however, as we 
explain below, T is canonically determined. 

Proposition 3.5. Assume that R is an integral domain. Then 
the following hold. 

(i) (Bremke-Malle [16]) T is a trace form on£. 
(ii) (Malle-Mathas [101]) Suppose that q, Q1, ... , Qr are all invert­

ible in R. Then T is non-degenerate. Consequently, £ is a sym­
metric algebra. 

Part (i) is straightforward; although we should mention that Bremke 
and Malle use a different (but, by [101], equivalent), definition of the 
trace form T. For the lwahori-Hecke algebras (r ::; 2), part (ii) is also 
routine (see, for example, [103, Prop. 1.16]); in contrast, whilst not 
difficult, the proof of (ii) is a laborious calculation when r > 2. As an 
indication of the difficulties here, no pair of dual bases for £ is known 
when r > 2 (except in the semisimple case; see [104, Theorem 3.9]). 

As we will describe, Proposition 3.5 provides the strongest known 
link between the representation theory of£ and that of the finite groups 
of Lie type (when r > 2). 

If R is a field and Pye(q, Q) of. 0 then£ is semisimple. Let x>- be 
the character of V >.. Since T is a trace function we can write 

1 
T = L X>. 

>.f-n S>,(q,Q) 

for some S>.(q, Q) E R. The rational functions S>.(q, Q) are the Schur 
elements of£; to describe them we need some more notation. In fact, by 
general arguments (see [61, Prop. 7.3.9]), S>.(q, Q) in Z[q±, Q±]; this is 
by no means obvious from the explicit formula for S>.(q, Q) given below. 

Define the length of a partition a to be the smallest integer f(a) 
such that ai = 0 for all i > f(a); the length of a multipartition .>. is 
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R(A) =max{ R(A(s)) II:::; s:::; r }. Suppose that L 2: l!(A) and set f3is) = 

A~s) +L-i fori= 1, ... ,Land 1:::; s:::; r; also set Bs = {f3is), ... ,/3rl}, 
for s = 1, ... , r. The matrix B = (f3is))s,i is the £-symbol of A [20, 99]. 

Theorem 3.6 (Geck-Iancu-Malle [60]). Suppose that A is a mul­
tipartition of n with L-symbol B = (f3is))s,i such that L 2: £(A). Then 
the Schur element S>.(q, Q) is equal to 

II (Qs- Qt)L 

( -l )a, L qb, 1J _1_::'0:.._s_<--'t::'O=-r-------:::::::1 ::::;=-· s--'-,t-=:'0=--r_a_,--::E=B=-.. --'1 :'0=-k--=:'0=-"'-"------

(q- l)n(Q1 ... Qr)n II II (q"'·'Qs- q"''Qt) 
1:'0s:'Ot:'Or (<>x.<>t)EB. x Bt 

a.,><>t if s=t 

where arL = n(r- 1) + G)(~) and brL = rL(L- 1)i;rL-r-3). 

It is not hard to see that iff>. is a primitive idempotent in£ which 
generates the Specht modules>. then S>,(q, Q) = 1/T(f>.); this observa­
tion is used in [104] to give a direct proof of Theorem 3.6. (Actually, [60] 
and [104] were both written at the same time; however, I obtained a 
different formula for s>,(q, Q). The final version of my paper shows that 
these two formulae coincide.) 

For r = 1, 2 the Schur elements were first computed by Hoefs­
mit [76]. Murphy [106] gave a different argument for type A (that is, 
r = 1). For r > 2 this result was conjectured by Malle [99]. Geck, Iancu 
and Malle use a clever specialization argument due to Orellana [108] 
to compute the Schur elements using the Markov trace of the Heeke 
algebras £q(6m)i in turn, this builds on work of Wenzl [122]. 

Theorem 3.6 is important because when combined with [99, 3.16 
and 6.11] it implies that <1>d-blocks [22] of the finite reductive groups sat­
isfy a generalized Howlett-Lehrer theory [77]. More precisely, Conjec­
ture 2.5(iii) is true and the dimensions of the irreducible representations 
in a unipotent <1>d-block are given by specializations of the generic de­
grees of£; these are the rational functions D>.(q) = s'l(q, Q)/s>.(q, Q), 
where T/ = ((n), (0), ... , (0)). Remarkably, for "spetsial specializations" 
the generic degrees are actually polynomials; see [100]. (The signifi­
cance of s'l(q, Q) is that it is the Poincare polynomial of the coinvariant 
algebra of Wr,n when Q1 = q and Q 8 = ( 8 - 1, for 2:::; s:::; r.) 

As a second application of Theorem 3.6, it follows from [60, Theo­
rem 5.2] and [23, Lemma 2.7] that the trace form Tis the unique trace 
form on £ which, in a precise sense [23, Theorem 2.1], is compati­
ble with the usual trace forms on both Wr,n and on the braid group 
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IJ3r,n· In addition, Malle [100] uses Theorem 3.6 to define the notion of 
"spetsiality" for complex reflection groups; for more details see [23]. 

Finally, Brow~ and Kim [20] use Theorem 3.6, together with the 
block structure of£, to show that the irreducible representations of£ 
can be grouped according to a generalization of Lusztig's families; a 
key ingredient in their paper is a block theoretical characterisation of 
Lusztig's families due to Rouquier [112]. Again, the combinatorial de­
scription of the spetsial families of £ had previously been conjectured 
by Malle [99]. 

3.2. The modular representation theory of£ 

We now turn to the modular representation theory of£; that is, 
the representation theory when £ is not semisimple. In types A and B 
the irreducible modular representations were first constructed by Dipper 
and James [37] and Dipper, James and Murphy [43], respectively. Gra­
ham and Lehrer [64] considered the general case using cellular algebra 
techniques. Even though the papers [43, 107] predated Graham and 
Lehrer, the cellular approach is already implicit in them. 

Graham and Lehrer constructed a cellular basis for £ by building 
upon the Kazhdan-Lusztig basis of £q(6n) (which is itself cellular). We 
will describe a different cellular basis of£ which comes from the work of 
Dipper, James and the author [42]. We prefer this basis because we know 
how to lift this basis to give a basis for the cyclotomic q-Schur algebras 
and because this basis has many nice combinatorial and representation 
theoretic properties. 

Let * be the anti-isomorphism of£ determined by Tt = Ti, for 
0 ~ i < n. Then * is an involution and T_; = Tw-1, Lk, = Lk and 
(h1h2)* = h2hi for wE 6n, 1 ~ k ~nand h1, h2 E £. 

Fix a multipartition >. and let 6.x = 6wl x · · · x 6.xc•l be the 
associated Young subgroup of 6n. Equivalently, 6.x is the row stabilizer 
of the >.-tableau t.A which has the numbers 1, ... , n entered in order from 
left to right, top to bottom first along the rows of t.A c1l and then t.x ' 2 l 
and so on (for example, see the first tableau in (3.1)). 

If tis a standard >.-tableau let d(t) E 6n be the unique permutation 
in 6n such that t = t>·d(t). Define elements x.x and ut in£ by 

r I.Ac 1 li+···+I.A''- 1 ll 

x_x = 2:::: Tw and ut =II II (Lk- Qs)· 
s=2 k=l 

It follows easily from the relations in£ that x.xut = utx.x. Although 
somewhat ungainly, the function of ut is used to control the eigenvalues 
of the Lk on the modules below. Set m.x = x.xut. 
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Definition 3. 7. Suppose that s and tare standard >.-tableaux. Let 
ffist = TJ(s)m>-.Td(t)· 

Theorem 3.8 (The standard basis theorem (42]). The Ariki-
K oike algebra £ is free as an R-module with cellular basis 

{ m5 t I s and t standard >.-tableaux, ).. f- n} . 

When r = 1 this result is due to Murphy (107] and when r = 2 
it was proved by Dipper, James and Murphy (43]. The basis {mst} is 
called both the Murphy basis and the standard basis of£. As mentioned 
above, Graham and Lehrer (64] were the first to produce a (different) 
cellular basis of£. 

The proof of this theorem starts by observing that £ is spanned 
by a set of more general elements m 5 t where s and t are row standard 
tableaux of the same shape. (The entries in row standard tableaux 
increase along rows, but not necessarily down columns.) Next, one shows 
that if s and t are not standard tableaux then m5 t can be written as 
a linear combination of "higher terms" mu11 ; so, by induction, £ is 
spanned by standard basis elements (here, "higher" is essentially the 
Bruhat order on 6n)· The rewriting rules involved in this step are 
essentially Garnir relations; in fact, they are a little bit easier than 
the classical Garnir relations because we work modulo a filtration. A 
counting argument now shows that we have a basis. In order to show 
that the basis is cellular some accounting details need to be carried 
through the argument; this adds only minor complications to the proof. 

We will not describe the theory of cellular algebras here; instead the 
reader is referred to the beautiful paper of Graham and Lehrer (64] or 
to Chapter 2 of my book (103]. A different approach to cellular algebras 
can be found in (93]. 

The required indexing of a cellular basis is already implicit in our 
notation. The two properties that the basis {mst} must satisfy for it to 
be cellular are: (i) the R-linear map determined by m5t~mt5 must be 
an algebra anti-isomorphism- this is obvious for us because m;t = mts; 
and, (ii) for all >.-tableaux t and all h E £ there exist scalars r 0 E R 
such that for any standard >.-tableau s 

(3.9) msth = L rumsu (mod 11.>-.), 
uET"(>-.) 

where 11.>-. is the R-module spanned by the elements mu11 for Shape(u) = 
Shape( tl) t> >.. The point of this equation is that the scalars r 11 depend 
only on t, tl and h; importantly, r 11 does not depend on s. 
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Applying the anti-isomorphism * to the last equation gives a left 
hand analogue of (3.9) for hmst· It follows that 1-{>.. is a two-sided ideal 
of£. 

Definition 3.10. Suppose that >. is a multipartition of n. The 
Specht module s>- is the right .Yt' -module generated by m>.. + 1-l>.. 

Thus, s>.. is a submodule of the quotient module .Yt' /1-l>.. Du and 
Rui [55] have shown how to construct the Specht modules as submodules 
of .Yt' (as distinct from sub quotients as we have defined them here). 

For each standard >.-tableau t let mt = me·t + 1-l>.. = m>..Td(t) + 1-l>.. 
It follows from Theorem 3.8 that s>. is free as an R-module with basis 
{ mt It a standard >.-tableau}; moreover, by (3.9) the action of .Yt' on 
this basis is given by 

mth = L rumu, 
u standard 
>.-tableau 

where the scalars ru E R are the same as those in (3.9). It follows from 
the left and right handed versions of (3.9) that there is a bilinear form 
on s>. which is determined by 

(ms, mt)muu = ffiusffitu (mod 'H>.) 

for all standard >.-tableaux .s and t. This form is *-associative; that 
is, (xh, y) = (x, yh*) for all x, y E s>. and h E .Yt'. Hence, Rad s>. = 
{x E s>.. I (x, y) = 0 for all y E s>.. } is a submodule of s>. and we may 
make the following definition. 

Definition 3.11. Suppose that >. is a multipartition of n. Then 
DA is the right .Yt' -module n>. = s>.. I Rad s>... 

Everything that we have said since Theorem 3.8 is part of the general 
machinery of cellular algebras. Without too much work, the cellular 
theory now produces the following result. 

Theorem 3.12 (Graham-Lehrer [64], Dipper-James-Mathas [42]). 
Suppose that R is a field. 

(i) For each multipartition f..L, DJJ- is either zero or absolutely irre­
ducible. 

(ii) { DJJ- I f..L f- n and DJJ- =J. 0} is a complete set of pairwise non­
isomorphic irreducible .Yt' -modules. 

(iii) If DJJ- =J. 0 then the decomposition multiplicity [S>..:D11-] =J. 0 only 
if>. [:': f..Li further, [SJJ-:DJJ-] = 1. 
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Graham and Lehrer proved this result for a different collection of 
modules; but this should really be considered their result. Again, for 
the cases r = 1,2 see [37,43]. 

In particular, note that every field is a splitting field for £. The 
reader might be concerned with the claim that any field R is a splitting 
field for £ because, for example, R == Q is not a splitting field for 
Wr,n when r > 2; however, this is OK because by definition all of the 
eigenvalues of To automatically belong to R. 

The multiplicities d>.11- = [S>.:Dil-] are the decomposition numbers 
of£ and the matrix (d>.JJ-) is the decomposition matrix of£. Part (iii) 
of Theorem 3.12 says that the decomposition matrix of £ is unitrian­
gular when its rows and columns are ordered in a way that is compatible 
with the dominance order. 

Corollary 3.3 and the theory of cellular algebras also gives us the 
following result. 

Theorem 3.13. Suppose that R is a field. Then the following are 
equivalent. 

(i) P5e(q, Q) 1: 0; 
(ii) £ is semisimple; 

(iii) £ is split semisimple; and, 
(iv) s>- = D>. for all multipartitions .A of n. 

If 1 ~ k ~ n let ttk be the subtableau of t containing the integers 
1, 2, ... , k; so, if tis standard then Shape(ttk) is a multipartition of k. 
We extend the dominance ordering to the set of standard tableaux by 
defining .5 12: t if Shape(stk) 12: Shape(ttk) for k = 1, ... , n. Again we 
write s !> t if .5 12: t and s 1: t. In fact, this partial order coincides with 
the Chevalley-Bruhat order ~ on 6n: s 12: t if and only if d(s) ~ d(t). 
This result really goes back to Ehresmann and, independently, Dipper 
and James [37]; see also [103, Theorem 3.8]. 

A useful fact about the standard basis of £ is the following. 

Proposition 3.14 ( [81, Prop. 3.7]). Suppose that 1 ~ k ~nand 
let .5 and t be standard tableaux of the same shape. Then, . there exist 
scalars ru E R such that 

mstLk = rest(k)m5 t + L rum5 u (mod 1-l>.). 
l11>t 

As shown in [81], the general case can be reduced to the case r = 1 
where it is a theorem of Dipper and James [38]. When r = 1 the result 
can be proved by induction on n and k using the fact that L1 + · · · + Ln 
belongs to the centre of£; see [103]. 
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As an application of Proposition 3.14, if R is a field and P.Yf'(q, Q) -=1-

0 then we can construct the irreducible £-modules either as the modules 
v>- of Theorem 3.2 or as the Specht modules s>-. By Proposition 3.14 
the modules v>- and s>- have the same 2-module composition factors; 
this implies that v>- S:! s>- as £-modules. 

We close this section with a reduction theorem which shows that, 
up to Morita equivalence, the only important Ariki-Koike algebras are 
those with parameters of the form (i) Q8 = qa, for some integers a8 with 
iasl < n, for 1 :<:::; s :<:::; r, or (ii) Q8 = 0 for 1 :<:::; s :<:::; r. The result actually 
says that we can reduce to the case where there exists a constant c E R 
and integers a 8 such that Q 8 = cqa• , for all s; However, if c -=1- 0 then 
we can renormalize the generator To as To = c- 1T0 and then the order 
relation for To becomes (To - qa1) ... (To - qa, ) = 0, so we are back in 
case (i). 

Recall that Q = { Q1, ... , Qr} and fix a partition Q = Q1 lJ · · · lJ Q"' 
(disjoint union) of Q and let 

II 
1:'0<><.6:'0~< Q;EQu -n<d<n 

QJEQr; 

Observe that Pn(q, Q1, ... , Q"') is a factor of the polynomial P.Yf'(q, Q). 

Theorem 3.15 (Dipper-Mathas [44]). Suppose that R is an inte­
gral domain and that Q = Q1lJ· · ·IJ Q"' is a partition of Q such that 
the polynomial Pn(q, Q1 , ... , Q"') is invertible in R. For a = 1, ... ,,; 
let r"' = IQ<>I· Then £q,q(Wr,n) is Morita equivalent to the R-algebra 

EB £q,Q1 (Wrl ,n1) ® · · · ® £q,QK (WrK ,nK.) · 
nb ... ,nK.~0 

n1+ .. ·+nK.=n 

If r = 2 then IQll = IQ2I = 1 and this is a result of Dipper and 
James [40]. Du and Rui [54] extended the argument of [40] to prove the 
special case of Theorem 3.15 when IQ"'I = 1 for 1 :<:::;a:<:::; ,;; notice that 
in this case £ is Morita equivalent to a direct sum of tensor products 
of lwahori-Hecke algebras of type A. 

For the proof of Theorem 3.15 observe that by induction it is enough 
to consider the special case ,; = 2. Without loss of generality we may 
assume that Q1 = {Qb ... ,Q8 } and Q2 = {Qs+l, ... ,Qr} for somes. 
The trick is to consider the right ideals vb = Vb£' for 0 :.:::; b :.:::; n, where 

s r 

Vb = II (Ll - Qt) · · · (Ln-b- Qt) · Tw1, • II (Ll - Qt) ... (Lb- Qt) 
t=l t=s+l 
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and Wb = (n, ... , 2, 1)b. It turns out that the standard basis of£ can 
be adapted to give a 'standard' basis of Vb. With this basis in hand one 
sees that vb is a projective £-module, that 

and Hom£(Vb, vc) = 0 forb# c. These results imply that EB~=O vb 
is a projective generator for £ which gives the result. The Morita 
equivalence can be described very explicitly; consequently, when R is a 
field it is easy to compare the dimensions of the simple modules under 
the equivalence. 

3.3. Ariki's theorem 

This section discusses a very deep result of Ariki [4] which gives a 
way to compute the decomposition numbers of the Ariki-Koike algebras 
~,q,Q(Wr,n) when q # 1 and Qs # 0 for all s. Throughout we assume 
that R is a field (we won't restrict ourselves to characteristic zero until 
we have to). For convenience write~= J%,Q(Wr,n) and let ~-mod 
be the category of finite dimensional right ~-modules. We begin with 
some motivation. 

If M is an ~-module let ResM be the restriction of M to ~-1· 
Then Res is an exact functor from ~-mod to ~-1-mod. Since~ is 
free as an ~-1-module Res has a right adjoint; namely, the induction 
functor which sends a right ~- 1-module N to IndN = N 0£;,_ 1 ~-

If >. is a multipartition of n - 1 and fJ is a multipartition of n write 
>. ----+ fJ if the diagrams of >. and fJ differ by only one node. From the 
definition of the Specht modules it is clear that the action of ~-1 on 
Res S~-' is given by ignoring the node in the tableaux with label n. With 
only a small amount of work this implies the following result. 

Proposition 3.16 (Ariki [4, Lemma 2.1]). Suppose that fJ is a 
multipartition of n. Then Res S~-' has a filtration with composition fac­
tors isomorphic to the Specht modules s>-, where >. runs over the multi­
partitions of n - 1 such that >. ----+ f-L· 

Let K0(~-mod) be the Grothendieck group of ~-mod. Thus, 
K0(~-mod) is the free abelian group generated by all isomorphism 
classes of finitely generated right ~-modules where the relations are 
given by short exact sequences. If M is a right ~-module let [M] be 
the corresponding equivalence class in Ko(~-mod). By Theorem 3.12 
{ [S~-']1 D~-' # 0} and { [D~-'] I D~-' # 0} are both bases of K0(~-mod) 
and the transition matrix between these bases is the decomposition ma­
trix of£. 
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The functors Res and Ind induce homomorphisms of 
Grothendieck groups which, by abuse of notation, we also denote by 
Res and Ind. Thus, Res: Ko(£n-mod) ----+ Ko(£n-1-mod) and 
Ind: K 0 (£n-mod) ----+Ko(£n+l-mod) are the maps given by Res[M] = 
[ResM] and Ind[M] = [IndM]. These homomorphisms are completely 
determined by their actions on the Specht modules and this is. given by 
Proposition 3.16 and Frobenius reciprocity. 

Corollary 3.17. Suppose that>. is a multipartition of n. Then 

Let Cn = L1 + · · · + Ln; then Cn belongs to the centre of £n. If M 
is any £n-module let Ma. = {mE M I (en- a)km = 0 fork» 0} be 
the corresponding generalized eigenspace for Cn acting on M, for a E R. 
Then Ma. is an £n-module since Cn E Z(£n); so M = ffia.ERMa. as an 
£n-module. 

Until further notice we assume that q i=- 1 and that Q8 = qa, for 
some integers a8 , for 1 ~ s ~ r. In particular, this implies that the 
eigenvalues of en are always linear combinations of powers of q. Let e 
be the multiplicative order of q; then e E N U { oo}. 

Now the Specht module s>.. is irreducible when R = C(q); there­
fore, it follows from Proposition 3.14, and a specialization argument, 
that Cn acts on the Specht module s>.. as multiplication by the scalar 
c(>.) = L~=lreSt>.(k). Therefore, s>.. = (SA)c(A.) is a single general­
ized eigenspace and, by the Corollary, Res s>.. = ffiiEZ(Res s>.. )c(A.)-qi 
and Ind s>.. = ffiiEZ(Ind s>.. )c(A.)+q' 0 Therefore the eigenvalues of Cn on 
an arbitrary £n-module change by ±qi, for some i E 'llje'll, under the 
functors Res and Ind respectively. Accordingly, we define new functors 
i-Res and i- Ind on £n-mod by 

i-ResM = ffi(ResMa.)a.-q' and i-IndM = ffi(IndMa.)o.+q'' 
a. a. 

for i = 0, 1, ... , e- 1. Then Res = 2:~,;::-~ i-Res and Ind = 2:~,;::-~ i- Ind. 
These functors also induce group homomorphisms K 0 (£n-mod) ----+ 
Ko(£n±1-mod) and these maps are completely determined by their 
actions on the_ Specht modules. 

Write >. ~ J-L if >. ----+ J-L and the node in [J-L] \ [>.] has residue qi. 
Then we have the following refinement of Corollary 3.17. 
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Corollary 3.18. Suppose that 0 ::; i < e and let ,\ be a multipar­
tition of n. Then 

Let £n-proj be the category of finitely generated projective £n­
modules and let K 0 (£n-proj) be its Grothendieck group. If P is a 
projective £n-module let [P] denote its image in K 0 (£n-proj). Ob­
serve that there is a natural non-degenerate paring 

(, /: Ko(£n-proj) x K 0 (£n-mod) -----+Z 

given by ([P], [M]/ = dimR HomJt;,. (P, M); hence, Ko(£n-proj) '="' 

K 0 (£n-mod)*. Consequently, if P~-' is the projective cover of D~-' then 
{ [P~-'] I fJ f- n and D~-' =1- 0} is a basis of K 0 (£n-proj) and we have in­
duced maps i-Res*, i-Ind* : Ko(£n-proj) -----+Ko(£n±l-proj). 

We are almost ready to state Ariki's theorem. Let U(Ste) be the 

Kac-Moody Lie algebra of type A~~1 . Thus, U(Ste) is the CC-algebra 
generated by d, ei, fi and hi, for 0 ::; i < r, subject to a well-known set 
of relations; see [7, 86]. Let A0 , ... , Ae-l be the fundamental weights 
of U(Ste) and recall that for each dominant weight A E L~:~ NAi there 
is a unique integrable highest weight U(;le)-module L(A) with highest 
weight A. 

Theorem 3.19 (Ariki [4, 9]). Suppose that R is a field and fix 
q, Q1 = qa', ... , Qr = qa, in R such that q =1- 1 is a primitive eth root 
of unity and integers a1, ... , ar (with 0 ::; ai < e if e < oo). Finally, let 

A= L~:~ aiAi and set Vq,q(R) = EBn~O Ko(£R,n-proj) ®;z C. 

(i) Vq,q(R) is an integrable U(Ste)-module upon which the Chevalley 
generators ei and fi act as follows: 

ei[M] = i-Res*[M] and fi[M] = i-Ind*[M], 

for all [M] E Vq,q(R). Moreover, Vq,q(R) ~ L(A) as a U(Ste)­
module. 

(ii) If R is a field of characteristic zero then the canonical basis of 
Vq,q(R) coincides with the basis 

{ [P~-'] I D~-' =1- 0 for some fJ f- n 2: 0} 

given by the projective indecomposable £n -modules. 
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Some remarks are in order. First, the hard part of this theorem is the 
case where R = <C; this is proved in [4]. The result for an arbitrary field 
follows from the complex case by a modular reduction argument; see [9]. 
Next, by the canonical basis of L(A) we mean the specialization at v = 1 
of the Kashiwara-Lusztig canonical basis1 of Lv(A), the corresponding 
integrable highest weight representation of the quantum group Uv(ire)· 

Theorem 3.19 is a very deep result which relies upon the topological 
K-theory of Kazhdan and Lusztig [88] and Ginzburg's equivariant K­
theory [31]; these theories give different constructions of the standard 
modules of the affine Heeke algebras in characteristic zero. For details of 
the proof see Ariki's original paper [4] and also his forthcoming book [7]. 
Geck [58] has also written an excellent survey article on the modular 
representation theory of Heeke algebras; he includes a detailed account 
of Ariki's paper. 

The special case of Theorem 3.19 with r = 1 proves the conjec­
ture of Lascoux, Leclerc and Thibon [94] for computing the decompo­
sition matrices of the Iwahori-Hecke algebras £q(6n) of the symmetric 
groups. The main point of [94] is that they gave an elementary com­
binatorial algorithm for computing the canonical basis of the integrable 
highest weight module Lv(Ao) for Uv(ire) - and hence the decompo­
sition matrices of £q(6n)· This and similar algorithms are described 
in [7, 62, 94, 95, 103]. In contrast to the difficulty of Theorem 3.19, 
these algorithms involve only basic linear algebra; they amount to com­
puting certain parabolic affine Kazhdan-Lusztig polynomials of type A 
and evaluating them at 1. This is described explicitly in [62, 95, 103]. 

Uglov [120], extending the ideas of Leclerc and Thibon [95], has 
given an algorithm for computing the canonical basis of any integrable 
highest weight module for Uv(ire); see also [119]. Hence, combining 
Theorem 3.19(ii) with Uglov's work and Theorem 3.15 we have the fol­
lowing. 

Corollary 3.20. Suppose that R is a field of characteristic zero 
and that q ic 1 and Q s ic 0 for 1 ::; s ::; r. Then the decomposition 
matrix of £R,q,Q(Wr,n) is known. 

1 Canonical bases of quantum groups were introduced independently by 
Lusztig [97] and Kashiwara [87]. Jantzen [83] has given an excellent treatment 
of this theory; unfortunately, he only considers quantum groups of finite type 
which is insufficient for our purposes. Ariki [7] gives a largely self-contained 
account of the canonical bases of Uv(;[e), which is exactly what we need. See 
also Lusztig's book [98]. 
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In practice there is a bit of work to be done to use this result to 
compute the decomposition numbers of£. First, Uglov's algorithm 
computes a canonical basis for a larger space which contains Lv(A) as a 
submodule; this is less efficient than the LLT algorithm and its variants. 
Next, Uglov's indexing of the canonical basis of Lv(A) is not compatible 
with Theorem 3.12(ii) and Theorem 3.24 below; a bijection between the 
different indexing sets for the irreducibles is given by the paths in the 
associated crystal graphs. Finally, the effect of the Morita equivalence of 
Theorem 3.15 on the decomposition numbers must be taken into account; 
this last step is straightforward and is described in [44]. 

3.4. The irreducible £-modules 

In principle, the simple ~-modules are completely determined by 
Theorem 3.12; that is, the simple ~-modules are precisely the non-zero 
modules D~-' for J-L a multipartition of n. Unfortunately, it is non-trivial 
to determine when D~-' is zero and when it is non-zero. 

We begin the classification of the simple modules of the Ariki-Koike 
algebras with the case r = 1; that is, when£= £q(6n)· Let e be the 
smallest positive integer such that 1 + q + · · · + qe- 1 = 0. A partition 
is e-restricted if J-Li - J-Li+1 < e for i 2: 1. (This is compatible with our 
previous definition of e: if q =f. 1 then e is the multiplicative order of q 
in R; otherwise, e is the characteristic of R.) 

Theorem 3.21 (Dipper and James [37]). Suppose that R is a 
field. Then the £q(6n)-module D~-' is non-zero if and only if J-L is 
e-restricted. 

Dipper and James actually showed that the simple £q(6n)-modules 
are indexed by e-regular partitions (that is, a partition with no e non­
zero parts being equal). Our statement is different from theirs because 
our Specht modules are isomorphic to the duals of the Dipper-James 
Specht modules [107]. 

Using the 2-module structure of the Specht modulesit is straight­
forward to see that the £q(6n)-module D~-' is non-zero whenever J-L is 
e-restricted (recall that 2 = (Lb ... , Ln) ). The converse is harder and 
follows from showing that if J-L is not e-restricted then [e]q! = f1~= 1 (1 + 
q + · · · + qk-1) divides the Gram determinant of the Specht module 
defined over Z[q,q- 1]. For the proof see [37, 103, 107]. 

Returning to the general case where r 2: 1, the next result follows 
easily from Theorem 3.21. The statement is misleading because two 
separate, but similar, arguments are needed. For the proof when q = 
1 see Mathas [102]; for the case where Q8 = 0, for all s, see Ariki­
Mathas [9]. 
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Corollary 3.22 (Mathas [102], Ariki-Mathas [9]). Suppose that 
R is a field and that either (i) q = 1, or (ii) Q1 = · · · = Qr = 0. 
Let f..L = (J..L(l), ... , f..L(r)) be a multipartition of n. Then Dfl "I 0 if and 
only if the following two conditions are satisfied. 

(i) f..L(s) is e-restricted for 1 :::; s :::; r. 
(ii) J..L(s) = (0) whenever Q. = Qt for some t > s. 

In the case Q1 = · · · = Qr = 0 the last result simplifies to saying 
that Dfl "I 0 if and only if f..L = ( (0), ... , (0), J..L(r)) for some e-restricted 
partition J..L(r). 

It remains to treat the cases where q ":11 and Q. "I 0 for all s. 
Given two nodes x = (a, b, s) andy= (c, d, t) we say that y is below 

x if either s < t, or s = t and a < c. Further, x E [.X] is removable if 
[.X]\ {x} is the diagram of a multipartition; similarly, y tJ. [.A] is addable 
if [.A] U {y} is the diagram of a multipartition. If i = res(x) we call x an 
i-node. 

An i-node x is normal if (i) whenever y is a removable i-node below 
x then there are more removable i-nodes between x andy than there are 
addable i-nodes, and (ii) there are at least as many removable i-nodes 
below x as addable i-nodes below x. In addition, a normal i-node x is 
good if there are no normal i-nodes above x. If [J..L] = [.A] U { x} for some 
good node x we write .A good , f..L· 

Definition 3.23. A multipartition J..L is Kleshchev if either J..L = 
((0),, ... , (0)) or .A good' f..L for some Kleshchev multipartition .X. 

The origin of the definition of the Kleshchev multi partitions is that 
they are the vertices of the crystal graph of an integrable Uv(ife)-module. 
(When Q 8 = qa,, for all s, then the Kleshchev multi partitions are the 
vertices of the crystal graph of Lv(A), where A= I::=l Aa,. In general, 
we take a direct sum of tensor products of crystal graphs in accordance 
with Theorem 3.15.) There is an edge in the crystal graph between 
two Kleshchev multipartitions if .A good ' J..L; the label of the edge is the 
residue of the node in [J..L] \[.A]. For more details see [9,85]. 

When r = 1 a partition J..L is Kleshchev if and only if J..L is e-restricted; 
consequently, as it must, the next result agrees with Theorem 3.21 when 
r = 1. 

Theorem 3.24 (Ariki [6]). Suppose that R is afield, q ":11, Q8 "I 
0 for 1 :::; s :::; r, and that J..L is a multipartition of n. Then Dfl "I 0 if 
and only if J..L is a Kleshchev multipartition. 

The first step towards Theorem 3.24 is to observe that Theorem 3.15 
allows us to reduce to the crucial case where q ":11 and Q 8 = qa., for some 
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integers as (a different argument is given in [9]). Using Theorem 3.19(ii), 
Ariki [6] is able to complete the classification of the irreducible £­
modules over C. To complete the argument, [9] shows that the number 
of simple modules depends only on the integers as and the multiplicative 
order of q in R. 

Finally, we remark that by combining these techniques with results 
of Ginzburg [31], Ariki and the author [9] classified the simple modules 
of the affine Heeke algebras over an algebraically closed field of positive 
characteristic; again, the hard work is done by Ariki's paper [4]. When 
R = <C and q is not a root of unity the simple Hn-modules were classified 
by Zelevinsky [124]; see also [88, 111]. When q E <Cx is a root of 
unity the simple Hn-modules were classified by Lusztig and Ginzburg; 
see [4,31]. 

3.5. The modular branching rules 

One of the most significant results in modular representation theory 
from the nineties is Kleshchev's modular branching rule for the symmet­
ric groups [89~92]. Using a streamlined version of the same techniques 
Brundan [26] extended these results to the Iwahori-Hecke algebra of the 
symmetric group. Using completely different methods, Grojnowski [71] 
and Grojnowski-Vazirani [73] generalized Kleshchev's modular branch­
ing rules to the Ariki-Koike algebras and the affine Heeke algebra of 
type A. (Brundan and Kleshchev [28] have also applied Grojnowski's 
methods to the projective representations of the symmetric groups.) 

Grojnowski was mainly interested in representations of the affine 
Heeke algebra Hn; however, as remarked in §2.4 every irreducible rep­
resentation of the affine Heeke algebra is an irreducible representation 
for a family of Ariki-Koike algebras. He studies the functors given by 
induction and restriction (from Hn to Hn±d, followed by the taking of 
socles by analyzing the effect of these functors on the central characters 
of Hn. Grojnowski shows that these functors can be described in terms 
of the crystal graphs of integral highest weight modules for the quantum 
group Uv(;[e); cf. Theorem 3.19(i). 

Theorem 3.25 (Grojnowski [71], Grojnowski-Vazirani [73]). 
Suppose that R is a field, q i= 1 and Q s i= 0, for 1 :::; s :::; r. Then, 
for each m, there is an (unknown) permutation 7rm of the set Kleshchev 
multipartitions of m such that if Jl is a Kleshchev multipartition of n 
then 

Soc(Res(D~-')) EB 
7r,_,(,X) good l 11",.(1-') 
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In [73] Grojnowski-Vazirani prove that Soc(Res(Dil)) is multiplic­
ity free. In [71] Grojnowski shows that there exists a set of irreducible 
£-modules which are indexed by the Kleshchev multipartitions and 
for which the modular branching rule is given by removing good nodes; 
Grojnowski does not give an explicit construction of these modules. Con­
jecturally, 7rm is trivial for all m. 

Notice that Theorem 3.25 implies that there are at most e direct 
summands of Soc(Res( Dll)) and that they all belong to different blocks. 

As Grojnowski remarks, the assumption that q ":11 is not essential 
and can be removed (at the expense of some additional notation). Du 
and Rui [55] also obtained the modular branching rule in the special 
case where qdQs "I Qt, for 1 ::::; s < t ::::; r and [d[ < n. In fact, in 
their case they obtain the stronger result that 7rm = 1, for all m. By 
Theorem 3.15 such Ariki-Koike algebras are Morita equivalent to direct 
sums of tensor products oflwahori-Hecke algebras £q(6m); Du and Rui 
use this to deduce the result from Brundan's theorem [26] for £q(6m)· 

Grojnowski [71] shows that the number of irreducible £n-modules 
is equal to the number of Kleshchev multipartitions of n; this gives a 
more elementary proof of part of Theorem 3.24. Grojnowski also counts 
the number of irreducible modules of the affine Heeke algebra Hn over 
an arbitrary algebraically closed field. In §5.2 below we discuss the 
application of Theorem 3.25 to classifying the blocks of£. 

§4. The cyclotomic q-Schur algebra 

This chapter introduces the cyclotomic q-Schur algebras. These al­
gebras are defined as endomorphism algebras 

Y(A) =End£ ( E9Mil), 
!LEA 

where A is a finite set of multicompositions and Mil is a certain £­
module. In the special case where r = 1 the cyclotomic q-Schur algebras 
are the q-Schur algebras of Dipper and James [39]; see [27,46, 65, 103]. 
This was one of the motivations for introducing the cyclotomic q-Schur 
algebras. 

Prior to [42] several authors [41,51,56,59,69, 74] had studied Schur 
algebras of type B; these algebras are either subalgebras or special cases 
of the cyclotomic q-Schur algebras. See [57, 70] for Schur algebras of 
other types. 

4.1. Permutation modules. 

We begin by describing the £-modules Mil. 
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A composition of n is a sequence a = (a1, a2, ... ) of non-negative 
integers ai such that lal = Li> 1 ai = n; we will sometimes write a = 
(a1 , ... , ak) if ai = 0 for i > k-: A multicomposition of n is an ordered 
r-tuple J-L = (J-L( 1), ... , J-L(r)) of compositions with IJ-L( 1) I+···+ IJ-L(r) I = n. 

Definition 4.1. Suppose that J-L is a multicomposition of n. Then 
M'"' is the right ideal M'"' = mwYe of .Yt' (where m'"' = x'"'ut as before) 

Given a multicomposition J-L let [1 = ([1( 1), ... , [i(r)) be the multi­
partition where [i(s) is the partition obtained by ordering the parts of 
the composition J-L(s). It is not hard to see that Mi1 '2:! M'"'; indeed, 
if d E 6n is a right coset representative of 6'"' of minimal length such 
that 6;1 = d- 1 6'"'d then Tdx;:t = x'"'Td; hence, Tdm;:t = m'"'Td and an 
isomorphism Mi1 '2:! M'"' is given by h~-------'>Tdh, for hE Mi1. 

When r = 1 the module M'"' is the induced trivial representation of 
the parabolic subalgebra 

£q(6/l>) = (Ti I tiE 6/1>) = L RTw. 
wE6 1,, 

More precisely, let 1'"' be the trivial representation of the subalgebra 
£q(6'"'); so 1'"' is a freeR-module of rank 1 on which Tw acts as multi­
plication by qR(w) for all wE 6w Then 

M'"' '2:! 1/1> 0.n;,(6 1,) £q(6n)· 

(Note that £q(6n) is free as a right £q(6'"')-module.) 
If r > 1 then, in general, the modules M'"' are not obviously induced 

from subalgebras (except in the case considered by Shoji [117]). Even 
so, the M'"' behave very much like permutation modules, so it is not a 
bad idea to think of them as such. 

In order to describe a basis of M'"' we need to introduce some more 
notation. Let nr = { (i, s) I i?: 1 and 1::; s::; r }. If (i, s), (j, t) are 
elements of nr write ( i, s) ::S (j, t) if either s < t, or s = t and i ::; j. 

Let J-L be a multicomposition. Then a >.-tableau of type J-L is a map 

T: [.X]---+nr such that J-L~s) = #{x E [.A] I T(x) = (i,s) }, for 1::; s::; r 
and all i ?: 1; we write Type(T) = J-L. Again, we will think of a tableau 
of type J-L as being an r-tuple of tableaux. For example, two tableaux of 
type ((3, 1), (1 2 ),(2, 1)) are 

where we write is instead of the ordered pair (i, s). 
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If 5 is a standard >.-tableau let J.l(5) be the tableau of type J.l ob­
tained by replacing each entry k in 5 by (i, s) if k appears in row i of 
component s of tJ.L - as for multipartitions, we define tJ.L to be the J.l­
tableau with the integers 1, ... , n entered from left to right and then top 
to bottom along the rows of the components of [J.l]. 

Definition 4.2. Let >. be a multipartition and J.l a multicomposi­
tion. A semistandard >.-tableau is a >.-tableau T = (T(l), ... , T(r)) such 
that 

(i) the entries in each row ofT are non-decreasing in each component 
(when ordered by~); and, 

(ii) the entries in each column ofT are strictly increasing in each 
component; and, 

(iii) if (a, b, c) E [>.] and T(a, b, c) = (i, s) then s ~c. 

LetT,}~>.) be the set of semistandard >.-tableaux of type J.l and let TJ.~>.) = 

UJ.LEA r;~>.). 

When r = 1 condition (iii) is redundant and Definition 4.2 becomes 
the familiar definition of semistandard tableaux from the representation 
theory of the general linear and symmetric groups. 

Write compt ( k) = s if k appears in component s of t. For r > 1 
condition (iii) is unexpected; it has its origin in the fact [42, Prop. 3.23] 
that if hE MJ.L and h = Ls,t r 5 tmst for some r5 t E R then comp5 (k) ::; 
compv, ( k), for k = 1, ... , n. 0 bserve that J.l( 5) satisfies condition (iii) if 
and only if comp5 (k)::; compv,(k) for all k. 

For example, if >. is a multipartition then T.>. = >.( t>-) is the unique 
semistandard >.-tableau of type >.. The first of the two tableaux in the 
example above is T.>. for>.= ((3,1),(12),(2,1)); the second tableau 
there is also semistandard. Finally, let w = ( ( 0), ... , ( 0), (1 n)). Then it 
is easy to see that the map 

(4.3) 

is a bijection between the set of standard >.-tableaux and the set of 
semistandard >.-tableaux of type w. Hereafter, we identity T"(>.) and 
T~"(>.) via (4.3). 

Definition 4.4. Suppose that S is a semistandard >.-tableau of 
type J.l and that t is a standard >.-tableau. Define 

mst = L mst· 
sET'(.>.) 
S=J.L(S) 

The point of all of this notation is the following useful theorem. 
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Theorem 4.5. Suppose that J-L is a multicomposition of n. Then 
MP- is free as an R-module with basis 

{ mst I 5 E T;B(A)l and t E T~A)ffor }· 
some mu tipartition /\ o n 

When r = 1 this result was first proved by Murphy [107]; the general 
case can be found in Dipper-James-Mathas [42]. 

The proof of this result is straightforward. A small calculation shows 
that mst is an element of MP-. Next, the elements in the statement 
of Theorem 4.5 are linearly independent by Theorem 3.8. Finally, if 
hEMP- then h can be written as a linear combination of standard basis 
elements; in turn, these are a linear combination of the mst· 

The importance of Theorem 4.5 stems from the following applica­
tions. 

Corollary 4.6. Suppose that J-L is a multicomposition of n. Then 
there exists a filtration MP- = M1 > M2 > · · · > Mk+l = 0 of MP- such 
that 

(i) Mi/Mi+l ~ s>., for some multipartition Ai fori= 1, ... , k; and, 
(ii) for each multipartition A the number of i with A= Ai is equal to 

the number of semistandard A-tableaux of type J-l· 

Sketch of proof. Fixing 5 and varying t in the basis { mst} of MP-
gives a Specht module modulo higher terms. D 

For each semistandard A-tableau 5 of type J-l and each semistandard 
A-tableau T of type v define 

msT = L mst· 
tET"(>.) 
T=v(t) 

By definition, msT = Ls,t mst where the sum is over the standard A­
tableaux s and t such that J-L(s) = 5 and v(t) = T. 

Corollary 4.7. Suppose that J-L and v are multicompositions ofn. 
Then 

{ msT I 5 E T;B(A) and T E 'T.}B(A) for } 
some multipartition A of n 

is a basis of .Yt'mv n mp..Yt'· 

We are now ready to tackle the cyclotomic q-Schur algebras. 
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4.2. The semistandard basis theorem 

We give a slightly more general definition for the cyclotomic q-Schur 
algebras than appeared in [42] in that we allow the set A to be an 
arbitrary finite set of multicompositions. We invite the reader to check 
that the arguments from [42] go through without change. 

Extend the dominance ordering ~ to the set of all multicomposi­
tions; by restriction we consider any set of multicompositions as a poset. 

Definition 4.8. Suppose that A is a finite set of multicomposi­
tions of n. The cyclotomic q-Schur algebra is the endomorphism algebra 

Y'(A) =End£ ( E9 M'} 
MEA 

Let A+ = { ,\ f- n I ,\ ~ f..L for some f..L E A } . 

We should really write Y'(A) = Y'R,q,q(A) since Y'(A) depends on 
A, R, q and Q. 

Part of the original definition of the cyclotomic q-Schur algebras 
in [42] was the requirement that A+ r:;:; A. Following Donkin [46], we 
say that A is saturated if A+ r:;:; A. In analogy with representations of 
Lie groups, A+ should be thought of as the set of dominant weights and 
A the set of weights. Note that A+ is not necessarily a subset of A. 

Let A= A(d; n) be the set of all compositions f..L = (f..L 1 , ... , f..Ld) of n 
of length at most d (so f..Li = 0 whenever i > d). Then Y'q(d; n) = 
Y(A(d; n)) is a q-Schur algebra in the sense of Dipper and James [39]. 

As an R-module we see that 

Y'(A) =End£ ( E9 MM) = E9 Hom£ ( Mv, MM); 
MEA M,VEA 

so we need to understand the R-modules Hom£(Mv, M"'). 

Proposition 4.9. Suppose that f..L and v are multicompositions 
ofn. Then an R-linear map tp: Mv--> M"' belongs to Hom£(Mv, M"') 
if and only if 

for some rsT E R. 

tp(mv) = :2: rsTmsT 
SET,;'(,\) 
TET~''(,\) 

Sketch of proof. If Q1 , ... , Qr are invertible elements of R then£ 
is a symmetric algebra by Proposition 3.5(ii); therefore, Hom£(Mv, MM) 
and m"'£ n Yemv are canonically isomorphic R-modules (via the map 
i.p >----+ tp( mv)), so the proposition follows by Corollary 4. 7. 
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For the general case, an intricate induction (see [42, §5]), which is 
independent of Proposition 3.5, shows that the double annihilator of mp,, 

{ x E £ I xh = 0 whenever mp,h = 0 for some h E £}, 

is .Yemw Hence, it again follows that Hom£(MV,MJ-L) ~ mv£ n 
£mp,, so we can complete the proof using the argument of the last 
paragraph. D 

Definition 4.10. Suppose that A E A+ is a multipartition and 
that p,, v E A are multicompositions. For each pair of standard A-tableaux 
5 E 7:'(.\) and T E T: 8(A) let i.pST be the R-linear endomorphism of 
EBp,EA M~-' determined by 

i.psT(mah) = bavmsTh, 

for all a E A and h E £ (here bav is the Kronecker delta). 

By Proposition 4.9 'PST is an element of J"(A). 
Lets>- be the R-submodule of J"(A) spanned by the rpuv, for some 

u' v E TJ.8(p) where p E A+ and p !> A. From the definitions, s>- consists 
of those elements of 3" (A) whose image is contained in H >-. 

Observe that a map 1.p E Hom£(Mv, M~-') is completely determined 
by rp(mv) since rp(mvh) = rp(mv)h for all hE£. Therefore, we can lift 
the involution * of£ to give an involutory anti-isomorphism of J"(A) 
by defining rp* E Hom£(M~-',Mv) by rp*(mp,h) = (rp(mv))*h for all 
hE£. In particular, note that 'PsT = 'PTS· 

We can now state the semistandard basis theorem for the cyclotomic 
Schur algebras. 

Theorem 4.11 (Dipper-James-Mathas [42, Theorem 6.6]). 
Let A be a finite set of multicompositions. Then the cyclotomic q-Schur 
algebra J"(A) is free as an R-module with basis 

{ i.pST I for some 5, T E Ti 8(A) and A E A+}. 

Moreover, this basis is a cellular basis of 3" (A); more precisely, if 5 
and T are semistandard .\-tableaux, for some A E A+, then 

(i) 'PST = 'PTs; and, 
(ii) for all i.p E J"(A) there exist scalars rv = rw(rp) E R, which do 

not depend on 5, such that 

'PSTi.p = L rvi.psv (mods"). 
VETJ..'(>.) 
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Sketch of proof. Proposition 4.9 implies that these elements give 
a basis of Y(A). Using Theorem 3.8 it is not hard to see that the 
semistandard basis is cellular. D 

In particular, notice that Y(A) is always free as an R-module and 
that its rank is independent of R, q and Q. The semistandard basis of 
Y(A) really comes from Theorem 4.5 and the basis element <psT really 
comes from a Specht filtration of M~-'. 

It is worthwhile explaining how the multiplication in Y(A) is de­
termined. Suppose that 5, T, U and V are semistandard tableaux and 
suppose that v = Type(V) and p, = Type(U). Then muv = m,..huv, for 
some huv E £, and 

<;?ST<;?UV = L TAB<t?AB, 
A,B 

where the scalars TAB E R are determined by msThuv = I: TABmABi 
this makes sense by Proposition 4. 7 and is proved by evaluating the 
functions on both sides at m.,. Note, in particular, that TAB = 0 unless 
Type(U) = Type(T), Type(A) = Type(S) and Type(B) = Type(V). In 
Theorem 4.11(ii), rv = rsv. 

With some work it is possible to show that when r = 1 this basis 
agrees with Richard Green's codeterminant basis of the q-Schur alge­
bra [68]; see also [67, 123]. When r = 2 and£ is symmetric Theo­
rem 4.11 is equivalent to a theorem of Du and Scott [56]. 

4.3. Weyl modules for cyClotomic q-Schur algebras 

By the semistandard basis theorem Y(A) is a cellular algebra. There­
fore, exactly as in Definition 3.10 we can write down a collection of cell 
modules for Y(A) and, up to isomorphism, every irreducible Y(A)­
module is a quotient of one of these modules. 

Definition 4.12. Suppose that >. E A+ is a multi partition. The 
Weyl module w,\ is the freeR-module with basis { <;?T IT ETA_~>.)} on 
which <p E Y(A) acts via 

<t?T¥? = L rv<pv, 
VETJ:"(.A) 

where the scalars rvER are as in Theorem 4.11{ii). 

It follows from Theore.m 4.11 that W.A is a right Y(A)-module. As 
with the Specht modules we define a bilinear form on W .A by requir­
ing that (<ps, <;?T)<puv = <pus<;?TV (mod S.A) for semistandard tableaux 
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S, T, U, V E TJ.sp,). Then the radical of this form, Rad W'\ is a submod­
ule of WA and we define LA = WA I Rad WA. 

Exactly as in Theorem 3.12, the theory of cellular algebras now gives 
us the following. 

Theorem 4.13. Suppose that R is a field. 

(i) For each A E A+, LA is either zero or an absolutely irreducible 
.9' (A) -module. 

(ii) {LA I A E A+ and LA i- 0} is a complete set of pairwise non­
isomorphic irreducible Y'(A)-modules. 

(iii) Y'(A) is semisimple if and only if LA = WA for all A E A+. 
(iv) Suppose that J.L,A E A+ and LA i- 0. Then [WJ.L:LA] i- 0 only if 

J1 t:::: Ai moreover, [WA:LA] = 1. 

At this level of generality, determining exactly when LA is non-zero 
is a difficult task. To see this notice that if A = { w} then .9' (A) = 
End£(£) ~£and A+ is the set of all partitions of n; so Theorem 3.24 
is a special case of Theorem 4.13. When the poset A is saturated (that 
is, A+ <;;; A) we can say much more. 

Assume now that A+ <;;; A and let A be a multi partition of n. Then 
MA is a summand of ffiJ.LEAMJ.L and so the identity map <pA: MA----t MA 
is an element of Y'(A). Indeed, looking at the definitions, <pA = 'PTATA' 

where TA = A(tA) is the unique semistandard A-tableau of type A. It 
follows that the Weyl module WA is isomorphic to the submodule of 
Y'(A)/SA generated by 'PA +SA, the isomorphism being given by 

<{JTf----+<fJPT +SA= (<pA + SA)<ppT, 

for all T E TJ.8(A). 

Theorem 4.14. Suppose that R is a field and that A+ <;;;A. 

(i) LA is a non-zero absolutely irreducible Y'(A)-module for all A E 

A+. 
(ii) Y'(A) is a quasi-hereditary algebra. 

Sketch of proof. To prove (i) observe that <pA = 'PTATA is an ele­
ment of Y'(A) because A EA. Therefore, 'PTA E WA and so 

(<pp,<fJTA)<fJTATA := <fJTATA<fJTATA = <fJTATA (mod SA); 

hence, ('PTA, 'PTA)= 1 and 'PTA'/:- RadW\ so LA i- 0. Part (ii) follows 
from (i) and the structure of cellular algebras. D 

Parshall and Wang [109] were the first to show that the q-Schur al­
gebras are quasi-hereditary. More generally, the argument above shows 



296 A. Mathas 

that the q-Schur algebras and the cyclotomic Schur algebras are inte­
grally quasi-hereditary in the sense of [50]. 

As the example A = { w} indicates, when A is not saturated the 
classification of the simple .9'(A)-modules is non-trivial. Nor are there 
obvious necessary and sufficient conditions for when .9'(A) is quasi­
hereditary. The answers to these questions will depend on A, R and 
the parameters q, Q1, .. . , Qr. 

The final result of this section is the analogue of Theorem 3.15 for the 
cyclotomic Schur algebras. In [44] a general version of the result below 
is proved for an arbitrary finite set of (saturated) multicompositions; 
we state only a special case in order to avoid introducing additional 
notation. 

Let Ar,n be the set of all multicompositions of n of length at most n 
and let At,n <:;;; Ar,n be the set of multipartitions of n. We write 
.9'(Ar,n) = .9'q,Q(Ar,n) to emphasize the choice of parameters. 

Theorem 4.15 (Dipper-Mathas [44]). Suppose that R is an inte­
gml domain and let Q = Q1 IJ · · · IJ Q 110 be a partition of Q and suppose 
that the polynomial Pn(q, Q1, ... , Q110 ) is invertible in R. Let ro: = IQo:l, 
for 1 :::; o: :::; "'· Then .9'(Ar,n) is Morita equivalent to the R-algebm 

EB .9'q,Ql (Art,nt) 18) '· • 18) .9'q,QK (ArK,nK ). 
n1, ... ,n,..~O 

nt+ .. ·+nK.=n 

This result is deduced from Theorem 3.15 using the theory of Young 
modules for Ariki-Koike algebras [105]. In the special case when IQo:l = 
1, for all o:, this was first proved by Ariki [5]; see also [54]. 

§5. The representation theory of cyclotomic q-Schur algebras 

This chapter gives a summary of the main results in the representa­
tion theory of the cyclotomic q-Schur algebras. All of these results are 
generalizations of theorems for the q-Schur algebras. 

5.1. A Schur functor and double centralizer property 

Throughout this section we assume that w E A; because of this 
'Pw = tpTwTw is an element of .9'(A). Now, 'Pw is the identity map 
on £; in particular, it is an idempotent. Moreover, it is easy to see 
that £ ~ 'Pw.9'(A)cpw. Hence, by general nonsense (see, for example 
[27, 65]), 'Pw gives rise to a functor <l>w from the category of .9'(A)­
modules to the category of £-modules; explicitly, if M is a right .9'(A)­
module then <I>w(M) = Mcpw is a right £-module. 
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Notice that the condition w E A is the analogue for the cyclotomic 
Schur algebras of the familiar requirement that d ~ n for the q-Schur 
algebra .9'q(d; n). 

Theorem 5.1 (The cyclotomic Schur functor [81]). Suppose that 
R is a field and that w E A+ <;;;; A. Let .X E A+. Then, as right £­
modules, 

(i) <flw(W>.) s:! SA,· 
(ii) <flw(L>.) s:! v>-. 

Furthermore, if DJL #- 0 then [W>-:LIL] = [S>-:DIL]. 

Sketch of proof This can be proved either by general arguments as 
in [65]. Alternatively, from the definitions and the semistandard basis 
theorem it is clear that <flw (W>.) s:! s>- (if T E T:"(.X) then 'PT'Pw = 
8JLw'PT ). Next observe that if s and t are standard tableaux then the 
definition of the inner product on W >. is that 

Evaluating the functions on both sides at m;. we find that 

Hence, (cp5 , 'Pt) = (m5 , mt) and the remaining claims follow. D 

An important consequence of Theorem 5.1 is that the decomposition 
matrix of£ is a submatrix of the decomposition matrix of .9'(A). 

Corollary 5.2. Suppose that R is a field and that w E A+ <;;;; A. 
Then the decomposition matrix of£ is the submatrix of the decomposi­
tion matrix of .9'(A) obtained by deleting those columns indexed by the 
multipartitions p, such that DJL = 0. 

Observe that EEhEA M>. is an (.9'(A), £)-bimodule. In fact, each 
algebra is the full centralizer algebra for the other and we have a cyclo­
tomic analogue of Schur-Weyl duality. 

Theorem 5.3 (Double centralizer property). Suppose that w E 

A and that A+ <;;;; A. Then 

.9'(A) s:! End£ (ffiM.>.). and £ s:! End.5"(A) ( ffiM>-). 
AEA .>.EA 
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Sketch of proof. The first isomorphism is just the definition of Y(A) 
so there is nothing to prove here. For the second isomorphism for each 
A E A let <p>.. be the identity map on M>.. and let .4>.. = <p>..Y(A). 
(So .4>.. is an Y(A)-module and M>.. isan £-module.) Then there an 
isomorphism of £-modules 

EBM>.. ~ EB<~>w(JtA) = EB<p>..Y(A)<pw· 
>..EA >..EA >..EA 

By definition L>.. <{J>.. is the identity of Y(A), so Y(A) = Eih <p>..Y(A) 
and EEhEA M>.. ~ Y(A)<pw as a left Y(A)-module. Therefore, 

End.9'(A) ( EB M>..) ~ End.9'(A) ( Y(A)<pw) ~ <{JwY(A)<pw· 
>..EA 

As <{JwY(A)<pw ~ £, this completes the proof. 

5.2. The blocks of the cyclotomic Schur algebras 

D 

The centre of the affine Heeke algebra Hn is given by the following 
well-known result of Bernstein. 

Theorem 5.4 (Bernstein). Suppose that R is an algebraically 
closed field. Then the centre of Hn is equal to R[Xt' ... 'x;=] 6 "' the 
R-algebra of symmetric Laurent polynomials in X1, ... , Xn. 

This is quite straightforward to prove given the Bernstein presenta­
tion of Hn. 

Now xk maps to Lk under the natural surjection Hn --+ £.. so 
this implies that any symmetric polynomial in L1, ... , Ln belongs to the 
centre of the Ariki-Koike algebra£.,. As we remarked earlier, in the 
semisimple case the centre of £., is always the algebra of symmetric 
polynomials in L1, ... , Ln; however, when £., is not semisimple the 
centre of £., can be larger than this. Because of this Theorem 5.5 
below is a little surprising. First, some notation. 

Given a multipartition A let res( A) = {rest>. (k) 11 ~ k ~ n }, which 
we consider as a multiset. By the remarks above and Proposition 3.14 if 
two simple £.,-modules D>.. and D~-' are in the same block then res(A) = 

res(J-L) as multisets. 
We also note that because £., is a cellular algebra all of the com­

position factors of s>.. belong to the same block; hence, DA and D~-' are 
in the same block if and only if s>.. and S~-' are in the same block. The 
same remark applies to the simple modules and the Weyl modules of the 
cyclotomic q-Schur algebras. 



Representations of cyclotomic algebras 299 

Theorem 5.5. Suppose that R is an algebraically closed field and 
that A and J-L are multipartitions of n. Then the following are equivalent. 

(i) res(A) = res(J-L) as multisets. 
(ii) s>-. and S~-' are in the same block as .Yt:, -modules. 

(iii) s>-. and S~-' are in the same block as Hn -modules. 
(iv) w>-. and W~-' are in the same block as !/(Ar,n)-modules. 

Sketch of proof. As noted above, the implication (ii)::::}(i) follows 
from Proposition 3.14; this is was first proved by Graham and Lehrer [64] 
who also conjectured that the converse was true. That (i) and (iii) are 
equivalent follows from Theorem 5.4. 

The hard part is proving that (iii) implies (ii); this was done by 
Grojnowski [72] using his modular branching rule. The key point is 
that if A and J-L are distinct multipartitions with D>-. =/: 0, D~-' =/: 0 and 
res(A) = res(J-L) then Homh,._ 1 (ResD\ResD~-') = 0 by Theorem 3.25; 

here Res is the functor Res : Hn-mod----+Hn_ 1-mod. Grojnowski shows 
that this implies that whenever 0 ----+ D>-. ----+ X ----+ D~-' ----+ 0 is an 
exact sequence of fin-modules then it is still exact when considered as 
a sequence of .Yt:,-modules (for any .Yt:,-module X). This implies (ii). 

Finally, by the double centralizer property (Theorem 5.3), !/(Ar,n) 
and .Yt:, have the same number of blocks (see [103, Cor. 5.38]), so it 
follows that (ii) and (iv) are equivalent. D 

Theorem 5.5 does not classify the blocks of an arbitrary cyclotomic 
Schur algebra; rather it classifies the blocks of !/(A) for any A with 
A~n ~ A (by standard arguments, all of these algebras are Morita equiv­
alent). When r = 1 the blocks for the q-Schur algebras Yq(d; n) with 
d ~ n were classified by Dipper, James and the author [38, 80]; the 
general case was settled by Cox [33]. The classification of the blocks of 
the cyclotomic q-Schur algebras is still open when r > 1 and w r:j A. 

5.3. The Jantzen sum formula 

Throughout this section assume that R is a field and that A is sat­
urated. Let t be an indeterminate over R and let p be the maximal 
ideal of R[t, C 1] generated by t- q. The localization 0 = R[t, C 1]p of 
R[t, C 1] at pis a discrete valuation ring and R ~ 0/p. Let vp be the 
p-adic valuation on 0. 

Let £o be the Heeke algebra over 0 with parameters qt and U8 = 
Q 8 tns if Q 8 =/: 0 and Us = (tns -1) if Qs = 0. Then £R(t) = £o 0 R(t) 
is semisimple by Corollary 3.3 and £R = £q,Q(Wr,n) ~ £o 0o R is 
the reduction of £o modulo p. Let Yo(A), !/R(t)(A) and !/R(A) be 
the corresponding cyclotomic q-Schur algebras. 
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Define the 0-residue of a node x = (i, j, s) to be reso(x) = (qt)J-iU8 , 

an element of 0. The connection with our previous definition of residue 
is that res(x) = reso(x) @o lR. 

Let >. be a multipartition and for each node x = (i,j, s) E [>.]let 
rx ~ [>.] be the corresponding rim hook (so rx is a rim hook in [>.Csl]); 
then [>.] \ rx is the diagram of a multipartition. Let CC(rx) be the leg 
length of rx and define reso(rx) = reso(fx) where fx is the foot node 
of rx. These definitions can be found in [79, 103]. 

Suppose that >. and J.1 are multi partitions of n. If>. if J.Llet gAl-£ = 1; 
otherwise set 

IT ( reso(rx)- reso(ry))"'", 
xE[A] yE[!•] 

[1-£]\ry=[A]\r, 

where Exy = (-l)U(r,)H£(rul. The scalars gAl-£ E 0 have a combina­
torial interpretation in terms of moving rim hooks in the diagram of a 
multipartition; see [81, Example 3.39]. 

Finally, let W8 and W~ be the Weyl modules for Y'o(A) and Y'R(A) 
respectively; note that W~ ~ W8 ®oR as R-modules. For each i 2' 0 
define 

W8(i) = {x E wa I (x,y) E pi for ally E wa} 

and set W~(i) = (W8(i) + pW8)jpW8. The Jantzen filtration of W~ is 

In particular, note that Rad W~ = W~(l); consequently, W~(l) is a 
proper submodule of W~(O) and W~(O)/W~(l) ~ L~. Note also that 
W~(k) = 0 fork» 0. 

Actually, what we have just given is a special case of the definition 
of a Jantzen filtration. More generally, the same construction gives a 
Jantzen filtration for any suitable modular system (K,O,p) (with pa­
rameters). The point of this remark is that the Jantzen filtration of W ~ 
depends upon a non-canonical choice of modular system. 

We can now state the analogue of Jantzen's sum formula for Y'R(A). 

Theorem 5.6 (James-Mathas [81, Theorem 4.6]). Let>. be a mul­
tipartition of n. Then 

in the Grothendieck group K 0 (.9'R(A)-mod) of Y'R(A). 
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When r = 1 this result describes the Jantzen filtration of the Weyl 
modules of the q-Schur algebra. The Weyl modules of the q-Schur al­
gebra coincide with the Weyl modules of quantum g[d; therefore, when 
r = 1 Theorem 5.6 is a special case of a result of Andersen, Polo and 
Wen [1] who proved the analogue of the Jantzen sum formula for the 
quantum groups of finite type as a consequence of Kempf's vanishing 
theorem. For a combinatorial proof which takes place inside the q-Schur 
algebra see [80, 103]. When r > 1 there is no geometry to work with. 
The argument of [81] generalizes that of [80]. 

The idea behind the proof of Theorem 5.6 is quite simple. First, for 
each f-L compute the determinant of the Gram matrix G~ = ( (cps, 'PT)), 
5, T E T:Sf.),), of the f..L-weight space WBcp~' of W8. It turns out that 
det G~ = Y>..w Now, the inner product ( , ) on WB is non-degenerate; 
so Jantzen's elementary, yet fundamental, lemma says that 

L dimR W~(i)cpJL = vp(det G~). 
i>O 

This is enough to deduce the result because, by Theorem 4.13(iv), any 
.9'(A)-module is uniquely determined by the dimensions of its weight 
spaces since dim wv 'Pv = 1 and W~'cpv =f 0 only if f-L 12': v, for all v E A+. 

Of course, computing det G~ is not so easy. This is accomplished 
using an orthogonal basis of W~ when P.Yt'(q, Q) =f 0. With this basis 
the Gram determinant is easier to calculate because almost all inner 
products are zero (we are really computing inner products in W~(t)). 
The orthogonal basis is constructed using a family of operators which act 
in a triangular fashion on the semistandard basis of the Weyl modules; 
intuitively, these operators belong to something like a Cartan subalgebra 
of .9'(A) - in fact, they are 'lifts' of the elements Lk to .9'(A). 

The definition of the Jantzen filtration only requires a finitely gen­
erated 0-module which possesses a non-degenerate bilinear form. The 
same construction gives a Jantzen filtrations>.. = sMo) ~ S~(l) ~ ... 
for each Specht module; equivalently, by the proof of Theorem 5.1, we 
can set S~(i) = <flw(W~(i)). Applying the Schur functor to Theorem 5.6 
yields the following. 

Corollary 5.7 (James-Mathas [81]). Let .A be a multipartition of 
n. Then 

in the Grothendieck group Ko(.?r'wmod) of .?r'R. 
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For the symmetric groups (that is, r = 1 and q = 1) this is a result 
of long standing known as Schaper's Theorem [114]. Schaper's argu­
ment is a translation of the Jantzen sum formula for the Weyl modules 
of the general linear group [82] (phrased in terms of the dot action of 
the symmetric group upon the weight lattice of GLn), into the combi­
natorial language of the symmetric group. It is worth remarking that 
the corresponding result for the Weyl groups of type B (i.e., r = 2 and 
q = 1), was obtained only relatively recently [81]. 

The main application of the cyclotomic sum formula has been a 
classification of the irreducible Weyl modules and the irreducible Specht 
modules with s>-. = D\ see [81]. When r = 1 the sum formula was 
used to complete the classification of the blocks of the q-Schur alge­
bras and the Iwahori-Hecke algebras of type A and also to classify the 
ordinary irreducible GLn(q)-modules which remain irreducible when re­
duced mod p when p f q; see [80]. Ariki and the author [10] have also 
used the Jantzen sum formula to classify the representation type of the 
Iwahori-Hecke algebras of type B. 

5.4. Connections with quantum groups 

For this section only we renormalize the basis of the Ariki-Koike 
algebras so as to be consistent with the notation in [5, 113]. We assume 
that q has a square root in R and let q = v2 . As every field is a splitting 
field for £ and S"(A) we are free to extend R so that it contains a 
square root of q if necessary. 

- 1 - -
Let Ti = v- Ti for 1 -:::; i < n. Then To, T1, ... , Tn-1 still generate 

£ and they are subject to the same relations as before except that 
the quadratic relation for the Ti becomes (Ti- v)(Ti + v- 1 ) = 0, for 
1 -:::; i < n. Observe that Lk = i'k-1 ... T1ToT1 ... i'k_ 1 for k = 1, ... , n. 

Fix an integer d 2: 1 and let Uv(flld) be the quantized enveloping 
algebra of g[d· Thus, Uv (gfd) is an associative IQ( v )-algebra which is 
generated by elements Ei, Fi, Kf, where 1 -:::; i < n and 1 -:::; j -:::; n, 
which are subject to the quantum Serre relations. 

Let V bead dimensional!Q(v)-vector space with basis { e1 , ... , ed}· 
Then Vis naturally a Uv(flld)-module, where the action of Uv(flld) on V 
is determined by 

and 

for 1 -:::; i < n, 1 -:::; j -:::;nand 1 -:::;a-:::; n. Now, Uv(flld) is a Hopf algebra 
with coproduct D. given by D.(K1) = K1 Q9 K1, 
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for 1 :S i < n and 1 :S j :S n. Therefore, v~&m is a Uv(gld)-module; let 
Pn: Uv (gld)----* End(V®n) be the corresponding representation. 

Let I(d; n) = { (a1, ... , an) 11 :S a1, ... , an :S d }. If a E J(d; n) let 
ea = ea1 Q9 • • • Q9 ea,.· Then { ea I a E J(d; n)} is a basis of V®n. 

The symmetric group 6n also acts on V®n by place permutations 
and it acts on I(d; n) by permuting components; indeed, e8 w = eaw for 
a E J(d; n) and wE 6n. Jimbo showed how to deform the action of 6n 
to give an action of £q(6n) on V®n. 

Recall that 6n is generated by t1, ... , tn-b where ti = (i, i + 1) for 
i = 1, ... , n -1. Let A+(d; n) be the set of partitions in A(d; n). 

Theorem 5.8 (Jimbo [84]). Assume that £q(6n) and Uv(gld) 
are defined over IQ( v). 

(i) There is a unique £q(6n)-module structure on V®n such that 

for j = 1, ... , n- 1 and a E J(d; n). 

if aJ = aJ+b 

if aJ > aJ+l• 

if aJ < aJ+l 

(ii) The algebms £q(6n) and Pn(Uv(gld)) are mutually the full cen­
tmlizer algebms for each other for their actions on V®n. More­
over, 

v®n~ EB W"0S" 
>.EA+(d;n) 

as an (.9'q(d; n), £q(6n)) -bimodule. 

It is not hard to see that there is an isomorphism V®n ~ 
E9>.EA(d;n)M>. of £-modules; consequently, Pn(Uv(gld)) ~ .9'q(d; n). In 
part (ii), w>- is a Weyl module for Uv(gld); by what we have just said 
this is the same as a Weyl module for the q-Schur algebra .9'(d; n). 

Actually, this is a slight modification of Jimbo's original action of 
~2(6n) on V®n; this action comes from Du-Parshall-Wang [52]. 

The proof of Theorem 5.8 is straightforward. Checking the relations 
it is easy to see that V®n is an £-module and that the actions of£ and 
Uv(gld) commute. The double centralizer property can be proved using 
a highest weight argument to decompose V®n as a Uv(gld)-module. 

Notice that Theorem 5.8 is stated over the rational function field 
IQ(v). Using the workofBellinson, Lusztig and MacPherson [15], Du [48] 
showed that when d ~ n Theorem 5.8 holds over the Laurent poly­
nomial ring A = Z[v, v- 1], where we replace Uv(gld) with its Lusztig 
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A-form U .A (g (d); for the case d < n see [50]. Further, if d ~ n then 
£q(6n) ~ EnduA(gld)(V0 n). 

We remark that Doty and Giaquinto [47] have recently used the 
surjection U(gtd) ----+ Y"q(d; n) to give a presentation of the q-Schur 
algebras over Q(v); see also [49]. No such presentation is known for the 
cyclotomic q-Schur algebras. 

Now we indicate how Sakamoto and Shoji [113] have generalized 
Theorem 5.8 to the cyclotomic case. We extend the coefficient ring for 
all our algebras to the rational function field Q(v, Q1, ... , Qr), where 
v, Q1, ... , Qr are indeterminates. 

Fix positive integers dt, ... , dr with d = dt + · · · + dr and let 
'"'(: {1, ... , d}----+ {1, ... , r} be the map such that '"Y(a) = s if sis minimal 
such that a :::; dt + · · · + d8 and let V8 be the subspace of V with basis 
{ ea I '"'((a) = s }, for 1 :S s :S r, and let g = g(d1 (Vt) EfJ · • · EfJ g(d, (Vr ). We 
consider Uv(g) as a Levi subalgebra of Uv(gtd) in the natural way. Then 
V 0 n is a Uv(g)-module by restriction; let Pn,r: Uv(g)----+ End(V0 n) be 
the corresponding representation of U v (g). 

In order to extend the action of £q(6n) on V®n to an action of£ 
define linear operators c:v and Si on V®n by 

for a E I(d; n) and 1 :::; j < n. 

if '"'f(aj-t) = '"Y(aj), 

otherwise, 

Let A(dt, ... , dr; n) be the set of multicompositions A of n such that 
Ids I = IA(s) I for 1 :::; s:::; rand let A +(dt, ... , dr; n) be the set ofmultipar­
titions in A(dt, ... , dr; n). We warn the reader that A +(dt, ... , dr; n) -!=­

(A( dt, ... , dr; n)) +, in the sense of Definition 4.8 - unless d8 ~ n for 
1 :S S < r. 

The irreducible representations of Uv(g) can be parametrized by 
multipartitions in A+(dt, ... ,dr;n) for n ~ 0. If A E A+(dt, ... ,dr;n) 
let W(A) be the corresponding Weyl module for Uv(g). If r = 1 then 
W(A) ~ W" as Y"q(d; n)-modules; however, in general, W" and W(A) 
are not isomorphic even as vector spaces. 

Theorem 5.9 (Sakamoto and Shoji [113]). Assume that£ and 
Uv(g) are defined over the field Q(v, Q1, ... , Qr)· 

(i) The action of £q(6n) on V 0 n extends to give an action of£ 
on v®n via 

for all a E I(d;n). 
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(ii) The algebras £ and Y"~r) ~ Pn,r (Uv (g)) are mutually the full 
centralizer algebras for the others action on V 0 n. Moreover, 

w(>.) 0 s>-.. 
A.EA+(d1, ... ,d,.;n) 

as an ( Y"~r), £) -bimodule. 

Sakamoto and Shoji were guided in part by Ariki, Terasoma and 
Yamada [11] who considered the special case when d1 = · · · = dr = 1. 
The proof of part (i) of the theorem is a long calculation building on 
Theorem 5.8(i). Once again, part (ii) is a highest weight computation. 

Sakamoto and Shoji also note that part (i) of Theorem 5.9 is true 
over an arbitrary integral domain. Using this observation they gave 
another proof that£ is free of rank IWr,nl (Theorem 2.2). 

Ariki [5] asked whether Theorem 5.9(ii) is true over an arbitrary 
field; he was particularly interested in knowing when the dimension of 
Pr,n(Uv(g)) = Endye(V0 n) is independent of R, q and Q. Ariki found 
an example which showed that in general the dimension of Pr,n(Uv(g)) 
does depend upon these choices; nonetheless, he was able to prove the 
result below. 

Let U A(g) be the Kostant-Lusztig A-form of Uv(g) and set U R,v(g) = 
Uv(g) 0A R, where R is an integral domain. We also consider V to 
be the freeR-module with basis {e1, ... ,ed}· Finally, define Y"~r) = 
Endye(V0 n). 

Theorem 5.10 (Ariki [5]). Suppose that R is an integral domain 
and that q = v2 , Q1 , ... , Qr are elements of R such that 

Pn(q,Q) = II 
l:Si<j:<;r -n<d<n 

is invertible in R. Then the following hold. 

(i) Suppose that ds 2: n for all s. Then there is an isomorphism of 
R-algebras 

y(r) ~ 
n -

n1, ... ,n,.2'_0 
nl+ .. ·+n,=n 

In particular, Y"~r) is free as an R-module and its rank is inde­
pendent of the choice of R or the parameters v, Q1, ... , Qr. 

(ii) The algebra Y"~r) is a quotient of UR,v(g). 
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(iii) Assume that d8 2: n for 1 :S: s :S: r. Then Endu R ... (g) (V®n) zs 
Mo'f'ita equivalent to the algebra 

E9 £q(6n,) ® ··· ®£q(6n,)· 
n 1 , ... ,n.,.2::0 

n, +···+n.,.=n 

Observe that Pn(q, Q) is equal to the polynomial Pn(q, Q1, ... , Qr) 
of Theorem 3.15 (with Q"' = { Qa}, for all a). Assume that ds 2: n 
for all s. Then, by part (i) and Theorem 4.15, the algebra Sl'~r) is 
Morita equivalent to the cyclotomic Schur algebra S"'(Ar,n)· Similarly, 
by part (iii) and Theorem 3.15, if d8 2: n for all s then Endu11 ,(V®n) 
is Morita equivalent to £. Hence, up to Morita equivalence, we have a 
complete analogue of Schur-Weyl duality linking Uv(g), S"'(Ar,n) and Yt' 
in this setting; however, note that this is really a type A phenomenon 
and is not genuinely 'cyclotomic'. 

Ariki also uses this result to compute the decomposition matrices 
of the algebras Sl'~r) when R = Ql, q oil and Pn(q, Q) ol 0. To do this 
he uses part (i) and the LT-conjecture [95] which gives an extension of 
Theorem 3.19(ii) to the q-Schur algebras. The LT-conjecture was proved 
by Varagnolo and Vasserot [121]; see also Schiffmann [115]. 

Combining these results, the decomposition matrices of the cyclo­
tomic Schur algebras are known whenever R is a field of characteris­
tic zero, q ol 1 and Pn(q, Q) ol 0. Actually, we do not need Ariki's 
work to do this as we already obtain this result from Theorem 4.15 
and [95, 121]. (Note that Ariki's paper appeared before [44], the source 
of Theorem 4.15.) 

5.5. Borel subalgebras 

In this section we show that the cyclotomic Schur algebras admit a 
"triangular decomposition". For the Schur algebras this is a result of 
J.A. Green [66]; the cyclotomic case is due to Du and Rui [53]. 

For simplicity we consider the case where A = Ar,n is the set of all 
multicompositions of n of length at most n. Du and Rui note that the 
general case can be deduced from this because if A is a saturated set 
of multicompositions then S"'(A) is Morita equivalent to the subalgebra 
e9(Ar,n)e of S"'(Ar,n), where e is the idempotent L>.EA+ 'P>-· 

Recall that J(m; n) = { (a1, ... , an) 11 :S: ai :S: m }. Then 6n acts 
on I(rn; n) by place permutations. Given a multicomposition A in Ar,n 

let >: = (X1, ... , Xrn) be the composition in A(m; n) with Xi = >.j•l 
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if i = (s- 1)n + j. Define 

i.x = (i.x,l, ... , i.x,n) = (1, ... , 1, 2, ... , 2 ... , rn, ... , rn) E I(rn; n) . .....____.......____.. ~ 

Let C::: be the partial order on I(rn; n) given by a C::: b if ak ~ bk for 
1 :S: k :S: rn. Note that for any d E 6n if,\ and J.L are multicompositions 
with i.xd C::: ilL then J.L [:::: A. 

Recall that for each multicomposition ,\ E Ar,n we have a Young 
subgroup 6.x and that 'D.x is the set of minimal length coset right rep­
resentatives for 6.x in 6n. Moreover, if J.L is another multicomposition 
then 'D.x!L = 'D>, n v;; 1 is a set of minimal length (6.x, 6/L)-double coset 
representatives. For each d E 'D.x~" define cp~!L to be the R-linear endo­
morphism of ffia M<> determined by 

cp~!L(mah) = 5a!L( L Tw )uth 
wE6>.d6 1, 

for all a E Ar,n and all h E £. If i>,d C::: ilL then cp~!L E S"(Ar,n) 
by [53, Lemma 5.6]. In particular, if v E Ar,n then 'Ptv = 'Pv restricts 
to the identity map on Mv (and is zero on Ma for a i" v). 

Finally, given multicompositions ,\ and J.L in Ar,n let 

D.x!L = { d E 'D>.!L I i>,d C::: ilL}. 

Define J"±(Ar,n) to be the two R-submodules of S"(Ar,n) spanned by 
{ cp~!L I d'f E D.x!L }. We can now state the main result. 

Theorem 5.11 (Du and Rui [53]). Suppose that R is an integral 
domain. 

(i) The two R-modules sc±(Ar,n) are subalgebras of S"(Ar,n)· 
(ii) sc±(Ar,n) is free as an R-module with basis 

(iii) S"(Ar,n) has a triangular decomposition 

S"(Ar,n) = sc-(Ar,n)·S"+(Ar,n) = sc-(Ar,n)· ( L Rcpv) .J"+(Ar,n)· 
vEA1·.n 

Thus, { cp~!L'P~v I A, J.L, v E Ar,n, dE 'D.x!L and e- 1 E 'D!Lv} is a ba­
sis of S"(Ar,n)· 



308 A. Mathas 

Du and Rui call y- (Ar,n) and y+ (Ar,n) the Borel subalgebras 
of Y(Ar,n)· Surprisingly, the Borel subalgebras of the cyclotomic Schur 
algebras are isomorphic to the Borel subalgebras of the q-Schur algebras; 
hence, they are really type A algebras. 

The right hand side of part (iii) is written so as to suggest the 
triangular decomposition of quantum groups; however, this is slightly 
misleading because 4'1/l c~=l/ Tv'f?v) <p~T = bttaT tt'P1/l 'P~n for Tv E R. 

Du and Rui are able to say quite a lot about the representation 
theory of these subalgebras. Because y± (Ar,n) are quasi-hereditary, 
they have standard modules and costandard modules; denote these by 
~±(J.L) and 'V±(J.L) respectively, for J.L E Ar,n· Also, if J.L E Atn then 
the Weyl module Wtt = ~(J.L) is a standard module of Y(Ar,n) and its 
contragredient dual (Wtt)* = 'V(J.L) is a costandard module (duality with 
respect to *). 

Theorem 5.12 (Du and Rui). Suppose that R is a field. 

(i) The Borel subalgebras y-(Ar,n) and Y+(Ar,n) are quasi­
hereditary, with respect to the poset Ar,n· Moreover, y-(Ar,n) 
and Y+(Ar,n) are Ringel dual to each other. 

(ii) (a) Each costandard module of y-(A) is one dimensional and, 
hence, simple; moreover, every simple module appears this 
way. 

(b) Dually, each standard module of y-(Ar,n) is a projective 
indecomposable y- (Ar,n)-module. 

(c) Explicitly, if J.L E Atn then ~-(J.L) = y-(Ar,n)'Ptt and 
v-(J.L) = ~-(J.L)/Rad~-(J.L); moreover, { <f?tt I J.L E Ar,n} 
is a complete set of primitive idempotents in y- (Ar,n). 

(iii) Suppose that J.L E Ar,n· Then 

if J.L E Atn, 
otherwise, 

and 

if J.L E Atn' 
otherwise, 

Ringel duality interchanges the standard and costandard modules 
of Y-(Ar,n) and Y+(Ar,n), so part (ii) also describes the simple and 
projective y+ (Ar,n)-modules. 

Du and Rui also give the dimensions of the standard and costandard 
modules for the Borel subalgebras and show that the Borel subalgebras 
are Ringel dual to each other. 
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5.6. Tilting modules 

Let A be a quasi-hereditary algebra (see [32, 46]), and let A+ be 
its poset of weights. Then for each A E A+ we have a standard mod­
ule ~(A), a costandard module V'(A) and a simple module L(A). The 
simple module L(A) is the head of ~(A) and the simple socle of V'(A); 
further, V'(A) is the contragredient dual of ~(A) if A possesses a suitable 
involution. 

Let .F(~) be the full subcategory of A-mod consisting of those mod­
ules which have a ~-filtration; thus X E .F(~) if X has a filtration X = 
X1 ::J X2 ::J · · · ::J Xm ::J 0 with Xi/ Xi+l ~ ~(Ai) for 1 :S i :S m. If X E 
.F(~) and A E A+ let [X:~(A)] = # { 1 :::; i:::; m I Xi/ Xi+1 ~~(A)}; 
this is independent of the choice of filtration because the equivalence 
classes of standard modules are a basis of the Grothendieck group of A. 
Similarly, let .F('\7) be the full subcategory of A-modules which have a 
V'-til tration. 

Ringel [110] has proved that for each A E A+ there is a unique 
indecomposable A-module T(A) E .F(~)n.F('\7) such that [T(A):~(A)] = 
1 and [T(A):~(J.t)] "1- 0 only if J.L ~ A; we call T(A) a (partial) tilting 
module for A. Moreover, every module in .F(~) n.F('\7) is isomorphic to 
a direct sum of tilting modules. 

If A is saturated then the cyclotomic Schur algebra Y'(A) is quasi­
hereditary by Theorem 4.14, so we may ask for a description of the 
tilting modules of Y'(A). When r = 1 Donkin [45, 46] determined the 
tilting modules of the q-Schur algebras. To describe this, recall from 
the previous section that Y'q(d; n) = End£(V®n). Donkin showed that 
the tilting modules of Y'q(d; n) are precisely the indecomposable direct 
summands of the exterior powers 1\>.V = /\>.1 VQ9· · ·1811\>.dv. For another 
approach to the tilting modules of the q-Schur algebras see [50]. 

Even though we do not know how to describe tBf.lMf.l as a tensor 
product the exterior powers of Y'(A) still admit a similar description. 
In introducing M>. we said that it should be thought of as an induced 
trivial module; the analogue of an induced sign representation for .Yt' is 
the module N>. = n>..Yt', where n>. = Y>.u>. = u-;,y>. and 

r-ll>.<·•+l)l+·+l>.<•·)l 
Y>. = L ( -q)-l(w)Tw and u-;. = II II (Lk - Qs)· 

s=l k=1 

For each multipartition A let E>. = fl>,Y'(A), where(}>. E Hom£(£, N>.) 
is the map O>.(h) = n>.h for hE£. Then E>. is a right Y'(A)-module 
and we have the following. 
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Theorem 5.13 (Mathas [105]). Suppose that R is a field, and 
that A is a saturated set of multicompositions containing w. Then the 
tilting modules of ..9"(Ar,n) are the indecomposable summands of the mod­
ules {E..\ I A E A+}. 

The key tool in the proof of Theorem 5.13 is the use of Specht filtra­
tions and dual Specht filtrations of £-modules; this is a bit surprising 
because Specht filtrations are generally not as good as Weyl filtrations 
(since it can happen that S..\ ~ SJ1. when A"/= J.L). 

The tilting modules of ..9"(A) have all ofthe expected properties. For 
example, [T(A):V'(J.L)] = [~(J.L'):L(A')] for all A, J.L E A+. (Here J.L1 is the 
multipartition conjugate to J.L.) Furthermore, the Ringel dual of ..9"(A) 
is the algebra ..9"'(A) = End.no ( E911-EA N11-) and ..9"'(A) ~ ..9"(A). 

The theory of Young modules for £ (cf. [78]), is also developed 
in [105]. The Young modules (and twisted Young modules) are the 
indecomposable direct summands of the modules M..\ and N\ for A a 
multicomposition of n; they are indexed by the multipartitions of n. 
The Young modules are the image under the Schur functor of the corre­
sponding indecomposable projective, injective or tilting modules for the 
algebras ..9"(A) or ..9"'(A). 

§6. Some open problems 

In this final chapter we discuss some open problems for the Ariki­
Koike algebras and the cyclotomic Schur algebras. We are mostly inter­
ested in the connections between the representation theory of the Ariki­
Koike algebras and cyclotomic Schur algebras with the representation 
theory of the finite groups of Lie type. 

Problem 6.1. Prove the conjectures of Broue, Malle and Michel 
stated in Conjecture 2.5 and [19]. 

We also pose the more general (and more vague) problem. 

Problem 6.2. Find a link between the representation theory of 
the cyclotomic Schur algebras and the modular representation theory of 
the finite groups of Lie type. 

At best, there is only circumstantial evidence for such a connection 
when r > 2. If we believe in the conjectures of the Brom'l school then 
there are strong ties between the representation theory of cuspidal rep­
resentations of GLd(q) in characteristic zero, so it is not unreasonable 
to expect that the modular theory of the cyclotomic Schur algebras and 
Ariki-Koike algebras also carry information about the modular repre­
sentations of GLd(q). 
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6.1. Quantum groups and geometry 

The results of Ariki and Sakamoto and Shoji from §5.4 show that in 
some circumstances the module categories of the Ariki-Koike algebras 
and the cyclotomic Schur algebras are connected with the module cate­
gories of Levi subalgebras of Uv(grd)· Unfortunately, these results apply 
only in cases where the Ariki-Koike algebras are Morita equivalent to 
direct sums of tensor products of lwahori-Hecke algebras of type A and 
when the cyclotomic q-Schur algebras were Morita equivalent to direct 
sums of tensor products of q-Schur algebras. 

Problem 6.3. Realize the cyclotomic Schur algebras as a quotient 
of a quantum group UA(g) over an arbitrary integral domain. 

We could ask for a generalization of the results of Sakamoto and 
Shoji (Theorem 5.9) and Ariki (Theorem 5.10); however, as the conjec­
tures of Broue's school only ask for a derived equivalence it seems to me 
that we cannot expect something so simple here. 

That the cyclotomic Schur algebras might be realizable as a quo­
tient of a quantum group is suggested by the cyclotomic Jantzen sum 
formula (Theorem 5.6) and by the existence of the Borel subalgebras and 
the triangular decomposition of Y(A) (Theorem 5.11). Both of these re­
sults hint at connections with quantum groups and at some undiscovered 
geometry. 

Note also that the existence of the Borel subalgebras allows us to 
consider the dual Weyl modules of the cyclotomic Schur algebras as 
induced modules and so gives us cohomological techniques to play with. 

6.2. Tensor products 

First consider the case r = 1. If A is a partition of n and J.L 
is a partition of m then s>- 1:8:1 SIL is a module for the Heeke algebra 
£q(6n) ® £q(6m)· We can identify £q(6n) ® £q(6m) with the sub­
algebra £q(6{n,m}) of £q(6n+m) where 6{n,m} = 6n X 6m. Thus, 
£q(6n+m) is a free £q(6n) ® £q(6m)-module and we can define the 
£q(6n+m)-module 

s>- ® SJL =(SA 1:8JSIL) ®£.{6n}®£.(6m) £q(6n+m)· 

When £q(6n) is semisimple, this decomposes as a direct sum of Specht 
modules according to the Littlewood-Richardson rule. 

In the case of the q-Schur algebras it is even easier. If A and J.L are 
both partitions of length at most d then the Weyl modules w>- and WJL 
are homogeneous polynomial representations for Uv(g[d) of degree nand 
m respectively; therefore, w>- ® WJL is a polynomial representation of 
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Uv(gld) of degree n+m- since Uv(gld) is a Hopf algebra. Hence, W.A ® 
W~' is an Yq(d; n + m)-module since Y(d; N)-mod is the category of 
polynomial representations of Uv (g !d) of homogeneous degree N. Again, 
in the semisimple case the decomposition of W.A ® W~' into irreducibles 
is given by the Littlewood-Richardson rule. 

When we try and extend either of these constructions to the cyclo­
tomic case we run into problems. First, for the Ariki-Koike algebras 
there is no obvious way to consider £q,Q(Wr,n) ® £q,Q' (Ws,m) as a free 
submodule of £q,QuQ' (Wt,n+m) for any t, unless rs = 0. Secondly, we 
do not have an interpretation of the module category· of a cyclotomic 
Schur algebra in terms of homogeneous representations of a quantum 
group. 

Problem 6.4. Find a good tensor product operation for the cate­
gories .Ye -mod and Y(A)-mod. 

Of course, a strong enough link with quantum groups would give 
us this for free. The correct approach is probably via the affine Heeke 
algebra (or possibly the work of Shoji [117]). 

If we knew how to take tensor products of modules for the cyclotomic 
Schur algebras then we could try and solve the following problem. 

Problem 6.5. Find an analogue of the Steinberg tensor product 
theorem for the cyclotomic Schur algebras. 

Evidence for the existence of such a result, as well as an indication 
of what it might look like, are given by Uglov's [120] action of the 
Heisenberg algebra upon the generalized Fock spaces. 

6.3. Decomposition numbers at roots of unity 

The decomposition numbers of the Ariki-Koike algebras are known 
in characteristic zero, thanks to Ariki's theorem and the work of Uglov 
(assuming that Q8 1- 0 for any s); see Corollary 3.20. 

Problem 6.6. Compute the decomposition numbers of the cyclo­
tomic q-Schur algebras in characteristic zero. 

By Theorem 3.19 the decomposition matrix of £q(6n) can be com­
puted from the canonical basis of Lv(A0 ). The easiest way to compute 
the canonical basis of Lv(Ao) is to work in the Fock space :F, an infinite 
rank free <C[v, v- 1]-module with a basis given by the set of all partitions 
of all integers. Leclerc and Thibon's idea [95] was to define a canonical 
basis on the whole of the Fock space; they did this using the action of 
a Heisenberg algebra on :F. Leclerc and Thibon conjectured that the 
decomposition matrices of the q-Schur algebra were given by computing 
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the canonical basis of F and then specializing v = 1; this was proved by 
Varagnolo and Vasserot [121]. 

Hence, this problem has been solved when r = 1. Furthermore, as 
remarked in §5.4, when Pn(q, Q) fo 0 we also know the answer because 
by Theorem 4.15 S"(A) is Morita equivalent to a direct sum of tensor 
products of q-Schur algebras. 

Now, the decomposition matrices of the Ariki-Koike algebras in 
characteristic zero are obtained by computing the canonical basis of 
highest weight modules Lv(A), for the various dominant weights A. This 
time, Lv(A) embeds in a generalized Fock space FA and Uglov has shown 
how to compute a canonical basis for the whole of this space; this gives 
a canonical basis element for each multipartition. For n 2:- 0 the canon­
ical basis of FA at v = 1 gives a square unitriangular matrix, indexed 
by the multipartitions of n, which contains the decomposition matrix 
of the Ariki-Koike algebra Jft;., as a submatrix (delete those columns 
corresponding to the multipartitions >. with D>-. = 0); compare with 
Corollary 5.2. The indexing of the rows and columns is wrong; however, 
once this difference in labeling is taken into account, I expect that this 
will give the decomposition matrix of S"(Ar,n)· 

6.4. Dipper-James theory 

Let q be a prime power and let GLn(q) be the general linear group 
over a field with q elements. Dipper and James [39] proved that the 
decomposition matrix of GLn(q) in non-defining characteristic is com­
pletely determined by the decomposition matrix of the qd~Schur al­
gebras, for d 2:- 1. Recently Brundan, Dipper, and Kleshchev [27] 
have rewritten this theory using cuspidal algebras. They also make 
the Dipper-James result on decomposition matrices much more explicit; 
see [27, Theorem 4.4d]. 

To date, no one has succeeded in generalizing this theory to the 
cyclotomic q-Schur algebras. The best results in this direction were 
obtained by Gruber and Hiss [7 4] who, for linear primes, worked with a 
Morita equivalent version of the cyclotomic Schur algebras when r = 2 
(type B), to give similar results for other finite reductive groups Gn(q). 
See the survey article of Dipper, Geck, Hiss and Malle [36] for the current 
status of this theory. 
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